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ABSTRACT Specific binding (conjugation) of cytotoxic T lymphocytes (CTL) to target cells (TC) 
is the first step in a multistage process ult imately resulting in dissolution of the TC and recycling 
of the CTL. We examined the position of the microtubule organizing center (MTOC) of 
immune CTL bound to specific TC. Immunofluorescence labeling of freshly prepared CTL-TC 
conjugates with tubul in antibodies indicated that the MTOC in essentially all conjugated CTL 
but not in the conjugated TC were oriented towards the intercellular contact site. This f inding 
was corroborated by electron microscopy examination of CTL-TC conjugates fixed either 
immediately after conjugation or during the lytic process. Ant ibody- induced caps of membrane 
antigens of CTL such as H-2 and Thy 1, did not show a similar relationship to the MTOC. 
Incubation of CTL-TC conjugates, 10-15 min at room temperature, resulted in an apparent 
deterioration of the microtubular system of conjugated CTL. It is proposed that the CTL plasma 
membrane proximal to the MTOC is particularly active in forming stable intercellular contacts, 
resulting in CTL-TC conjugation, and that subsequent modulat ion of the microtubular system 
of the CTL may be related to the cytolytic response and to detachment of the effector cell. 

A prominent manifestation of cell-mediated immunity is the 
lytic interaction of cytotoxic T lymphocytes (CTL) with appro- 
priate target cells (TC). This process is believed to be relevant 
to virus, tumor, and transplantation immunity (4, 13, 42). The 
first step in CTL-mediated lysis is the binding of CTL and TC 
(conjugation) mediated through specific CTL cell surface re- 
ceptor(s) and TC major histocompatibility complex determi- 
nants. Binding is followed by a lethal hit step delivered by the 
CTL, ultimately leading to lysis. Following lysis of the TC, 
effector CTL detach and can recycle to start a new lytic 
interaction (see references 4, 7, 8, 18, 19, 23, 28 for reviews). 

Several observations suggest that the CTL are polar from at 
least a functional point of view. It has been shown that the 
lethal hit is strictly unidirectional, i.e., it affects only CTL- 
conjugated TC without causing damage to the effector CTL 
(40). This "immunity" of the CTL cannot be attributed to an 
inherent resistance towards the cytolytic process, since CTL of 
a given type can be readily killed by other specifically immu- 
nized CTL (14, 17). Moreover, it has been observed that 
although an individual CTL can bind a number of TC simul- 
taneously, lysis of individual TC occurs sequentially (40, 41). 
These and other (17) results suggest that the lethal hit, whatever 
its nature, is expressed in a polar, unidirectional fashion. 

In this study we examine the possibility that the unidirec- 
tional killing activity of CTL is related, at least in part, to a 
specific polar arrangement of the cytoskeletal system of either 
the CTL or the TC. We present evidence suggesting polarity 
by showing that CTL bind predominantly through a cell 
surface region proximal to the microtubule organizing center 
(MTOC). Moreover, we demonstrate that following CTL-TC 
binding, the CTL microtubular system becomes partially de- 
teriorated. The significance of these findings to the mechanism 
of cytotoxic interactions is discussed. 

MATERIALS AND METHODS 

Anima ls  and Tumors 

Highly inbred, C57BL/6 (major histocompatibility H-2 h) and BALB/c (H-2 d) 
mice were provided by the Weizmann Institute animal-breeding center. Leukemia 
EL4 and mastocytoma P815 cells were maintained in ascitic form by weekly 
transfer of about 25 x 10 ~ ceils into syngeneic recipients (C57BL/6 and DBA/2 
respectively). 

Generation of CTL 
A system to generate and study alloimmune peritoneal exudate CTL has been 

described before (5). Briefly, 10-12 d after intraperitoneal injection of 25 × 10" 
EL4 leukemia ceils, BALB/c anti-EL4 mice were killed by CO,_, narcosis and 
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their peritoneal cavities rinsed with PBS supplemented with lifo fetal calf serum 
(PBS-FCS). The peritoneal cells were centrifuged 10 rain at 250 g at 4°C, 
resuspended in 15 ml PBS-FCS per four to seven mice, and incubated on nylon 
wool columns at 37°C for 45 rain (5) to remove adherent cells (macrophages and 
others). Nonadherent cells containing 3~40% (4) CTL were eluted by rinsing the 
columns with 20 ml cold PBS-FCS. 

