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Abstract

Genome sequencing technologies continue to develop with remarkable pace, yet analytical approaches for reconstructing
and classifying viral genomes from mixed samples remain limited in their performance and usability. Existing solutions
generally target expert users and often have unclear scope, making it challenging to critically evaluate their performance.
There is a growing need for intuitive analytical tooling for researchers lacking specialist computing expertise and that is ap-
plicable in diverse experimental circumstances. Notable technical challenges have impeded progress; for example, frag-
ments of viral genomes are typically orders of magnitude less abundant than those of host, bacteria, and/or other organisms
in clinical and environmental metagenomes; observed viral genomes often deviate considerably from reference genomes
demanding use of exhaustive alignment approaches; high intrapopulation viral diversity can lead to ambiguous sequence
reconstruction; and finally, the relatively few documented viral reference genomes compared to the estimated number of
distinct viral taxa renders classification problematic. Various software tools have been developed to accommodate the
unique challenges and use cases associated with characterizing viral sequences; however, the quality of these tools varies,
and their use often necessitates computing expertise or access to powerful computers, thus limiting their usefulness to
many researchers. In this review, we consider the general and application-specific challenges posed by viral sequencing
and analysis, outline the landscape of available tools and methodologies, and propose ways of overcoming the current bar-
riers to effective analysis.
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1. Introduction

In the last decade, at least seven separate viral outbreaks have
caused tens of thousands of human deaths (Woolhouse,
Rambaut, and Kellam, 2015), and the ever-increasing density of
livestock, rate of habitat destruction, and extent of human
global travel provides a fertile environment for new pandemics
to emerge from host switching events (Delwart 2007; Fancello,
Raoult, and Desnues 2012), as was the case for SARS, Ebola,

Middle East Respiratory Syndrome (MERS), and influenza-A
(H1N1) (Castillo-Chavez et al. 2015). At present we have a lim-
ited grasp of the extent of viral diversity present in the environ-
ment: the 2014 database release from the International
Committee for the Taxonomy of Viruses classified just 7 orders,
104 families, 505 genera, and 3286 species (http://www.ictvon
line.org/virustaxonomy.asp); yet, one study estimated that
there are at least 320,000 virus species infecting mammals alone
(Anthony et al. 2013).
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High throughput (or so-called ‘next generation’) sequencing of
viruses during the most recent outbreaks of MERS in South
Arabia (Gire et al. 2014; Carroll et al. 2015; Park et al. 2015) and
Ebola in West Africa (Quick, J et al. 2016) has facilitated rapid
identification of transmission chains, rates of viral evolution, and
evidence of the zoonotic origin of these outbreaks. Access to such
information during initial stages of an outbreak would offer in-
valuable insight into when, where, and how an epidemic might
emerge, informing intervention and mitigation measures or even
stopping it altogether. A major step towards this goal is therefore
to identify existing zoonotic and environmental pathogens with
pandemic potential. This is a significant undertaking, demanding
considerable investment and close collaboration between gov-
ernment, NGOs and academia, for example, the USAID program
PREDICT http://www.vetmed.ucdavis.edu/ohi/predict/index.cfm,
as well as on the ground surveillance by local authorities and sci-
entists in areas of the world most at risk.

The characterization of unknown viral entities in the envi-
ronment is now possible with modern sequencing; however,
current tooling for exploiting these data represents a practical
and methodological bottleneck for effective data analysis.
Practically, most available software tools are inaccessible to the
majority of potential users, demanding expertise and comput-
ing resources often lacked by the researchers from diverse back-
grounds involved in sample collection, sequencing, and
analysis. There is a need for robust and intuitive analytical tools
without requirements for fast internet connectivity, which may
be unavailable in remote or developing regions. More funda-
mentally, the intended scope of published analytical tools and
workflows is often less than clear, and given the diverse appli-
cations of viral sequencing, it can be difficult to gauge the rele-
vance of newly published tools without first testing them. For
example, a fast sequence classifier might fail entirely to detect a
novel strain of a well-characterized virus, and equally might
perform well with Illumina sequences yet deliver poor results
for data generated with the Ion Torrent platform. Furthermore,
results arising from these analyses should be replicable, intelli-
gible, and useful to the end user, with provision for quality con-
trol and error management. Software tools that target expert
users should be tested, documented and robustly distributed as
packages or containers so as to streamline the processes of in-
stallation and generating results.

