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ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal tumors. However, 
the methodological differences between orthotopic and subcutaneous xenograft (OX and 
SX) models will cause confusion in understanding its pathological mechanism and clinical 
relevance. In this study, SX and OX models were established by implanting Panc-1 and 
BxPC-3 cell strains under skin and on the pancreas of mice, respectively. The tumor tissue 
and serum samples were collected for1H NMR spectroscopy followed by univariate and 
multivariate statistical analyses. As results, no obvious metabonomic difference was 
demonstrated in serum between the two models, however, the model- and cell strain-
specific metabonomic differences were observed in tumor tissues. According to the KEGG 
analysis, ABC transporters, glycerophospholipid metabolism, purine metabolism and 
central carbon metabolism were identified to be the most significant components involved 
in metabonomic differences. Considering the methodological discrepancy in SX and OX 
models, such differences should be contributed to tumor microenvironment. In general, 
SX are not equivalent to OX models at molecular level. Subcutaneous transplantation 
displayed its inherent limitations though it offered a simple, inexpensive, reproducible 
and quantifiable advantage. And orthotopic transplantation may be favorable to simulate 
PDAC in patients due to its similar pathogenesis to human pancreatic cancer.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is an 
extremely lethal malignancy with a devastated prognosis 
whose five-year survival rate is less than 7% [1]. Most 
patients are diagnosed in late stage and resectable rate of 
the tumors is only 20%. This situation makes it almost 
impossible to observe the whole process of tumor 
genesis and development in clinical work, and therefore 
understanding of its pathological mechanism mainly 
depended on animal models. In past decades, scientists 
have exerted great efforts to establish various animal 

models for PDAC, which can be served as a cornerstone 
for establishing favorable platforms for the clinical 
diagnosis and therapy of PDAC patients [2, 3].

Among animal models, transplantation models, 
including subcutaneous xenograft (SX) and orthotopic 
xenograft (OX) models, are most widely used to 
investigate pathology, diagnosis and therapy for cancers. 
As highly advocated by researchers, OX models of 
carcinoma can simulate the growing environment and 
enable them to maintain the features of the primary tumor, 
thus being more patient-like models [4]. Furthermore, in 
some specific tumors like gallbladder cancer, the ascites 
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generation, lymph node and liver metastasis can only 
be observed in OX models but not in SX models [5], 
indicating that OX models is superior to SX models. 
However, SX models are still widely used in scientific 
researches especially for pharmaceutical trails due to more 
facilitation of their establishing, monitoring and operating 
than OX models. Nowadays, in the face of the popularity 
of system biological studies including genomics, 
transcriptomics, proteomics especially metabonomics, 
there is an increasing demand to compare applicability 
of these two models at molecular level. Therefore, 
considering that most of previous researches focus on the 
differences of tumorous biological behaviors while the 
metabonomic differences generated by the methodological 
diversity of modeling are still unknown, we tried to 
evaluate the pros and cons of these two models in PDAC 
and get their metabonomic difference between OX and SX 
models by using NMR-based metabonomics methods, and 
further serve scientific researches like pathological and 
pharmaceutical experiments.

RESULTS

Metabolic profiles of serum and tissues from 
mice with PDAC

1H NMR spectra of serum and tissue provide 
the corresponding metabolic profiles of the mice. The 
characteristic metabonomic profiles of serum and tissue 
from SX and OX models induced by BxPC-3 and Panc-
1 cells were demonstrated in the corresponding NMR 
spectra (Figure 1). The resonance assignments were 
performed based on the published articles [6, 7, 8],  
public [9] and in-house developed databases, and the 
corresponding metabolites were marked in NMR spectra in 
the form of serial numbers, which can be viewed in Table 1 
for details. All xenograft models demonstrated the similar 
metabolic profiles in serum metabonomes especially those 
induced by the same pancreatic cancer cell line although 
some characterized metabolites could be identified 
from the controls such as the higher LDL and pyruvate 
concentrations and the lower glycerophosphorylcholine 
(GPC) concentrations in xenograft models than in 
controls (Top panel in Figure 1). Tissue metabonomes 
of the xenograft models showed the obviously different 
metabolic profiles from those of the controls (Bottom 
panel in Figure 1). Furthermore, orthotopic xenograft 
demonstrated distinct metabonomic variations from 
subcutaneous xenograft, and Panc-1 cell strain induced 
more obvious metabolic differences than BxPC-3 between 
OX and SX groups. However, the visual comparison 
cannot provide the detailed biological information for 
assessment of similarities and differences between SX and 
OX models, thus, multivariate statistical analysis could be 
helpful for such specific bio-information.

Metabolic characteristics of SX and OX models 
in serum metabonomes

To investigate the metabonomic difference between 
SX and OX mouse models of PDAC and identify their 
metabolic characteristics from the controls, PCA and PLS-
DA were performed to give an overview on the NMR 
data of serum from PDAC groups induced by BxPC-3 
and Panc-1 cells and the control mice (Figure 2A1 and 
2A2). PCA scores plot displayed the metabolic differences 
between control and BxPC-3 and Panc-1 cell induced 
PDAC groups but obvious overlapping between SX 
and OX groups (Figure 2A1), indicating that the serum 
metabonomes of SX and OX models were quite similar 
and difficult to be distinguished. PLS-DA highlighted the 
distinctive separations between controls and xenograft 
groups but the evident overlapping between SX and OX 
groups was still kept, which implied the similar metabolic 
phenotype between SX and OX groups in serum. The 
metabonomic similarity in serum between the two models 
may be due to the fact that serum metabonomes are also 
the comprehensive reflection from other organs in the 
body besides the specific tumor-bearing organ (pancreas 
in this study), that is, the metabolic characteristics of the 
tumor tissues could be demonstrated in the animal serum 
wherever the tumor locates. Judging from this aspect, 
subcutaneous xenograft and orthotopic xenograft models 
are metabolically equivalent.