CTL-TC Binding (Conjugation) 
The method involved centrifugation of mixtures containing CTL and TC, 

leading to formation of CTL-TC clusters, referred to as conjugates, which can be 
examined and studied individually under the microscope (6). I ml suspensions 
containing 10" CTL and 10 ~ TC in PBS-FCS, in 12 × 75 mm tubes were 
centrifuged at 170 g for 10 min at room temperature. The pellets were resuspended 
vigorously with a Pasteur pipette and the number of CTL-TC conjugates was 
counted in a hemocytometer. 

CTL-mediated Lysis of TC 

The chromium-release technique (12, 13) was used to measure the cytolytic 
capacity of CTL. EL4 or P815 TC were removed from the peritoneal cavity of 
syngeneic hosts and 3 × 107 ceils in 1 ml PBS-FCS were incubated with 200 #Ci 
Naz51CrO4 (Amersham CJS. I P. Amersham Corp., Arlington Heights, IL) for 45 
min at 37°C with occasional shaking, and washed twice with PBS-FCS. Labeled 
TC (1 x 10 r' cells) were mixed with CTL (3 x 10 ~ cells) in l-ml aliquots in 75 x 
12 mm test tubes, centrifuged at 170 g for 10 rain to promote CTL-TC contact, 
and incubated at 37°C in a humidified atmosphere. At the end of the incubation 
period the radioactivity of the supernatant was assayed in a well-type gamma 
scintillation counter, Released radioactivity is expressed as the percent of total 
releasable radioactivity, determined by repeated freezing and thawing of labeled 
target cells. Results are corrected for spontaneous release (10-15% of total 
radioactivity). 

Electron Microscopy 
BALB/c anti-EL4 CTL (1 x 106) were mixed with EL4 TC (1-3 x 10 r') in 1 

ml PBS-FCS in Falcon (Oxnard, CA) 75 x 12-ram plastic tubes at room 
temperature. Cells were centrifuged at 170 g for 10 rain at room temperature to 
promote CI"L-TC conjugate formation. Medium was removed and carefully 
replaced by prewarmed (37°C) fixative (2.5% glutaraldehyde in 0.09 M cacodylate 
buffer, pH 7.2, containing 2.5 mM CaCl2). Prewarming of the fixative was 
important to prevent retraction of cellular projections due to temperature change 
and for the preservation of intact microtubules. After 15 rain at 37°C, and an 
additional 45 rain at room temperature, the cells were washed overnight with the 
same buffer, postfixed for I h in I% osmium tetroxide, washed briefly with 
distilled water, stained in block with 0.5% aqueous uranyl acetate for 1 h, 
dehydrated in ethanol and embedded in Poly/Bed 812 (Polysciences, Inc., Paul 
Valley Industrial Park, Warrington, PA). Thin sections were cut on Sorvafi MT- 
2 ultramicrotome (New Town, CT), stained with uranyl acetate and lead citrate, 
and examined in a Philips EM300 electron microscope operated at 80 kV. 
Conjugates were examined preferentially at the binding site area. 

Immunofluorescence 

Centrifuged pellets of CTL/TC mixtures containing l x 106 of each cell type 
were suspended in I ml PBS and drops were applied to polylysine-coated glass 
cover slips. After 2-3 min at room temperature, cover slip-adherent cells were 
fixed in 3% paraformaldehyde for 30 rain. The attached cells including single 
cells as well as conjugates were permeabilized with 0.2% Triton X-100 (in PBS) 
for 4 min and indirectly labeled for tubulin using affinity-purified rabbit antitu- 
bulia antibodies followed by rhodamine-conjugated goat anti-rabbit IgG, as 
previously described (16). Fluorescence microscopy was performed using a Zeiss 
photomicroscope Ill equipped with epiilluminator and filter sets for fluorescein 
and rhodoamine. Photomicrographs were usually taken through an ×63/I .4  
planapochromat objective (suitable for fluorescence and Nomarski optics) or 
through an ×63/I.25 Neofluar objective (suitable for phase-contrast optics as 
well). 