Methodologically, most genomic sequence analysis software is
not well suited for viral genomes. Generic tools that are able to ad-
dress the challenges posed by viral sequences are often applicable
only in limited circumstances. Choosing between approaches is
made difficult due to an abundance of disparate yet functionally
equivalent methodologies and in general a lack of rigorous bench-
marks for viral datasets. While there is much ongoing research in
this area, both the sensitive detection of previously characterized
viruses and viral discovery remain key challenges open for inno-
vation. Here we survey the landscape of available approaches for
analyzing both known and unknown viruses within genomic and
metagenomic samples, with focus on their practical and method-
ological suitability for use by a broad spectrum of researchers
seeking to characterize viral metagenomes.

2. Viral sequence enrichment: physical and
in silico approaches

Within metagenomes the proportion of viral nucleic acids is
typically far lower than that of host or other microbes, limiting
the amount of signal available for analysis after sequencing. ToT
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mitigate this issue, enrichment and amplification approaches
are widely used prior to sequencing viral samples. Size filtration
or density-based enrichment by centrifugation are two effective
methods for increasing virus yield, although such methods may
bias the observed composition of viral populations (Ruby,
Bellare, and Derisi 2013). Alternatively, PCR amplification may
be used to generate an abundance of specific viral sequences
present in a sample, a widely used strategy, which was em-
ployed in the identification and analysis of MERS coronavirus
(Zaki et al. 2012; Cotten et al. 2013, 2014), although effective pri-
mer design can be challenging in the presence of high genomic
diversity in the target viral species. Conversely, an excess of se-
quencing coverage can lead to the construction of overly com-
plex and unwieldy de novo assembly graphs in the presence of
high genomic diversity, reducing assembly quality. Using in sil-
ico normalisation (Crusoe et al. 2015), excess coverage may be
reduced by discarding sequences containing redundant infor-
mation. This approach increases analytical efficiency when
dealing with high coverage sequence data, and we have shown
that it can benefit de novo assembly of viral consensus se-
quences. Another in silico strategy for increasing analytical effi-
ciency by discarding unneeded data is to filter sequences from
known abundant organisms through alignment with one or
more reference genomes using an aligner or specialist tool
(approaches reviewed in Daly et al. 2015).

3. Choosing a sequencing platform

There are several sequencing technologies in widespread use
that are capable of reading hundreds of thousands to billions of
DNA sequences per run (Reuter, Spacek, and Snyder 2015). The
current market leader, Illumina, manufactures instruments ca-
pable of generating billions of 150 base pair (bp) paired end
reads (see ‘Glossary’) per run, with read lengths of up to 300 bp.
The Illumina short read platform is widely used for analyses of
viral genomes and metagenomes, and, given sufficient se-
quencing coverage, enables sensitive characterization of low-
frequency variation within viral populations (e.g. HIV resistance
mutations as low as 0.1% (Li et al. 2014)). Ion Torrent
(ThermoFisher) is capable of generating longer reads than
Illumina at the expense of reduced throughput and a higher
rate of insertion and deletion (indel) error (Eid et al. 2009). Single
molecule real-time sequencing commercialized by Pacific
Biosciences (PacBio) produces much longer (>10 kbp) reads from
a single molecule without clonal amplification, which elimina-
tes the errors introduced in this step. However, this platform
has a high (�10%) intrinsic error rate, and remains much more
expensive than Illumina sequencing for equivalent throughput.
The Nanopore platform from Oxford Nanopore Technologies,
which includes the pocket sized MinION sequencer, also imple-
ments long read single molecule sequencing, and permits truly
real-time analysis of individual sequences as they are gener-
ated. Although more affordable than PacBio single molecule se-
quencing, the Nanopore platform also suffers from high error
rates in comparison with Illumina (Reuter, Spacek, and Snyder
2015). However, the technology is maturing rapidly and has al-
ready demonstrated potential to revolutionize pathogen sur-
veillance and discovery in the field, as well as enabling
contiguous assembly of entire bacterial genomes at relatively
low cost (Feng et al. 2015; Quick et al. 2015; Hoenen et al. 2016).
Hybrid sequencing strategies using both long and short reads le-
verage the ability of long reads to resolve repetitive DNA regions
while benefitting from the high accuracy of short reads, at the