In order to identify the metabolic similarity 
between SX and OX models in serum metabonomes, 
the pair-comparisons were conducted in the subgroups 
in both BxPC-3 and Panc-1 groups by using OPLS-DA 
(Supplementary Figure 1 in the supplemental materials). 
The undesirable fit and prediction parameters (R2 and 
Q2) in the OPLS-DA models demonstrated insignificant 
differences between SX and OX groups induced by both 
BxPC-3 and Panc-1 cells, and permutation test of models 
and the corresponding probability (p-values) via CV-
ANOVA also confirmed the metabolic similarity of serum 
between these two modeling methods.

To understand the metabonomic characteristics 
of SX and OX models and identify the dominantly 
differential metabolites of the xenograft groups from 
the controls, the pair-comparisons by using OPLS-DA 
incorporating Student’s t test were conducted on the 
NMR data of serum from in BxPC-3 and Panc-1 groups. 
And the results were visually displayed in volcano 
plots (Figure 3, where the threshold was defined as 
p-value of t- test less than 0.05 and a certain correlation 
coefficient |r|>0.755 for BxPC-3 groups and 0.602 for 
other comparisons), and the corresponding information 
was listed in Table 2. We noticed that SX and OX models 
both in BxPC-3 and Panc-1 cell groups demonstrated 
similar metabonomic characteristics in serum, where the 
differential metabolites from SX and OX share the same 
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variation trends and no one showed contrary variation 
trend (Table 2). Based on KEGG analysis, the metabolic 

pathways involving the dominant metabolites from 
BxPC-3 and Panc-1 cell induced PDAC groups were 

Figure 1: Representative 600 MHz 1H NMR spectra of the serum (top panel) and tissue (bottom panel) samples from 
control, orthotopic and subcutaneous xenograft (OX and SX) mouse models induced by Panc-1 (-P) and BxPC-3 (-B) 
cell strains. The spectral regions in the dashed boxes were magnified 20 (for serum) and 5 (for tissue) times for the purpose of clarity. 
Keys for the assignments of peaks were showed in Table 1.
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Table 1: List of metabolites identified from NMR spectra of serum and tissue and the corresponding assignments

No. Abbr. Metabolites
1H chemical shift 

(ppm)(multiplicity) Sample

1 1-MH 1-Methylhistidine 7.08(sa), 7.69(s) S/Tb

2 DU 2-Deoxyuridine 5.95(d), 7.87(d) T

3 2-HB 2-Hydroxybutyrate 0.90(t), 1.70(m) T

4 MBC 2-Methylbutyroylcarnitine 5.61(dd) S

5 3-HB 3-Hydroxybutyrate 1.20(d), 2.31(dd), 
2.41(dd), 4.16(m)

S/T

6 3-MH 3-Methylhistinine 7.03(s), 7.90(s) T

7 MC 5-Methylcytidine 7.69(d) T

8 Ace Acetate 1.92(s) S/T

9 AA Acetoacetate 2.28(s) S

10 Act Acetone 2.23(s) S

11 Ad Adenine 8.11(s), 8.12(s) T

12 Ade Adenosine 4.29(dd), 4.44(dd), 
6.11(d), 8.37(s)

T

13 ADP Adenosine diphosphate 8.55(s) T

14 PAP Adenosine 3′,5′-diphosphate 8.59(s) T

15 AMP Adenosine monophosphate 4.52(d), 6.15(d), 
8.27(s), 8.61(s)

T

16 ATP Adenosine triphosphate 8.53(s) T

17 Ala Alanine 1.48(d) S/T

18 All Allantoin 5.39(s) S

19 Asc Ascorbate 4.52(d) S

20 Asn Asparagine 2.88(dd), 2.95(dd), 
3.99(dd)

T

21 Asp Aspartate 2.70(dd), 2.81(dd), 
3.94(dd)

T

22 Bet Betaine 3.27(s), 3.91(s) T

23 Cho Choline 3.21(s) S/T

24 Ci Citrate 2.53(d), 2.67(d), S/T

25 Cr Creatine 3.04(s), 3.93(s) S/T

26 Cn Creatinine 3.05(s), 4.06(s) S

27 Cyd Cytidine 5.87(d), 7.81(d) T

28 DHA Dihydroxyacetone 4.42(s) S

29 DMA Dimethylamine 2.72(s) S/T

30 Eth Ethanol 1.18(t), 3.61(q) S

31 EA Ethanolamine 3.15(t), 3.86(t) S/T

32 For Formate 8.46(s) S/T

(Continued)
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No. Abbr. Metabolites 1H chemical shift 
(ppm)(multiplicity)