Capping Experiments 
Antiserum specific to H-2 d (C57BL/6 anti-P 815) was diluted 1:20 in PBS and 

incubated for 15 rain at room temperature with BALB/c anti-EL4 CTL. After 
rinsing, the cells were mixed with fluorescein-conjugated goat anti-mouse IgG 
(affinity purified, 20 ~g/ml) and incubated for 20 min at 37°C. The cells were 
then washed, plated on polylysine-coated cover slips and fixed. Capping of Thy- 
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1 antigen was carried out in a similar manner, using a 1:100 dilution of 
monoclonal antibody solution (ascitic fluid) reactive with this antigen (22), 

RESULTS 

Lysis of EL4-TC by Peritoneal BALB/c Anti- 
EL4 CTL 

To ascertain that the CTL studied below are active effector 
cells capable of binding to and killing TC, the kinetics of their 
binding to and lysis of TC were studied (Fig. 1). 

After centrifugation of CTL/TC mixtures containing 1 x 106 
BALB/c anti-EL4 cells (CTL) and 3.3 x 105 EL4 (TC), ~46% 
of the TC were found conjugated to CTL. Upon incubation at 
37°C, lysis of the TC occurred, and the percentage of lysed 
TC, as monitored by the release of chromium, increased with 
time resulting in a progressive decrease in the amount of 
conjugates. (After 60 rain of incubation only 14.5% conjugated 
TC could be detected). 

The Spatial Relationships of MTOC and CTL-TC 
Contact Areas 

I M M U N O F L U O R E S C E N C E  M I C R O S C O P Y "  Specificconju- 
gates of BALB/c anti-EL4 CTL and EL4 cells (TC) were 
prepared by centrifuging mixtures containing CTL and TC at 
room temperature, as described (6). Microscopic examination 
of the cells with differential interference contrast or phase- 
contrast optics revealed a large number of CTL-TC conjugates 
comprised of one CTL bound to one TC (Fig. 2 C). EL4 cells 
(average diameter of 15-20/lm) could easily be distinguished 
from the much smaller CTL (7-10/~m) (5, 6). The microtubular 
system of nonconjugated (free) CTL consisted of about 10-30 
visible, fluorescently-labeled microtubules or microtubule bun- 
dles. Careful examination of  the labeled cells revealed a single 
microtubule organizing center (MTOC) in essentially every cell 
(Fig. 2 E). EL4 cells exhibited a dense microtubular network 
(Fig. 2 F) originating in a single MTOC. In CTL-TC conjugates 
we found that essentially all effector CTL were bound to EL4 
through a membrane region proximal to the MTOC. This polar 
orientation was observed in over 95% of the cells fixed imme- 
diately after onset of conjugation by centrifugation (out of over 
500 conjugated cells analyzed). Conjugated TC on the other 
hand, exhibited a random orientation of their contact zone 
with respect to the MTOC. A single CTL-TC conjugate is 
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FIGURE 1 Conjugation and cytolysis of [ L4TCbyBALB /can t i -FL4  
CTL. Cells (CTL 3:TC 1) were mixed, centrifuged 170 g for 10 min at 
room temperature, and incubated at 37°C. At various times there- 
after percent lysis was monitored by the SlCr-release technique and 
percent conjugation was determined microscopically. Data based 
on five independent experiments. Solid line, % SlCr released. Broken 
line, %0 conjugation. 



FIGURE 2 Indirect immunofluorescence labeling for tubulin of CTL-TC conjugates. The cells were fixed immediately after 
centrifugation. (A and 13) Tubulin immunolabeling of the same conjugate, photographed at two focal planes to show the MTOC 
of the CTL (smaller cell) and the TC (larger cell), respectively. (O The same coniugate, photographed with Nomarski optics. 
(D) Immunofluorescent labeling for tubulin of conjugates consisting of one TC and two or three CTL. Notice that in all cases the 
MTOC of the CTL is proximal to the area of contact, while the MTOC of the 1-C apparently has a random orientation. 
(D Unconjugated CTU (F) Unconjugated EL4 TC. Bars, 10/tm. A-C, E, F: x 900. D, x 1,200. 

shown in Fig. 2A and 2 B. The cells were photographed at two 
focal planes showing the MTOC of the effector CTL (Fig. 2A) 
and of the TC (Fig. 2 B). 

