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Abstract

Electrosurgery produces surgical smoke. Different tissues produce different quantities and

types of smoke, so we studied the particle characteristics of this surgical smoke in order to

analyze the implications for the occupational health of the operation room personnel. We

estimated the deposition of particulate matter (PM) from surgical smoke on the respiratory

tract of operation room personnel using clinically relevant tissues from Finnish landrace por-

cine tissues including skeletal muscle, liver, subcutaneous fat, renal pelvis, renal cortex,

lung, bronchus, cerebral gray and white matter, and skin. In order to standardize the electro-

surgical cuts and smoke concentrations, we built a customized computer-controlled plat-

form. The smoke particles were analyzed with an electrical low pressure impactor (ELPI),

which measures the concentration and aerodynamic size distribution of particles with a

diameter between 7 nm and 10 μm. There were significant differences in the mass concen-

tration and size distribution of the surgical smoke particles depending on the electrocauter-

ized tissue. Of the various tissues tested, liver yielded the highest number of particles. In

order to better estimate the health hazard, we propose that the tissues can be divided into

three distinct classes according to their surgical smoke production: 1) high-PM tissue for

liver; 2) medium-PM tissues for renal cortex, renal pelvis, and skeletal muscle; and 3) low-

PM tissues for skin, gray matter, white matter, bronchus, and subcutaneous fat.

Introduction

Electrosurgery is an essential tool in a surgeon’s repertoire and is now used in almost every

surgical procedure. It is used both to cut tissue, and to control bleeding by coagulating the

blood vessels. The procedure involves administering a high-frequency electric current through

the target tissue, causing its temperature to increase [1]. The heating effect of the surgical
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instrument used for the procedure is controlled by the waveform of the current. A low-voltage,

high-frequency current causes a rapid increase in temperature, causing the tissue to evaporate

rapidly; essentially cutting the tissue. A high-voltage, low-frequency current results in a more

gradual heating effect that denatures the proteins in the tissue, resulting in the coagulation and

occlusion of the affected blood vessels [2]. In modern electrosurgical procedures, high-fre-

quency “cut” and low-frequency “coag” modes are interweaved to achieve a clinically optimal

combination of cutting and coagulation. It is the evaporation of the tissue that produces the

plume of smoke, herein referred to as “surgical smoke” (SS).

SS causes technical, physical, and occupational health problems. One obvious challenge is

the visual obfuscation that occurs, particularly in laparoscopic surgery. SS has also been shown

to contain living bacteria [3] and viruses [4], thus exposing surgical staff to the risk of infection.

In addition, exposure to aerosol particles is associated with an increased risk of respiratory dis-

eases and strokes [5–10]. Some of the harmful effects are mediated by carcinogenic volatile

molecules such as acrylonitrile (a precursor of cyanide) and carbon monoxide [11]. Other

health hazards are caused by airborne particles, especially those with a diameter at or below

2.5 μm (PM2.5), as these are known to have long-term negative health effects. Such particles are

able to penetrate the defense mechanisms of the upper respiratory tract and enter the alveoli,

as well as systemic circulation. The deposition of inhaled particles has been documented in the

brain, liver, heart and kidneys [12–14]. The standard surgical mask alone does not protect the

wearer from SS due to leakages around the mask and the filtration efficiency of small particles

[15,16]. Even though the risks of SS are acknowledged, smoke evacuation units are not yet rou-

tinely used in many healthcare centers [17,18].

There has been little research in the literature on the effects exposure to SS has on operation

room personnel during various clinical procedures. Although one study [18] has provided evi-

dence of particle production during a specific surgical procedure, the procedures followed for

electrosurgery vary from surgeon to surgeon. To our knowledge, there is no data available on

the composition and levels of the particles in SS from different tissues with standardized elec-

trosurgery. Therefore, our goal was to analyze the particle composition of SS from various

types of landrace porcine tissues during standard electrosurgical procedures in order to esti-

mate the potential lung depositions of these particles, and their implications for the health of

the surgical personnel in the operating room.

Materials and methods

Particle analyzer

We used an electrical low pressure impactor (ELPI, Dekati Inc., Finland) [19] with a filter

stage [20] and an additional impactor stage [21] for real-time particle number, mass, and size

distribution measurements. The ELPI measures the concentration of all the aerodynamic par-

ticles with a diameter between 7 nm and 10 μm. We calculated the particle mass distribution

from the ELPI number distribution using standard water density for the particles (1 g/cm3).

This approximation in particle mass calculations from ELPI data typically gives correct results

[22]. Because of the high particle concentration, we first diluted the smoke sample using an

ejector type diluter (Dekati Diluter DI-1000, Dekati Inc.) with a 1:8 dilution ratio, and a second

dilution step was performed by mixing 8.5 l/min pure air with 2 l/min sample flow from the

Dekati Diluter. Therefore, the total dilution ratio was 1:45.