expense of additional sequencing, library preparation and data
analysis (Madoui et al. 2015).

4. Assembling genomes: de novo and
reference-based assembly

The reconstruction of sequencing reads into full length genes
and genomes can be performed by means of either reference-
based alignment or de novo assembly, a decision dependent on
experimental objectives, read length, quality and data complex-
ity. In reference-based approaches, reads are mapped to similar
regions of a supplied template genome, a well-studied and com-
putationally efficient process implemented with a suffix array
index of the reference genome. In contrast, de novo assembly is
computationally exhaustive but important in cases where ei-
ther a target genome is poorly characterized or reconstruction
of genomes of a priori unknown entities in metagenomes is
sought, such as in surveillance studies. For short read data, the
increased sequence length afforded by assembly can be neces-
sary to distinguish members of highly conserved gene families
from one another. Assembly is also widely used for generating
whole genome consensus sequences to facilitate analyses of vi-
ral variation, and is a typical starting point for analyses of di-
verse populations of well-characterized viruses. Even where

Glossary

Contigs: Contiguous nucleotide sequences assembled from multiple over-
lapping reads.
Coverage: The number of times a genome (or part thereof) has been
sequenced.
de Bruijn graph: A network of nodes and edges, where each edge repre-
sents a k-mer found in the collection of reads, and each node represents
either the prefix or suffix of the k-mer.
De novo assembly: Reconstruction of short sequences into longer sequen-
ces (or contigs), without use of a reference sequence
Digital signal processing data transformation: Analytical techniques for
transforming sequential data into a domain representative of data
features.
Discrete Fourier transform: A spectral analysis technique for identifying
sine and cosine frequency components in numerical signal data.
Discrete wavelet transform: A spectral analysis technique for decomposing
data to its frequency and spatial components.
k-mer: A subsequence of length k. Many genomic analyses involve decom-
position of sequences into all possible subsequences of a specified length
k.
Numerical sequence representation: Numerical mapping of nucleotide
sequences, permitting the application of signal processing transformation
approaches.
Paired-end reads: Reads generated from both 5 and 3 ends of the same
DNA molecule. Depending on the length of the molecule and that of the
reads, these pairs may or may not overlap in the middle.
Read overlap graphs: A network of nodes and edges, where each edge
represents a read and each vertex represents an overlap between two
nodes.
Reference-based alignment: Orientation/alignment of reads with respect to
a specified reference sequence.
Scaffolds: DNA sequences comprising contigs with gaps between them,
often generated using read pairing information.
Suffix array: A sorted array of all suffixes of a string, such as a DNA
sequence, enabling efficient sequence comparison.
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long reads are available, assembly plays an important role in
mitigating the high error rates associated with single molecule
sequencing technologies, yielding accurate consensus se-
quences from inaccurate individual reads.