At effector cell excess we frequently observed complex con- 
jugates consisting cf a number of effector cells bound to one 
target (see also reference 6). In Fig. 2D, three types of conju- 
gates (CTL 1-TC 1; CTL 2-TC I; CTL 3-TC 1) are shown. In 
these, the MTOC of all bound CTL were oriented towards the 
target, while the MTOC of the latter was randomly distributed. 

ELECTRON MICROSCOPY" The results outlined above 
were corroborated by transmission electron microscopy. Ex- 
amination of a large number of CTL-TC conjugates, sectioned 

across intercellular contact sites, indicated that the centrioles 
as well as the pericentriolar array of microtubules of the CTL 
were located proximal to the contact area. This was found in 
conjugates at early stages of the cytotoxic interaction (Fig. 3 A, 
B, and F) or in relatively late stages where the damage to the 
TC was clearly apparent (Fig. 3 C and D). Due to the extensive 
membrane interdigitation at the contact area and the random 
plane of sectioning (with respect to the contact plane) we could 
not determine whether the axes of the centrioles themselves 
were oriented toward the cell membrane. In high magnifica- 
tions (Fig. 3 B, D, and F) we could detect a large number of 
microtubules emerging from the centriole complex. In some 
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FIGURE 4 Double immunofluorescence-labeling of CTL for surface patches and caps induced by anti H-2 ~ (A) or anti-Thy 1 (D) 
and for tubulin (B and E, respectively). The same microscopic fields photographed with Normarski optics are shown in C and f. 
Arrowheads point to the polar caps induced by the antibodies, and the arrows to the MTOC of the same cells. Bar, 10 ~tm. x 600. 

CTL we detected elements of the Golgi complex in the vicinity 
of the contact area in the CTL (for example the cell shown at 
the top of Fig. 3 E and in Fig. 3 F). Nevertheless, this was not 
nearly as prominent as the presence of the MTOC in that 
region. 

The centrioles of the EL4 TC were apparently randomly 
distributed with respect to the intercellular contact area as 
demonstrated in Fig. 3 E. It should be pointed out that the 
number of MTOC detected in CTL in ultrathin sections se- 
lected for the CTL-TC contact area was considerably higher 
(more than twofold) than that detected in unselected sections 
or unconjugated cells. 

Ligand-induced Surface Caps are not Spatially 
Related to the MTOC 

Incubation of BALB/c anti-EL4 CTL carrying both the H- 
2 a and Thy- 1 antigens with H-2 d and Thy-1 antibodies followed 
by rhodamine-labeled goat anti-mouse IgG resulted in redis- 
tribution of the respective molecules into patches and subse- 
quently into polar caps (Fig. 4A and D). Usually 20-30 min of 
incubation at 37°C were required for maximal cap formation. 

Capped, fixed cells were permeabilized with Triton X-100 and 
reacted with a rabbit antitubulin antibody followed by fluores- 
cein-labeled goat anti-rabbit IgG. The results (Fig. 4) indicate 
that the polar caps formed in the two systems (A and D) were 
not spatially related to the MTOC (B and E). Moreover, in 
most cases (ca. 60-75%) the MTOC were localized opposite to 
the cap. Comparison of the microtubular system of cells before 
and after capping suggested that some deterioration of the 
microtubule network occurred during capping (compare for 
example Fig. 4B and E with Fig. 2E). 

Modulat ion o f  t h e  Microtubular  S y s t e m  in  T C -  

bound CTL 

CTL-mediated lysis is highly temperature-dependent; incu- 
bation of CTL-TC conjugates at room temperature resulted in 
virtually no killing (6). Nevertheless, we noticed that after 5 10 
min incubation at room temperature (or at 37°C) the micro- 
tubule system of TC-bound CTL underwent substantial dete- 
rioration. This was usually manifested by a decrease in number 
or complete disappearance of defined microtubules (Fig. 5). 
Documentation of this effect required examination of the cells 