Sample

33 Fum Fumarate 6.52(s) S/T

34 Glu Glutamate 2.08(m), 2.12(m), 
2.35(m), 3.78(t)

S/T

35 Gln Glutamine 2.14(m), 2.45(m), 
3.78(t)

S/T

36 GSH Glutathione 2.56(m), 2.99(m) T

37 G Glycerol 3.56(dd ), 3.66(dd), 
3.80(m)

S/T

38 GPC Glycerophosphorylcholine 3.23(s), 3.68(m), 
4.33(m)

S/T

39 Gly Glycine 3.57(s) S/T

40 GA Guanidoacetate 3.80(s) T

41 His Histidine 7.05(s), 7.82(s) S/T

42 HX Hypoxanthine 8.20(s), 8.22(s) T

43 Ino Inosine 4.26(dd), 6.08(d), 
8.25(s), 8.34(s)

T

44 IB Isobutyrate 1.07(d) S/T

45 Ile Isoleucine 0.94(t), 1.01(d), 
1.26(m)

S/T

46 Lac Lactate 1.33(d), 4.11(q) S/T

47 LDL Low density lipoprotein 0.86(br), 1.28(br) S

48 VLDL Very low density lipoprotein 0.89(br), 1.30(br), 
1.58(br)

S

49 L Lipid 2.01(br), 2.23(br), 
2.78(br), 5.31(br)

S

50 Leu Leucine 0.96(t),1.70(m) S/T

51 Lys Lysine 1.46(m), 1.73(m), 
1.91(m), 3.01(m), 

3.76(t)

S/T

52 Mal Malate 4.31(dd) T

53 M Malonate 3.12(s) S/T

54 Mol Methanol 3.36(s) S

55 Met Methionine 2.14(s), 2.65(t) S/T

56 MA Methylamine 2.61(s) S/T

57 MIB Methylisobutyrate 1.18(d) T

58 MM Methylmalonate 1.22(d), 3.12(q) S/T

59 m-I myo-Inositol 3.27(t), 3.56(dd), 
3.62(t), 4.07(t)

S

60 DMG N,N-Dimethylglycine 2.93(s) S/T

61 NAG N-Acetyl-glycoprotein signals 2.04(s) S

(Continued)
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No. Abbr. Metabolites 1H chemical shift 
(ppm)(multiplicity)

Sample

62 NA Nicotinamide 7.60(dd), 8.25(dd), 
8.72(dd), 8.94(d)

T

63 NAD Nicotinamide adenine 
dinucleotide

4.37(m), 4.42(m), 
4.49(m), 4.51(m), 
6.04(d), 6.09(d), 
6.12(d), 8.14(s), 
8.42(s), 8.83(d), 
9.14(d), 9.34(d)

T

64 NMA N-Methylnicotinamide 4.49(s), 8.90(d), 
8.98(d), 9.30(s)

T

65 Pan Pantothenate 0.84(s), 0.90(s) T

66 Phe Phenylalanine 4.00(m), 7.33(d), 
7.37(t), 7.43(m)

S/T

67 PC Phosphocholine 3.22(s), 4.18(m) S/T

68 Pro Proline 3.33(m) T

69 Py Pyruvate 2.39(s) S/T

70 Qu Quinone 6.81(s) T

71 Sar Sarcosine 2.72(s), 3.60(s) S/T

72 Sph Sphignosine 5.52(dd), 5.56(dd), 
5.74(dd)

T

73 Sur Surcose 5.43(s) T

74 Suc Succinate 2.41(s) S/T

75 Tau Taurine 3.27(t), 3.43(t) T

76 Thr Threonine 1.33(d), 3.59(dd), 
4.26(m)

S

77 TMA Trimethylamine 2.89(s) S

78 Trp Tryptophan 7.28(m), 7.30(s), 
7.53(d), 7.73(d)

S/T

79 Tyr Tyrosine 6.91(d), 7.20(d) S/T

80 Ura Uracil 5.80(d), 7.55(d) T

81 Ud Uridine 4.24(t), 4.36(t), 
5.91(d), 7.89(d)

T

82 UDG Uridinediphosphate glucose 5.61(dd), 5.97(m), 
7.96(d)

T

83 Val Valine 0.99(d), 1.04(d), 
2.28(m)

S/T

84 Xan Xanthine 7.91(s) T

85 α-Glc α-Glucose 3.42(t), 3.54(dd), 
3.71(t), 3.73(t), 
3.84(m), 5.24(d)

S/T

86 HIV α-Hydroxyisovalerate 1.36(s) S

(Continued)



Oncotarget61270www.impactjournals.com/oncotarget

similar and most of pathways could be closely associated 
with the specific mechanism of tumorigenesis and tumor 
development (Figure 4). The PDAC mainly involved in 
the abnormal pathway in central carbon metabolism in 
cancer, metabolism and biosynthesis of amino acids and 
carboxylic acids, and protein digestion and absorption. 

As may be expected, no obvious metabonomic difference 
could be identified in the serum between SX and OX 
models by comparing the significantly differential 
metabolites and corresponding pathways. However, the 
non-significant metabonomic difference in serum may 
also be due to the limited amount of samples in present 

No. Abbr. Metabolites 1H chemical shift 
(ppm)(multiplicity)

Sample

87 β-Glc β-Glucose 3.25(dd), 3.41(t), 
3.46(dd), 3.49(t), 
3.90(dd), 4.65(d)

S/T

aMultiplicity: s: singlet; d: doublet; t: triplet; q: quartet; dd: doublet of doublets; m: multiplet; br: broad resonance
bS: serum; T: tissue.

Figure 2: PCA (A1 and B1) and PLS-DA (A2 and B2) scores plots based on the 1H NMR data of the serum (A) and tissue 
(B) samples from the corresponding mouse groups. C: control groups; -B: BxPC-3 cell induced; -P: Panc-1 cell induced; SX: 
subcutaneous xenograft group; OX: orthotopic xenograft group.
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Figure 3: OPLS-DA scores plots (left panels) and the corresponding volcano plots (right panels) derived from 1H NMR 
data of the serum from xenograft groups and their controls. C: control groups; B: BxPC-3 cell induced; P: Panc-1 cell induced; 
SX: subcutaneous xenograft group; OX: orthotopic xenograft group. The marked circles in the color volcano plots represent the metabolites 
with statistically significant difference. Metabolite numbering is accordance with that as listed in Table 1.
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study and the specific bioinformation of metabonomic 
difference should be further investigated to get a deep 
insight.