4.1 De novo assembly methodologies

Modern de novo assemblers generally leverage either de Bruijn
graphs or read overlap graphs as part of the approach known as
overlap layout consensus (OLC). Figure 1 illustrates the differ-
ences between the two methods. OLC assemblers use the simi-
larity of whole reads in order to construct a graph wherein each
read is represented by a node, and subsequently merge overlap-
ping reads into consensus contigs (Deng et al. 2015). OLC is rela-
tively time and memory intensive, scaling poorly to millions of
reads and beyond. However, the fewer, longer reads generated
by emerging single molecule sequencing technologies tend to
be well suited to OLC assembly, which can be easily imple-
mented to tolerate long and noisy sequences (Compeau,
Pevzner, and Tesler 2011). Older, notable, de novo assemblers im-
plementing OLC include CAP3 (Huang and Madan 1999) and
Celera (http://www.jcvi.org/cms/research/projects/cabog/over
view/), while MHAP (Berlin et al. 2015), Canu (Berlin et al. 2015),
and Miniasm (Li 2016) represent the current state of the art.
There also exist a number of OLC assemblers intended for use

with viral sequences: VICUNA was designed for short, non-
repetitive and highly variable reads from a single population
(Yang et al. 2012), and PRICE (Ruby, Bellare, and Derisi, 2013) it-
eratively assembles low to moderate complexity metagenomes
(e.g. Runckel et al. 2011; Grard et al. 2012;) using a similar algo-
rithm to the actively developed consensus assembler IVA (Hunt
et al. 2015), which like VICUNA is designed for single virus popu-
lations rather than metagenomes (see Table 1 for additional de-
tails on programs).

A de Bruijn or k-mer graph represents a set of reads in terms
of its k-mer composition, where k-mers are subsequences of a
length k, specified by the user. Each k-mer is assigned to an
edge in a graph, where the nodes are k-1 prefixes and suffixes of
the k-mer. The assembler identifies the path through the graph
in which each edge is visited only once (reviewed in Compeau,
Pevzner, and Tesler 2011). De Bruijn graphs are much more effi-
cient to construct than overlap graphs and are suited to large
numbers of short reads, and where coverage is high, since re-
dundant k-mers occupy negligible random access memory
(RAM). However, with this efficiency comes a lack of error toler-
ance in identifying overlaps, less tolerance of repeated se-
quences in comparison to overlap graphs, and a loss of read
coherence, meaning that k-mers originating from different
reads may be co-assembled. Examples of assemblers using de
Bruijn graphs include SOAPdenovo (Luo et al. 2012), ALLPATHS

Figure 1. Two widely used methodologies in de novo assembly of short reads. Reads are not represented explicitly within a de Bruijn graph; they are instead decom-

posed into distinct subsequence ‘words’ of length k, or k-mers, which can be linked together via overlapping k-mers to create an assembly graph. In OLC, a pairwise

comparison of all reads is performed, identifying reads with overlapping regions. These overlaps are used to construct a read graph. Next, overlapping reads are bun-

dled into aligned contigs in what is referred to as the layout step, before finally the most likely nucleotide at position is determined through consensus. This figure is

simplified to demonstrate the theory for the assembly of single genomes; note that the process has additional complexities for the reconstruction of metagenomes.
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(Butler et al. 2008), SPAdes (Bankevich et al. 2012), and ABySS
(Simpson et al. 2009).

4.2 De novo assembly for metagenomes

Typical de novo assemblers are designed to reconstruct genomes
with uniform sequencing coverage across their length. This is
problematic for metagenomes (including viromes) where coverage
typically varies considerably both among different genomes and
within individual genomes. To address this problem, dedicated
metagenome assemblers have been developed. Omega (Haider
et al. 2014) is an OLC-based method that uses a minimum cost
flow analysis of the OLC graph to generate initial contigs, merging
these to create longer contigs and scaffolds using mate-pair infor-
mation. Genovo (Laserson, Jojic, and Koller 2011) is another OLC-
based method that generates a probabilistic model for the dataset
and subsequently uses an iterative approach to reconstruct the
most likely genome contigs. MEGAHIT (Li et al. 2015) prioritizes
speed, leveraging a succinct de Bruijn graph to rapidly reconstruct
high complexity metagenomes, such as those of soil or seawater,
on a single computer. Noteworthy is the iterative de Bruijn graph
assembler SPAdes, which although not initially intended for
metagenome assembly, has been widely adopted for its effective-
ness in assembling variable coverage metagenomes of limited
complexity. MetaSPAdes (Nurk et al. 2016) is a metagenome-