FIGURE 3 Electron microscopy of CTL-TC conjugates, (A) Low-power magnification of one target cell (TC) bound to two CTL (top 
left and bottom). In the upper CTL the cross-sectioned centriole is clearly localized near the contact region (arrow). (B) C1-L-TC 
contact area showing the centriole pair in the CTL (marked with two arrows). The target cell (TC) appears intact. (C and D) Low- 
power (C) and high-power (D) magnifications of conjugate consisting of two CTL bound to one damaged target cell (TC). D is an 
enlarged portion of C (the asterisk in both photographs is in identical position). The two CTL are bound to the TC with their 
MTOC (arrows) proximal to the contact zone. In D, many microtubules can be seen emerging from the pericentriolar region. 
(E) Electron photomicrograph showing a CTL-TC conjugate. In the CTL, the centrioles or pericentriolar microtubules (arrows) as 
well as the Golgi apparatus (arrowhead) are oriented towards the contact area, while the centriole of the TC is not. (F) Longitudinal 
section through the centriole (arrow) with surrounding microtubules. Part of the Golgi system (arrowhead) and vacuoles are 
observed in the vicinity of the CTL membrane at the contact area. Bars, 0,1 p.m. A, x 70,000; B, X 220,000; C, X 55,000; D, x 120,000; 

E, x 45,000; F, x 270,000. GEIGER ET AL. MTOC Jn Lymphocyte-Target Interaction 141 



FiGUre 5 Indirect immunofluorescence labeling for tubulin of con- 
jugates, fixed after 15 rain at room temperature. The conjugate in A 
and B was photographed at two focal planes to demonstrate that 
whereas the MTOC can still be detected near the contact area, 
the microtubular system of the CTL appears deteriorated. 
(C) Unconjugated CTL which was exposed to the same incubation. 
Bar, 10 p.m. x 950. 

at several focal planes. NO changes were noted in the organi- 
zation of the microtubular systems in the target cells nor were 
such changes observed in noneonjugated CTL. 

D I S C U S S I O N  

Extensive efforts were invested in recent years to characterize 
the mechanisms involved in the interactions of cytotoxic T 
lymphocytes with specific ta:rgets (for reviews see 4, 13, 18, 19, 
23, 28). Many studies focused on the early steps of the process 
and the nature of the CTL receptor for TC recognition, whereas 
others explored the lytic process itself. Although the cytotoxic 
mechanism of CTL has not yet been defined at the molecular 
level, several models have been considered to account for the 
lethal hit, ranging from secretion of toxic substances, through 
mechanical deformation, to induction of local instabilities in' 
the TC membrane. Whichever working hypothesis better pre- 
sents the cytotoxic effect, it must be compatible with a funda- 
mental feature of this process, that is, the unidirectionality of 
the killing. It has been established that after the target cell has 
been damaged, the CTL can recycle to start a new lytic 
interaction (40). The killer cell, however, is not inherently 
immune to killing, as it has been shown that CTL can be killed 
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when exposed to appropriately immunized effector cells (17). 
A finding related to unidirectional killing by CTL is that 

effector CTL bound simultaneously to more than one TC kill 
the TC sequentially (41). This suggested that the delivery of 
the lethal hit not only requires direct intercellular contact but 
preferentially occurs at defined regions along the CTL plasma 
membrane. Electron microscopy examination of CTL-TC con- 
jugates revealed extensive interdigitation of the plasma mem- 
branes at the contact region (26, 29), suggesting that membrane- 
folding forces are generated at CTL-TC contact zones. In view 
of the involvement of cytoskeletal elements in the mechanical 
responses of cells (20, 25, 35), we explored the possibility that 
specific organization of such intracellular networks might be 
related to the unidirectionality of the cytotoxic process. It has 
been recently shown by immunofluorescence microscopy that 
the CTL contact area is enriched with actin (27), in analogy to 
the increase in actin labeling under lectin- or antibody-induced 
surface caps (9, 15, 30, 33). Actin enrichment at CTL-TC 
contact regions is compatible with the extensive membrane 
interdigitations observed at this site (26, 29). 