Metabolic characteristics of SX and OX models 
in tissue metabonomes

To comprehensively assess the metabonomic 
difference between SX and OX models, PCA and PLS-
DA were also performed on the NMR data derived from 
aqueous extract of BxPC-3 and Panc-1 tissues. Unlike 
the results in serum, obvious metabonomic distinctions 
were demonstrated in tissues not only between BxPC-3, 
Panc-1 and the control groups but also between SX and 
OX groups in their PCA scores plot (Figure 2B1), and 
PLS-DA highlighted their distinctive separations (Figure 
2B2). Furthermore, the obvious metabonomic differences 
were also observed between BxPC-3 and Panc-1 groups in 
the tissue metabonomes. It indicated that the model (SX 

and OX)- and cell strain (BxPC-3 and Panc-1)-specific 
metabonomic characteristics were induced in tissue.

In order to understand the detailed metabolic 
differences between SX and OX models and identify 
the differential metabolites in tumor tissues, OPLS-DA 
was performed on their NMR data from both BxPC-3 
and Panc-1 cells induced PDAC groups (Figure 5). With 
the favorable model parameters R2 and Q2 (Table 3), the 
pattern recognition models can distinguish the tumor 
tissue from SX and OX model with considerable validity 
and efficiency, and the permutation plots (Supplementary 
Figure 2) and p-values via CV-ANOVA also confirmed 
the obvious metabolic differences between SX and OX 
groups. The metabolites, which had statistically significant 
difference in t-test (p<0.01) and correlation coefficients 
more than 0.735, were considered to be most valuable 
components for further investigation (Table 3). Based 
on the comparison of SX and OX in BxPC-3 groups, 
the higher levels of nicotinamide, uracil, uridine, lysine, 

Figure 4: The abnormal metabolic pathways involved in pancreatic ductal adenocarcinoma based on characteristic 
metabolites in serum metabonomes. (A), Panc-1 cell induced subcutaneous xenograft model; (B), Panc-1 cell induced orthotopic 
xenograft model; (C), BxPC-3 cell induced subcutaneous xenograft model; (D), BxPC-3 cell induced orthotopic xenograft model. 
Abbreviations for the metabolites are listed in Table 1.
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adenosine, hypoxanthine, ethanolamine, choline and 
lower levels of adenosine monophosphate in OX tissues 
dominantly contributed to the metabonomic difference 
between them. Meanwhile, in Panc-1 groups, the lower 
levels of asparagine, tyrosine, lysine, valine, isoleucine, 
leucine, 2-hydroxybutyrate, acetate, proline and alanine 
accompanied by the higher levels of uridine diphosphate 
glucose, surcose, adenosine, 1-methylhistidine, β-glucose, 
α-glucose, malate and GPC in OX tissues were also 
identified as the dominantly differential metabolites. 
In terms of pathways (Figure 6), in the BxPC-3 groups, 
ABC-transporter, glycerophospholipid and purine 

metabolism were identified as discriminatory cancer-
associated metabolic pathway between SX and OX 
models while more pathways, including central carbon 
metabolism in cancer, biosynthesis of aminoacyl-tRNA 
and amino acids, 2-oxocarboxylic acid metabolism and 
protein digestion and absorption, were identified in Panc-
1 groups. According to these discriminatory metabolites 
and metabolic pathways, the metabolic discrimination 
between SX and OX models concentrated on lipid and 
nucleotide metabolisms in Bxpc-3 group, and energy, 
lipid, nucleotide and amino acid metabolisms in Panc-1 
group.

Table 2: The significantly differential metabolites in serum between xenograft groups and their controls

Metabolites C-SX-Pa C-OX-P C-SX-B C-OX-B

R2X= 32.6%
R2Y= 0.933
Q2= 0.813

p= 1.03×10−6

38.9%
0.953
0.866

1.24×10−7

37.6%
0.755
0.090
0.858

38.1%
0.837
0.460
0.072

RCb Rc RC R RC R RC R

Tryptophan 0.029 0.656 0.050 0.768 0.45 0.835 0.29 0.874

Tyrosine 0.062 0.784 0.032 0.692 / / / /

N,N-Dimethylglycine -0.071 -0.747 -0.047 -0.677 / / / /

Dihydroxyacetone -0.091 -0.757 / / / / / /

Glutamate 0.33 0.885 0.27 0.926 / / 1.35 0.906

Ascorbate -0.82 -0.720 -0.80 -0.769 -5.92 -0.880 -4.22 -0.862

Pyruvate -1.08 -0.711 -1.13 -0.744 -10.47 -0.962 -8.80 -0.961

Glycerophosphorylcholine 1.40 0.735 2.23 0.778 15.37 0.966 12.35 0.952

3-Hydroxybutyrate -2.08 -0.709 -2.20 -0.803 / / / /

β-Glucose -3.87 -0.633 / / / / / /

Phosphocholine / / 0.45 0.609 / / / /

Methylmalonate / / / / -3.37 -0.826 / /

Citrate / / / / -1.13 -0.862 -1.20 -0.843

Glutamine / / -0.21 -0.684 -1.94 -0.904 / /

Glycerol / / / / / / 8.48 0.904

LDL / / / / -12.23 -0.879 -11.89 -0.912

Ethanolamine / / / / 1.66 0.825 / /

VLDL / / / / 9.45 0.881 / /

aC: control groups; SX-B and OX-B: BxPC-3 cell induced subcutaneous and orthotopic xenograft groups; SX-P and OX-P: 
Panc-1 cell induced subcutaneous and orthotopic xenograft groups.
bRC: relative concentration according to quantified NMR spectroscopy. Positive and negative indicate the metabolites that 
are more abundant in the xenograft groups or in the control groups, respectively.
cR: correlation coefficients. Positive and negative indicate the metabolites that are more abundant in the xenograft groups or 
in the control groups, respectively. “/” means no significant difference.
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DISCUSSION