specific release of the SPAdes pipeline with refinements to its
graph simplification and repeat resolution algorithms, counter-
intuitively capable of leveraging rare strain information so as to
improve its consensus reconstruction capabilities. Other de Bruijn
graph metagenome assemblers based on their genomic counter-
parts include Ray-Meta (Boisvert et al. 2012), MetAMOS (Treangen
et al. 2013), MetaVelvet (Namiki et al. 2012; Afiahayati, Sato, and
Sakakibara 2015), and IDBA-UD (Peng et al. 2012).

For example, unlike the genome assembler Velvet,
MetaVelvet’s de Bruijn graph is decomposed into many sub-
graphs (using coverage difference and graph connectivity), and
scaffolds are built independently for each subgraph.
MetaVelvet-SL addresses limitations with MetaVelvet, using su-
pervised learning to detect and classify chimeric nodes within
the de Bruijn graph. IDBA-UD partitions a de Bruijn graph into
isolated components, constructs a multiple alignment, and sub-
sequently identifies variation within these partitions using mul-
tiple depth relative thresholds to remove erroneous k-mers. Ray
Meta (Boisvert et al. 2012) extends the massively distributed as-
sembly model of Ray to variable coverage metagenomes, while
MetAMOS (Treangen et al. 2013) is both a metagenomic exten-
sion and successor to the AMOS genome assembler.

We recently proposed a method based on numerical se-
quence representations and digital signal processing data trans-
formation (SPDT) approaches to reduce the size of working

Figure 2. Proposed DWT signal processing approach for nucleotide sequence analysis. Sequences 1 and 2 are subsequences of the HIV-1 HXB2 genome (the reference

genome for HIV), and sequence 3 is a subsequence of the Mycoplasma genitalium genome (all three sequences appear at the bottom of the figure). (A) illustrates the inte-

ger number representations of the three sequences—sequence 1 is depicted as a black line, sequence 2 is depicted as a red line and sequence 3 is depicted as a blue

line. The sequences are mapped into numerical space with the integer representation method enabling the application of transformation approaches. (B) illustrates

the DWT transformations of the three sequences’ numerical representations at varying resolutions. The three sequences are each shown consecutively transformed

into six reduced resolution representations. The minor sequence mismatches between sequences 1 and 2 (indicated with green circles) can be easily detected at differ-

ent transformation resolutions despite reduction in information content from the transformation process. Similar nucleotide sequences give rise to similar DWT trans-

formations and thus can be intuitively identified even at low resolution (level 6), where sequences are represented by a single numerical value. Depicted in (C) are the

coefficient matrices obtained from each sequence’s DWT transformation. Coefficient matrices can be used to approximately identify the sites of the mismatch posi-

tions between the two sequences. Sequences 1 and 2 differ only at sites 16–17 and 48–49. The exact location of minor differences can be detected at transformation

level 4 where each sequence is compressed to four wavelets. Darker colored positions in between the matrices of sequence 1 and 2 indicate matching coefficients, and

lighter colored positions indicate dissimilar coefficients.
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datasets, permitting fast and sensitive read alignment and de
novo assembly of diverse viral populations (Tapinos et al. 2015).
SPDT methods, such as the discrete Fourier transform (DFT)
(Agrawal, Faloutsos, and Swami 1993), and discrete wavelet
transform (DWT) (Percival and Walden 2006) (Fig. 2), are used to
reduce sequences into lower dimensional space, preserving
only prominent data characteristics. Analysis is subsequently
performed with these lower dimensionality transformations,
enabling faster data comparison. Since SPDT methodologies
such as the Fourier and wavelet transforms are applicable only
to numerical sequences, nucleotide sequences must first be nu-
merically transformed with one of several techniques including
real number representations (Chakravarthy et al. 2004), complex
number representations (Anastassiou 2001), the DNA walk
(Lobry 1996), and the Voss method (Voss 1992).