The observations reported here were related to the microtu- 
bule system and its organizing center. They may be summarized 
as follows: (a)immune CTL interact with and bind to TC 
predominantly through a membrane region proximal to the 
MTOC and the centrioles; (b) unlike CTL, CTL-bound TC do 
n o t  display their MTOC proximal to the contact region; 
(c) after incubation at room temperature (or 37°C), the micro- 
tubules of TC-bound CTL undergo progressive deterioration; 
(d) antibody-induced caps of H-2 and Thy-1 antigens do not 
localize proximal to the MTOC; often they are found in the 
opposite pole of the cell. 

The two phenomena, namely polar orientation of the MTOC 
and deterioration ofmicrotubules seem to be related to distinct, 
sequential events and will be considered separately. The results 
indicate that the plasma membrane proximal to the MTOC is 
engaged in binding to the target, at least in conjugates com- 
posed of one CTL bound to one TC. This spatial relationship 
was found in essentially all CTL-TC conjugates fixed imme- 
diately after onset of conjugation. It is still unclear whether it 
is related to an uneven distribution of relevant membrane 
components or to adhesive properties of the cell membrane 
adjacent to the MTOC which favor the formation of stable 
intercellular contacts. It may be related to the more general 
role of the centriole in cellular dynamics (for discussion see 
references 1, 2). It has been shown that in mobile cells the 
centrioles are localized in front of the nucleus, towards the 
leading edge of the cell membrane (3, 21). The membrane in 
this area exhibits an increased protrusive and deformational 
potential which may render it more compatible for the forma- 
tion of stable intercellular contacts. 

Another organelle found localized in the vicinity of CTL 
contact regions is the Golgi complex. This is in line both with 
reports by Zagury et al. (40) and by Bykovskaya et al. (10, 11) 
and with the notion that the Golgi apparatus is usually local- 
ized in the vicinity of the centrioles (32, 34). However, analysis 
of large numbers of electron micrographs of CTL-TC conju- 
gates suggests that the contact area is primarily related to the 
centrioles and that the localization of the Golgi system is only 
secondarily related to the contact site. 

Patching or capping of surface components on the CTL 
plasma membrane which might occur during CTL-TC inter- 
action could not in itself account for the orientation of the 
MTOC inasmuch as surface caps induced by H-2 or Thy 1, 
antibodies, and rhodamine-labeled goat anti-mouse IgG were 



not proximal to the MTOC and were often localized at the 
opposite pole. It was shown (31) that capping of these antigens 
occurred predominantly in the area opposite the Golgi region 
(in contrast to anti-IgG or Con A induced caps [24, 31, 36]). 

The second phenomenon reported above was the deteriora- 
tion of the microtubule network of conjugated effector cells, 
This process, though difficult to evaluate quantitatively, was 
quite rapid and occurred progressively after incubation of cell 
conjugates for 5-15 rain at room temperature or at 37°C. 
Similar modulation of microtubule organization was often 
found in cells that undergo patch or cap formation (Fig. 4). 
These observations are in line with the report of Yahara and 
Kakimoto-Sameshima (39) on the modulation of microtubule 
organization by capping of surface Ig in mouse spleen lympho- 
cytes. Unlike CTL-TC conjugation which requires Mg ÷÷, the 
lytic process is strictly Ca ++ dependent (23). However, it is still 
unclear whether this Ca ++ dependence is related to well-known 
effects of Ca -~+ on microtubule disassembly. 

The significance of modulation of microtubule organization 
in CTL and its relevance to the cytotoxic response are at 
present not clear. One may consider, however, the distinct and 
often conflicting actions of microtubules and actin-containing 
micro filaments in living cells. It has been shown that paralysis 
of the lateral mobility of surface components induced by high 
concentrations of Con A could be abolished by the microtu- 
bule-disrupting drug colchicine (37, 38). It may be proposed 
that the intact network of microtubules restrains dynamic, 
actin-dependent processes of the membrane such as those that 
might be involved in cytotoxic interaction. Whether deterio- 
ration of microtubule organization in CTL is directly related 
to an abolition of this restraint, to the activation of the actin- 
containing contractile system, and/or to the potentiation of a 
lytic process is yet to be determined. 

Benjamin Geiger is an incumbent of the Charles Revson Chair in 
Biology. Gideon Berke is Issac and Elsa Bourla Professor of Cancer 
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