In this study, in order to be more convincing of 
metabonomic comparison, we chose Panc-1 and BxPC-
3 cell strains to establish the experimental groups. With 
common suppressor genes such as P53 and P16, Panc-1 
have a mutant Kras gene (KrasG12D) while BxPC-3 have 
a wild type Kras gene [10], which related with several 
crucial metabolisms for PDAC growth [11, 12]. Thus, 
these models could cover most of metabolic characteristics 
of PDAC strains used in scientific researches, providing a 
comprehensive assessment of metabonomic discrimination 
between SX and OX models. The average length, width 
and volume of tumors (calculated based on universal 
formula: length*width*width/2) in SX-B was 8.63±2.27 
mm, 6.94±1.26 mm and 219.92 mm3, respectively. The 
average length, width and volume of tumors in OX-B 
was 7.35±1.19 mm, 6.53±0.98 mm and 166.92 mm3, 
respectively. For Panc-1, these parameters were 7.80±2.01 
mm, 6.92±0.94 mm, 196.44±91.80 mm3 in SX-P and 
7.34±1.41, 6.20±0.95, 154.44±74.25 mm3. No significant 

differences were observed for these pair-comparing 
parameters from SX and OX models. Therefore, the 
metabonomic difference between SX and OX models 
may not be attributed to the difference in size of tumors. 
In our study, in order to eliminate metabolic impact from 
the methodological difference of operations between OX 
and SX models, all groups were operated with almost 
the same surgical operations. Although these procedures 
in our study differ with conventional modeling methods, 
the perfect match of all groups could provide more 
precise metabonomic discrimination only caused by the 
methodological difference.

According to results of multivariate statistical 
analyses, the metabonomic differences were indistinctive 
in serum but significant in tissue, therefore we focus on 
the bioinformation contained in metabonomic difference 
of tissue between OX and SX models.

ABC-transporters are a large family of 
transmembrane proteins transporting nutrients into cells, 
and their abnormality has been associated with many 
diseases and cancers [13, 14]. Furthermore, previous 

Figure 5: OPLS-DA scores plots (left panels) and the corresponding volcano plots (right panels) derived from 1H 
NMR data of the tissue samples from BxPC-3 (-B) and Panc-1 (-P) cell induced subcutaneous(SX-) and orthotopic 
(OX-)xenograft groups. The marked circles in the color volcano plots represent the metabolites with statistically significant difference. 
Metabolite numbering is accordance with that as listed in Table 1.
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literatures have demonstrated that ABC-transporters play 
an important role not only in chemoresistance of PDAC 
[15] but also connect with the initiation and progression 
of PDAC, further served as predictors for poor prognosis 
[16, 17]. As the unique role of ABC-transporters in 
PDAC oncobiology, the difference of ABC-transporters 
metabolism may partly account for biobehavioral 
discriminations between SX and OX models such as 
ascites generation, lymph node and liver metastases. It 
also implied that OX and SX models of PDAC would 
be unequivalent for pharmaceutical and clinical trials for 
chemical agents.

According to previous studies, the alteration of 
glycerophospholipid metabolism, characterized by 
increase of choline and phosphocholine (PC), is a critical 
aspect of tumor metabolism [18, 19, 20, 21]]. Besides 
generating more substrates for cell proliferation, the 
glycerophosphodiesterase (EDI3)-mediated choline 
glycerophospholipid metabolism can also control tumor 

cell migration via PKC signaling and module cellular 
signaling through down-stream products [22]. However, 
the changes of the specific metabolites involved in 
glycerophospholipid metabolism including GPC, PC and 
choline are not quite consistent in the previous studies 
on PDAC [23], which may be due to the differences 
in experimental models and comparison objectives. 
The contradictory results confuse us to give a specific 
elucidation about our finding. However, the difference 
of choline and GPC concentration between SX and 
OX models both in Bxpc-3 and Panc-1 groups strongly 
indicated that SX and OX models were unequivalent in the 
tumor-associated glycerophospholipid metabolism.

As one of the major component in nucleotide 
metabolism, purine metabolism was highly disturbed in 
tumor metabolism. In tumor cells, the pyruvate kinase M2 
is often in less active form [24, 25, 26], followed by up-
stream substrates of pyruvate accumulation and enhanced 
synthesis of ribose-5-phosphate and nucleic acid [27]. 