Although metagenome assemblers generally outperform
single genome assemblers in reconstructing different genomes
simultaneously, the complexity of this task stipulates their ten-
dency to collapse variation at or beneath strain level into con-
sensus sequences. Even to this end, their effectiveness may be
limited as a consequence of extreme variation within specific
RNA virus populations due to mutation and recombination, and
low and/or uneven sequencing coverage across a particular ge-
nome. Furthermore, it should be noted that de novo assembly is
particularly sensitive to the quality of input sequences, mean-
ing that problems during sample extraction, enrichment and li-
brary preparation can be highly detrimental to downstream
analyses. Of key importance therefore are quality control meth-
ods for detecting, and where appropriate correcting, problems
associated with contamination (Darling et al. 2014; Orton et al.
2015), primer read-through and low quality reads (reviewed in
Leggett et al. 2013).

5. Haplotype reconstruction in specific viral
populations

Viral genomes and metagenomes comprising high intraspecific
variation can be challenging targets for assembly, giving rise to
complex assembly graphs and fragmented assemblies. This is
often the case for clinical samples from HIV and Hepatitis C pa-
tients, in which high rates of mutation and long durations of in-
fection can contribute to extreme population divergence, but
can also be observed in environmental samples. Where such di-
versity exists, alignment based probabilistic population recon-
struction approaches can be effective, permitting the
reconstruction of individual viral variants into ‘haplotypes’ ex-
ceeding read length. This problem has been well studied, and
tools such as ShoRAH, QuRE, and PredictHaplo (Giallonardo
et al. 2014) are designed for haplotyping viral populations.
ShoRAH (Zagordi et al. 2011) extracts local alignments of a
specified window length, reconstructs haplotypes for each
‘cluster’ in that window, and removes mutations from se-
quences in the cluster not matching the reconstructed haplo-
type using a model-based probabilistic clustering algorithm.
QuRe (Prosperi and Salemi 2012; Prosperi et al. 2013) removes
nucleotide substitutions and indels with a Poisson model and
reconstructs haplotypes using a heuristic algorithm based on a
multinomial distribution. Both approaches have the advantage
of reporting probabilities for the reconstructed haplotypes.
PredictHaplo is notable for taking into account the read pairing
information in Illumina data. A limitation of all of these
approaches; however, is their reliance upon a single reference
sequence with which to perform the initial alignment, a process

which assumes a degree of sequence similarity which may not
always be observed in diverse regions, such as regions encoding
envelope proteins, of RNA virus genomes. This can be mitigated
through construction of a data-specific template through itera-
tive reference mapping and consensus refinement strategies
(Archer et al. 2010; B�rinda, Boeva, and Kucherov 2016). Other
possibilities for broader utility of these approaches include the
use of multiple viral reference sequences, either through con-
sideration of multiple linear sequences or by direct alignment
of sequences to a variation graph [https://github.com/vgteam/
vg], an emerging approach for modeling genomic variation.

6. Sequence classification

Sequence classification is one of the most studied problems in
computational biology, and taxonomic assignment is a key ob-
jective of metagenome analysis. All classification methods, to
some extent, depend upon detecting similarity between a query
sequence and a collection of annotated sequences.
Classification may be undertaken using either unassembled
reads or the reconstructed contigs arising from the assembly
process. The computational requirements of available
approaches vary dramatically according to their ability to detect
homology in divergent sequences; for example, exact k-mer
matching approaches permit rapid sequence classification, yet
typically struggle to identify divergent sequences of viral origin,
while high-sensitivity protein alignment searches may be pro-
hibitively slow, especially in application to entire sequencing
datasets. Some of the more contemporary and speed-optimized
taxonomic assignment approaches also have high RAM require-
ments, limiting scope for their use with readily available com-
puter hardware. The output of sequence homology search tools
is not itself easily interpreted, requiring post-processing in or-
der to yield meaningful classifications. Retroactive taxonomic
assignment using these results is non-trivial, requiring addi-
tional database lookups, for example, for determination of a
conservative ‘lowest common ancestor’ (LCA) taxon shared by
all matches for each query sequence. This kind of complexity
necessitates the need for the integration of different tools
within application-specific ‘pipelines’.