Testing platform

In order to control the smoke production, we standardized the electrosurgical cuts (i.e.

length, depth and duration of the cut) with a custom-made computer-controlled platform, a
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schematic diagram of which is presented in Fig 1. In the system, a diathermy knife was moved

with an automated xyz-stage and the measured tissue sample was placed on a custom-built

ground electrode. We used conductive tubes (Tygon, Saint-Gobain, France) for aerosol sam-

pling to minimize the electrical losses of the particles. The tubes were connected to a commer-

cially available smoke evacuator (Surtron Evac, Quirumed, Spain). The evacuator power was

set at five (out of nine), which equals a suction of 12 l/min. We measured the flow settings with

a commercial flow calibrator (Gilian Gilibrator 2, Sensidyne, Germany). We collected the

smoke at 2 cm from the diathermy tip, so that a high proportion of the smoke was captured.

We conducted the measurements in a laboratory located in the faculty of Biomedical Sciences

and Engineering at Tampere University of Technology. During the study, the testing platform

was located inside a fume hood in order to prevent the measurement laboratory being contam-

inated by the smoke.

Testing platform evaluation with a weight scale

We tested tissue weight loss during diathermal cutting with a regular weighing scales (XR

205SM-DR, Precisa, Switzerland). We used a cutting time of 7 seconds, and the mean weight

loss of liver during the nine tests was 41 (±12) mg, which suggests an evaporation speed of 5.9

(±1.2) mm3/s, assuming a unit mass of 1 g/cm3. In a surgical evacuator stream of 12 l/min, this

would indicate that there could be a maximum mass concentration of 29 g/m3 of aerosol parti-

cles, discounting any losses. According to the ELPI measurements, the calculated total mass

concentration of aerosol particles from the liver was 9.1 (±4.2) g/m3, which would indicate a

Fig 1. The measurement system.

https://doi.org/10.1371/journal.pone.0195274.g001
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loss of 20 (±9.2) g/m3. This indicates significant losses from the evaporated tissue mass into

the measured aerosol mass. The diathermy knife and the head of the suction tube collected a

noticeable amount of evaporated tissue matter, indicating that some of the evaporated mass is

deposited near the surgical event. Additional losses in concentration, which are not detectable

in the ELPI measurements, could be due to the particulate mass vaporizing into gaseous mole-

cules. The diathermy smoke may contain up to 95% water [23], although in our experiment

the amount of particulate-gas in the evaporated water was undefined.

Diathermy device

We used a commercially available electrosurgery unit (Itkacut 350MB, Innokas Medical, Fin-

land) set at a nominal 120 W power. Such a high power level was used to avoid the sample

sticking to the diathermy tip. We used direct cut settings at a cutting frequency of 450 kHz.

We made a flat, steel custom-ground electrode (19 x 19 cm) for the robot stage, and measured

the cutting voltage at slightly under 800 V peak-to-peak.

Samples

The test materials were fresh, (unfrozen) Finnish landrace porcine tissues, purchased from a

local slaughterhouse (Paijan Tilateurastamo, Urjala, Finland). The smoke from ten different

tissue types was measured: skeletal muscle, liver, subcutaneous fat, renal pelvis, renal cortex,

lung, bronchus, cerebral gray and white matter, and skin, all taken from the same animal. We

performed the sampling with the automated xyz-stage to ensure that the cuts were all the same

size. A typical cutting pattern is presented in Fig 2. The numbers and dark lines in the Fig 2

show the 10 mm spacing in the ground electrode. Each electrosurgical cut was 5 mm in length,

and we took ten test samples from every tissue type. The 2.4 mm-wide blade (HF 9805–24

Hebu medical, Germany) had a sharp tip, and we aimed for 4 mm deep-cuts, although these

varied slightly due to variations in the height of the tissue.

Fig 2. Representative image of a pig skeletal muscle sample after being exposed to the ten sample burns.

https://doi.org/10.1371/journal.pone.0195274.g002
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Particle deposition model

Only a certain proportion of the emitted particles will be deposited in the respiratory tract, and

so we calculated the level of deposition with models used by the International Commission on

Radiological Protection (ICRP, 1994) [15]. We estimated the airway deposition fractions for

the upper airways (UA), the bronchial tube (BT) and the alveoli (AL) from the measured aero-

sol particle mass distributions. We calculated the particulate matter (PM) depositions from

these distributions using a unit density of 1 g/cm3. The toxicity of atmospheric aerosols is com-

monly calculated from the PM values, which are typically PM10, PM2.5, and PM1 for particulate

total mass for particles with diameters smaller than 10 μm, 2.5 μm, and 1 μm, respectively.