Figure 6: The differentiated metabolic pathways between subcutaneous and orthotopic xenograft groups based on the 
dominant metabolites in tissue metabonomes. The pair-comparisons: (A), subcutaneous and orthotopic xenograft groups induced 
by Panc-1 cell; (B), subcutaneous and orthotopic xenograft groups induced by BxPC-3 cell. Abbreviations for the metabolites are listed in 
Table 1.
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In addition, purine metabolism plays key roles in cell 
signaling and tumor immunology [28]. In extracellular 
microenvironment, ATP and its sequential hydrolyzed 
product, adenosine, can act on nucleotide receptors P2 and 

adenosine receptors P1 respectively, which are expressed 
by cancer cell and infiltrating immune cells. Depending 
on different condition, ATP and adenosine can promote 
through direct activation and immunosuppression, or 

Table 3: The significantly differential metabolites in tissues between subcutaneous and orthotopic xenograft groups

Metabolites SX-P&OX-Pa SX-B&OX-Ba

R2X=55.9%, R2Y=0.749, Q2=0.632, 
p=5.21×10−4

R2X=32.6%, R2Y=0.902, Q2=0.643, 
p=3.96×10−4

RCb Rc RC R

Nicotinamide / / 0.36 0.807

Uracil / / 1.46 0.863

Uridine / / 1.80 0.823

Lysine -0.50 -0.953 2.55 0.774

Adenosine 0.74 0.848 2.59 0.822

Hypoxanthine / / 3.34 0.804

Adenosine monophosphate / / -4.08 -0.833

Ethanolamine / / 4.64 0.825

Choline / / 5.24 0.766

Uridinediphosphate 
glucose 0.19 0.868 / /

Asparagine -0.26 -0.745 / /

Tyrosine -0.28 -0.749 / /

Valine -0.53 -0.915 / /

Surcose 0.58 0.857 / /

Isoleucine -0.69 -0.897 / /

Leucine -0.86 -0.931 / /

1-Methylhistidine 0.87 0.739 / /

β-Glucose 0.90 0.846 / /

α-Glucose 1.30 0.905 / /

2-Hydroxybutyrate -1.54 -0.942 / /

Acetate -1.56 -0.961 / /

Proline -1.62 -0.859 / /

Malate 2.14 0.903 / /

Alanine -2.18 -0.899 / /

Betaine 3.33 0.923 / /

Glycerophosphocholine 6.74 0.964 / /

aSX-B and OX-B: BxPC-3 cell induced subcutaneous and orthotopic xenograft groups; SX-P and OX-P: Panc-1 cell 
induced subcutaneous and orthotopic xenograft groups.
bRC: relative concentration according to quantified NMR spectroscopy. Positive and negative indicate the metabolites that 
are more abundant in the orthotopic and subcutaneous xenograft groups, respectively.
cR: correlation coefficients. Positive and negative indicate the metabolites that are more abundant in the orthotopic and 
subcutaneous xenograft groups, respectively. “/” means no significant difference.
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inhibit cancer growth through immunoactivation [29, 30, 
31, 32]]. Thus, the purinergic signaling pathways were 
significantly different between SX and OX models, which 
were indicated by the difference of adenosine and AMP 
concentration in our study. This difference may lead to 
erroneous assessment to chemotherapeutic efficacy of 
specific anticancer agents such as mitoxantrone and 
oxaliplatin which owe their anticancer effects to the 
ability of triggering an excessive anticancer immune 
response [33].

The difference of carbon metabolism between OX 
and SX models could definitely reflect the heterogeneity 
of many enzymes and receptors targeted as the potential 
chemotherapeutic sites, which may result in totally 
different outcome of pharmaceutical and clinical trials 
[34]. In our study, the metabolic differences of amino 
acids involved in carbon metabolism were quite notable 
between SX and OX models in Panc-1 group. Relative 
to SX model, the consistent low level of branched chain 
amino acids and tyrosine in OX model tissue implied that 
the transporting function of amino acids was significantly 
decreased, which may related with the L-type amino acid 
transporter (LAT1), the most common transporter for 
essential amino acids delivery. By now, several researches 
have demonstrated that overexpression of LAT1 can 
stimulate cancer growth via mTOR pathways and be 
closely related with poor prognosis of several cancers 
[35, 36, 37]. In return, depressing LAT1 can also inhibit 
the tumor cell growth [38]. In addition, the low level of 
alanine, lysine, asparagine and proline in OX models 
may be due to a relatively weak ability to synthesize 
and uptake non-essential amino acids (NEAAs), or 
abundant consuming caused by rapidly proliferation 
of tumor. Nowadays, NEAAs are explicitly identified 
as key players in development of tumor including 
PDAC [39]. For instance, proline plays a special role in 
linkage between the metabolism and epigenetics through 
modulating intermediates of epigenetic regulation [40]. 
Furthermore, a recent research uncovered a unique role 
of autophagic alanine secretion in energy metabolism 
through tricarboxylic acid cycle (TCA) efflux in PDAC, 
which may even outcompete glycolysis and glutaminolysis 
[41]. However, the specific mechanism causing metabolic 
difference between SX and OX models is yet to determine 
and further investigation will be needed to get a deep 
insight.

The particular reasons for metabolic difference 
between SX and OX models still remain unclear. However, 
since the main methodological difference between 
these models is the position of tumor implantation, we 
hypothesize that the tumor microenvironment may give 
the most important contribution to the metabonomic 
difference. As demonstrated by previous researches, the 
tumor microenvironment could impose a great influence 
on the fibrosis, invasion and metastasis of pancreatic 
cancer [42]. As the predominant cell type of tumor 

microenvironment, pancreatic stellate cells (PaSCs) play 
a key role in the intimate interaction between PDAC and 
tumor microenvironment [43, 44]. Recently, an important 
metabolic pathway was uncovered in PDAC. In vitro, 
PaSCs could secrete alanine through autophagy to fuel 
the Krebs cycle rather than glycolysis to support tumor 
metabolism [41]. The intermediates of TCA were not only 
depleted through oxidative phosphorylation to generate 
ATP but also acted as building blocks for biosynthesis 
of fatty acid and NEAAs. Thus, although the role in 
tumor metabolism of PDAC has yet to be completely 
understood, the existence of PaSCs could undoubtedly 
trigger significant metabolic difference between OX and 
SX models. However, this hypothesis may need further 
research to be confirmed and improved.