6.1. Sequence similarity searches

Viral identification approaches typically depend on similarity
searches against a database using an aligner such as BLAST
(Altschul et al. 1990). Comprehensive databases (e.g. GenBank)
or smaller custom databases containing for example, only viral
sequences of interest may be used, although the latter can gen-
erate misleading results. ProViDE (Ghosh et al. 2011) uses virus-
specific alignment parameters and thresholds to assign viruses
at different taxonomic levels from BLAST matches to a protein
database. VIROME (Wommack et al. 2012) is a multifaceted tool
integrating results from searches of several sequence and func-
tion databases. MEGAN (Huson et al. 2011) is a generally applica-
ble metagenomic classifier, which uses BLAST results to infer
the LCA for a given sequence and provides functional analyses
through a graphical interface. Automatic pipelines which com-
bine various homology search strategies to identify a final set of
viral reads include VirusHunter (Zhao et al. 2013), a Perl script
that automates viral identification using BLAST prior to assem-
bly; MetaVir (Roux et al. 2011), a web application that compares
users’ datasets to published viral sequences; and VirSorter
(Roux et al. 2015), which identifies prophages and viruses by
comparison with custom datasets. With the exception of web
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applications, however, these are not intuitive tools for the ma-
jority of users, requiring manual configuration and installation
of software dependencies. Furthermore, similarity search
approaches are in general extremely resource-intensive, and
performing sensitive BLAST-like database searches with mil-
lions of reads is intractable without use of specialist computa-
tional resources. To address this problem, tools have emerged
leveraging optimized search algorithms and prebuilt databases
so as to increase the tractability of classifying millions of reads.
For example, Kraken (Wood and Salzberg 2014) and Clark (Ounit
et al. 2015) are fast exact k-mer matching approaches that use
prebuilt databases of viruses, bacteria, human, and fungi, al-
though custom databases may also be built. One Codex is a pro-
prietary web-based metagenome analysis platform with an
integrated fast k-mer matching engine (similar to that of
Kraken) which is both fast, very easy to use, and free for aca-
demic use (Minot, Krumm, and Greenfield). Lambda
(Hauswedell, Singer, and Reinert 2014) and Diamond (Buchfink,
Xie, and Huson 2015) are sensitive and heavily optimized
BLAST-like aligners which leverage alphabet reduction to per-
mit protein searches three to five orders of magnitude faster
than BLAST, offering prebuilt database indexes for common
applications.

6.2 Alternatives to similarity searches

Although exhaustive BLAST-like methods can detect homology
in divergent sequences, these methods are in general limited by
the relatively few validated viral sequences deposited in public
databases, the high diversity within viral families which can ob-
scure relatedness, and the lack of a defined set of core genes
common to all viruses that can be used to distinguish species
(e.g. the 16S gene for bacteria) (Fancello, Raoult, and Desnues
2012). These features make it difficult to assign similarity
thresholds for classification that are applicable to all potential
viruses in a sample (Simmonds 2015). Comparison methods
that do not rely on sequence similarity include PhyloPythia
(McHardy et al. 2007), which uses nucleotide frequencies to clas-
sify reads, and PHYMM (Brady and Salzberg 2009), which uses
interpolated Markov models to find variable length oligonucleo-
tides that characterize species in the NCBI RefSeq database.

Although these approaches are less accurate than BLAST
searches, PHYMMBL (Brady and Salzberg 2011) combines
PHYMM and BLAST and outperforms either one on its own.
Alignment-free comparison approaches, for example, based on
dinucleotide frequencies, codon usage patterns, or small but
conserved regions of family wide ubiquitous genes, may be
more robust to the limitations of the database than sequence
similarity searches. These features may also reduce the compu-
tation required and highlight evolutionary relationships other-
wise obscured by high sequence variability.

A fundamental challenge in the classification of viral se-
quences with any of these methods remains their limited repre-
sentation within curated sequence databases. While the rate at
which new viruses are being added to NCBI’s RefSeq collection
has increased considerably, from a year average 0.34 species/
day in 2010 to 2.5 species/day in 2015 (Fig. 3), our documented
understanding of the extent of viral diversity remains superfi-
cial (Anthony et al. 2013). Reads of true viral origin are therefore
liable to be missed in many cases. The rate of database growth
also highlights the need to maintain frequently updated search
indexes for sequence classification, construction of which often
demands specialist servers equipped with hundreds of giga-
bytes of RAM. Even if up-to-date indexes are maintained inside
a public repository, their file sizes are substantial, demanding
users have access to a fast internet connection. Consequently,
complete outsourcing of sequence classification to remote web
services is a compelling prospect for those with adequate inter-
net connections but without powerful computing hardware, in-
creasing scope for conducting analyses with portable
computers.

7. Conclusion

We see several barriers to realizing the goal of active, on-the-
ground surveillance and early detection of viruses with epi-
demic potential.

1. The emergence of virus-specific assembly and metagenomic
tools is a relatively recent phenomenon, with many of the
methodologies in use today repurposing one or more exist-
ing algorithms. These tools mostly target a small audience

Figure 3. Distinct viral species in the NCBI RefSeq releases from June 2003 – May 2015 (data from ftp://ncbi.nlm.nih.gov/refseq/release/release-statistics/viral.acc_taxid_

growth.txt).
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of expert users and, as with most research software, decay
after initial release due to a lack of ongoing funding, poor
software development practices and/or authors’ change of
circumstances (Duck et al. 2016). There is a need for a better
balance between research software presenting novel meth-
odologies and for sustainably developed, documented and
tested software distributed through robust and user friendly
channels such as package managers so as to increase the
useful life of viral informatics software. Researchers and
granting agencies should consider the importance of this
step and allocate resources accordingly.

2. Democratisation of routine analyses through development
of user friendly, locally installable software and remote web
services is critical. Preconfigured cloud virtual machines of-
fer a convenient, low cost way to run analyses, yet must per-
mit straightforward sequence database and software
version updates so as to remain relevant after their initial
release.

3. Maintaining up to date indexes of large sequence databases
is a problem all classification tools must address, stipulating
access either to powerful computers for index construction
or the ability to download the prebuilt indexes over a fast
connection. Furthermore, classification of viral sequences is
critically dependent upon the quality of curated viral data-
bases such as RefSeq, to which submitting newly discovered
sequences can be prohibitively time consuming. A solution
might involve the creation of a central database containing
for any given sequencing project both raw reads as well as
filtered, assembled and/or annotated reads, and analysed
using a single central pipeline. On a regular basis, the data-
base could report sequences and corresponding metadata
for unclassified ‘dark matter’, which is often discarded and
yet is likely to contain sequences belonging to novel patho-
gens. By combining the dark matter from multiple studies,
trends within these unclassified reads may be identified that
could lead to greater power to identify new biological
entities.

4. Benchmarking of software also remains an open problem
within the field, which lacks standardized test datasets that
are used across multiple studies. Often benchmarking data-
sets are chosen to highlight the advantages of the method
under study, and therefore may be quite specific for a given
application. Thus the field needs to agree upon a set of stan-
dard, well-characterized reference datasets for virus-
focused studies.

The future of the field is promising, with emerging technolo-
gies showing potential to eliminate certain challenges. Single
molecule sequencing, for example, permits the sequencing of
whole viral genomes as single reads, with forthcoming portable
and smartphone operated sequencers promising potentially
revolutionary analyses in the field. Innovative analytical
approaches are constantly being published, and it is evident
that the motivation, creativity and expertise needed to meet
these challenges exists within the community. Broader commu-
nication among developers and end users is essential, and in
conjunction with well-funded international initiatives directed
at this goal, intelligent viral surveillance could soon be realized.
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