Our study demonstrated that SX models are 
not equivalent to OX ones. Although subcutaneous 
transplantation offers a simple, inexpensive, reproducible 
and quantifiable advantage, it displayed its inherent 
limitations, i. e. it does not accord with the biological 
behaviors and tumor microenvironment of PDAC. And 
orthotopic implantation may be more favorable to simulate 
PDAC in patients due to their tumorigenesis similarity.

CONCLUSION

In this pancreatic cancer-related study, an obvious 
metabonomic difference was demonstrated between SX 
and OX animal models in tissue samples by using NMR-
based strategy. The metabonomic differences were mainly 
associated with ABC transporters, glycerophospholipid 
metabolism, purine metabolism and central carbon 
metabolism in cancer and may be attributed to the 
difference of tumor microenvironment caused by different 
location of implantation. These findings indicated that 
the implantation of PDAC cell subcutaneously or in 
other organ cannot simulate the pathophysiological and 
system-biological features of PDAC as well as the OX 
models. OX animal models should be more favorable for 
cancer involved scientific researches, especially for the 
pharmacodynamical and pathophysiological experiments.

MATERIALS AND METHODS

Cell culture and animal modeling

Panc-1 and BxPC-3 cell strains were purchased 
from Shanghai Institute of Cell Biology and incubated 
with RPMI1640 supplemented with 10% fetal bovine 
serum (Gibco, Thermo Fisher Scientific, Shanghai, 
China) in cell incubator (3110, Thermo Scientific) with 
a circumstance of 37 °C and 5% CO2. BALB/c nude 
mice (male, 4-6 weeks, weighing 20-24 g) (NO: SCXK 
(HU) 2012-0002) were purchased from Slac laboratory 
animals Co., Ltd (Shanghai, China) and fed for 1 
weeks under a standard laboratory conditions in Fujian 
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Medical University Animals Center (Fuzhou, china) for 
acclimatization before operations.

The protocol of this study was in accordance with 
the principles of Guide for the Care and Use of Laboratory 
Animals [45] and approved by the ethical committee of 
Fujian Medical University Union Hospital. After a three-
day cell culture, the culture flasks of Panc-1 and BxPC-
3 cells were digested with 0.125% trypsogen (Gibco, 
Thermo Fisher Scientific, Shanghai, China), followed by 
washing for three times with phosphate buffered saline 
(PBS, Hyclone, GE Healthcare, Logan, Utah, US), and 
consequently resuspended in PBS (1×106 cells suspended 
in 100 μL of PBS). Then, the cell suspensions of Panc-1 
and BxPC-3 were subcutaneously injected into the right 
axilla of a mouse respectively. After a month of feeding, 
the subcutaneous tumors were harvested and disintegrated 
into 1-mm3 particles for transplantation.

The operation of OX-P and OX-B groups started 
with a horizontal incision inferior to left costal margin 
and exposed the body and tail of pancreas. Then, one 
Panc-1 or BxPC-3 particle was implanted on the surface 
of pancreas for each mouse and fixed with 1 μL of albumin 
glue (Compont, Compont pharmaceutical Science & 
Technology Co. Ltd., Beijing, China). Meanwhile, 1 mL 
of saline was injected subcutaneously into the back of 
mice. Reversely, the SX-P and SX-B groups were injected 
subcutaneously into the back of the mice with a Panc-1 or 
BxPC-3 particle by using a 16-gauge syringe, respectively, 
and followed by a surgical exploration of pancreas with 
a fixation of 1 μL albumin glue but without particle 
implantation. In present study, 12 and 15 BALB/c mice 
were prepared for establishment of SX and OX models 
respectively (See the representative images of successful 
establishment of models as displayed in Supplementary 
Figure 3A-C in the supplemental materials). For Bxpc-3 
cell strain, the successful percentage of SX models was 
100% (12/12) while 73.33% (11/15) in OX models; For 
Panc-1 cell strain, the successful percentage of SX models 
was 91.67% (11/12) while 80% (12/15) in OX models. 
To be completely comparative, the control group (n=12) 
was operated with subcutaneously injection of saline and 
surgical exploration of pancreas without cell implantation.

Sample preparation and NMR spectroscopy for 
serum and tissue from mice

Four weeks after operations, all mice were sacrificed 
under continuous airway-anesthesia for sample collection. 
As described in our previous study [46], before mice’s 
execution, at least 800 μL of blood was collected in 1.5-
mL EP tube with a 30-60 min standing, followed by a 
10-min centrifugation at 2,000 g for serum preparation. 
After blood collection, the tumor tissues were immediately 
collected. To eliminate the contamination of these tissues, 
the tumors were disposed with en bloc resection. Then, the 

infiltrated and adherent tissues around the tumor including 
tumor capsular, pancreas, skin and muscle were entirely 
stripped until leaving pure tumor tissues characterized 
with a homogeneous, hoary and solid mass. Sequentially, 
these tumor tissues were rapidly divided into two parts, 
one for histological analysis (Supplementary Figure 3D-I 
in the supplemental materials) and another one for 1H 
NMR analyses. All samples were snap frozen with liquid 
nitrogen and stored at -80 °C for NMR spectroscopy. 
Unfortunately, some biosamples were not available due to 
the misconducted storing methods. Finally, there are only 
6 serum samples remaining in SX-B and OX-B groups. 
Tissue were extracted with conventional methanol-
chloroform extraction method as described in our previous 
report [47], and the serum and tissue samples were 
prepared accordingly for NMR detection.

All of the serum and tissue samples were analyzed 
randomly on a Bruker AscendTM NMR spectrometer 
(Bruker Corporation, Karlsruhe, Germany) at 600.13 
MHz proton frequency and 295 K. For serum samples, 1H 
NMR spectra were acquired by using the water-suppressed 
Carr-Purcell-Meiboom-Gill (CPMG, [RD-90°-(τ-180°-τ)n-
ACQ]) pulse sequence with a spectral width of 12 KHz, 
an acquisition time of 2.73 s, a relaxation delay of 4 s, a 
scan accumulation of 16 times, and a data point of 32 K. 
For tissue samples, the detection was performed with the 
pulse sequence of nuclear Overhauser effect spectroscopy 
plus water suppression (NOESYPR1D, [RD-90°-t1-
90°-tm-90°-ACQ]) with a spectral width of 12 KHz, an 
acquisition time of 2.66 s, a relaxation delay of 4 s, a scan 
accumulation of 16 times, t1 of 4 μs, a data point of 32 K 
and a mixing time of 100 ms.

NMR spectral processing

All free induction decays (FIDs) were multiplied 
by an exponential weighting function equivalent to a 
line-broadening of 0.3 Hz for tissue samples and 0.5 Hz 
for serum samples to increase the signal-to-noise ratio. 
Then, by using MestReNova (V9.0, Mestrelab Research, 
Santiago de Compostela, Galicia, Spain), all spectra 
were deposed with Fourier transformation and manual 
corrections for phase and baseline. In serum samples, 
the chemical shift was referenced to the double peaks of 
endogenous lactate at δ1.33, and the spectral regions of 
δ4.67-δ5.22 and δ5.70-δ6.00 were removed to eliminate 
the interference of residual aquatic and ureal signals. 
The remainder spectral regions (δ0.6-8.6) were integrally 
segmented into discrete regions of 0.002 ppm. In tissue 
samples, the chemical shift was referenced to TSP at 
δ0.00 and the spectral regions of δ4.7-5.15 and δ3.34-3.39 
were eliminated for aforementioned reasons, followed by 
segmentation with 0.004 ppm interval in spectral region 
of δ0.7-10.0. All the disposed data were normalized and 
homogenized for multivariate statistical analysis.
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Univariate and multivariate statistical analyses

To get insight into the bioinformation contained in 
NMR spectra, all processed spectral data were analyzed 
by using multivariate statistical analysis with assistance 
of SIMCA-P+ (V14.0, Umetrics AB, Umea, Sweden). 
These analyses could simplify the complex information 
into several dominant components to demonstrate 
explicitly the metabonomic difference between groups. 
To give an overview of metabonomic profile from 
control, principal component analysis (PCA) and partial 
least squares discriminant analysis (PLS-DA) were 
conducted with mean center scaling and unit variance 
scaling, respectively. Then, for better understanding of the 
specific metabonomic difference between all subgroups 
in BxPC-3 and Panc-1 groups, the pair comparisons were 
performed and validated with 10-fold cross validation and 
permutation test with the first two principal components 
including a predictive component and an orthogonal 
component by using PLS-DA with orthogonal signal 
correction (OPLS-DA) with Parato scaling. The parameter 
R2 and Q2, derived from cross validation and permutation 
test, represented the degree of modeling fitting and the 
predictive ability, and the p-values from CV-ANOVA 
demonstrated the significance of the metabolic differences, 
thus to be critical for validation of statistical analyses and 
pattern recognition.

The metabolites contributed to the metabonomic 
difference in pair-comparisons were marked and color-
coded based on the corresponding correlation coefficients 
in OPLS-DA loading volcano plots, where a hot color 
corresponds to the significant difference between 
classes while a cool color corresponds to no significant 
differences. In addition, the relative concentrations of 
metabolites through calculating the integral area of the 
corresponding signals were compared and statistical 
analyzed with Student’s t test for better reliability of 
characteristic metabolites’ screening, which represented as 
the X (indicated as −log2 of fold changes in concentration 
of differential metabolites) and Y (indicated as −log10 of 
t-test statistically p-values) axis in the loading volcano 
plots, respectively. The p-values for statistically significant 
difference were set as less than 0.05 for serum comparison 
and 0.01 for tissue comparison, respectively. Positive 
log2 value of fold changes indicate higher concentration 
of metabolites in the xenograft groups than in controls 
(for the serum comparison) or in subcutaneous xenograft 
groups (for the tissue comparison); negative values 
indicate higher concentrations of metabolites in control 
(for the serum comparison) or subcutaneous xenograft 
(for the tissue comparison) groups than in the xenograft 
groups.

To demonstrate the weight of metabolites in 
metabonomic difference in pair-comparisons, the 
visualized circles whose ranges were positively correlated 
with the concentrations (the radius was indicated as 

15+2*concentration ratio), were also drew in the loading 
plots. Each circle in the volcano plots represents one 
metabolite, and the circle is colored according to the 
correlation coefficient of |r| and their cutoff values for the 
statistical significance were based on the discrimination 
significance at the level of p < 0.05 and the corresponding 
degree of freedom in the pair-wise comparison. Thus, the 
loading plots could demonstrate integrated information 
about metabonomic difference between groups, fully 
contributed to further metabolic pathways analysis.

Metabolic pathways analysis

To get a deep insight into the metabolic pathways 
involved in the metabonomic difference between SX and 
OX models, a comprehensive pathway analysis by using 
KEGG and MBROLE online service was performed on the 
differential metabolites derived from comparison of SX-OX 
models in both BxPC-3 and Panc-1 groups [48, 49].

Additional information

Supplemental materials contain the OPLS-DA and 
the validation for serum and tissue profiles between 
subcutaneous and orthotopic xenograft groups.
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