The sample size was relatively small for statistical evaluation of the data, having only ten

particle measurements per tissue. This small sample size was necessary in order to maintain

the heterogeneity of the tissues, which limited their physical size. For example, although we

had plenty of excess liver tissue, which would have been enough for several additional mea-

surements, there was only enough macroscopically homogenous tissue area from certain tis-

sues, such as the gray and white matter, for ten electrosurgical cuts if all the samples were to be

taken from a single animal.

We performed a two-sample analysis with a confidence interval (CI) of 99% between the

mass distributions of every different tissue. We subjected the sample groups to the Shapiro-

Wilk normality test individually. The test indicated non-normality within the sample groups

and thus a non-parametric method was chosen to validate the statistical difference between the

levels of various tissue SS. Since all the tissues came from the same animal, the Mann-Whitney

U test was used for the analysis.

An inverse spherical model

We evaluated the SS hazard for OR personnel with an inverse spherical model [24], in which

the smoke intensity decreases inversely to the square of the distance from the source. Since we

used an unusually high power for the surgical diathermy (120 W), we made a linear assump-

tion for the smoke that would be produced with 40 W, which is the most common power limit

in surgical operations. This linear assumption is in line with previous results in the literature

[25]. In our model, we also used smoke evacuation efficiencies reported in the literature for

integrated and general-purpose evacuation. In an integrated smoke evacuator, the smoke suc-

tion is integrated with the electric scalpel, which produces a high suction efficiency of 88%

[26]. A general purpose surgical suction is commonly a hand-help pump unit, used for collect-

ing blood and other liquids, which is not optimized to remove SS. The smoke suction effi-

ciency of the general purpose evacuation is approximately 50% [24].

Results

The particulate number distributions of each tissue type are presented in Fig 3A, while Fig 3B

shows the mass distributions. The curves in the Fig 3 are the medians from ten tests. The

results of each individual test can be found in S1 Dataset and S1 File. Based on the correspond-

ing particle number and mass distributions (Fig 3), three tissue type groups can be distin-

guished: high-PM tissues, medium-PM tissues, and low-PM tissues. The mass distributions

varied significantly between the tissue types and the particle sizes, so logarithmic distribution

axes were used. Furthermore, due to the diffusional losses of the smallest particles in the ELPI

stages, the accuracy of the presented PM values increases as a function of decreasing particle

size.

The majority of mass in the smoke is explained by the large particles, as can be seen from

the curve trends in Fig 3B. In contrast, the particle number concentration is highest in the
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Fig 3. Median particle number (A) and mass (B) concentrations of different tissue types, produced with the diathermy

knife. The particulate concentrations form three groups: high-PM, medium-PM, and low-PM.

https://doi.org/10.1371/journal.pone.0195274.g003
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smallest particle size range (Fig 3A). The particle size distribution curves presented in Fig 3

indicate that there are at least two particle modes: the first around 10 nm and the second

around 100 nm. The variations in the concentration of the total number of particles between

the individual tests are presented in Fig 4. The variations within each tissue, and the deviation

of the liver from the other tissues, are clearly visible. Some of the tissues, such as those of the

renal cortex and bronchus, only exhibited moderate variation (<1.3x107 #/m3 difference in

the particle number concentration between the first and third quartiles), but the variation

between the quartiles in the liver tissue was substantial (>4.2x107 #/m3) (Fig 4).

The deposition fractions of the different mass fractions, PM10, PM2.5 and PM1, are pre-

sented in Table 1, which shows that PM2.5 and PM1 particles constitute only slightly more than

one tenth of the total particulate mass.

A statistical analysis of the total particle masses revealed that only the liver was significantly

different from the rest of the tissues. The results for all the tissues can be seen in Table 2, as the

p-values of the two-sample Mann Whitney U test (99% CI). Any p-values under 0.01 are in

bold type.

Fig 4. Boxplot presentation of the distributions of the measured total particle number for each tissue. Medians are presented as dots between

the quartile lines.

https://doi.org/10.1371/journal.pone.0195274.g004
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We concluded from both Tables 1 and 2 that even though some of the tissues are similar in

terms of the mass of the produced particles, three separate groups can be distinguished, based

on their corresponding particle mass size distributions, as seen in Fig 3, where three PM-clas-

ses are presented.

Table 3 shows estimates of the particle concentrations from various distances. Three user

cases are included: surgery without any smoke removal, surgery with a general-purpose suc-

tion device and surgery with an integrated smoke evacuator. These concentrations are com-

pared to the air quality index (AQI) [27]. In general, low-PM tissues do not pose a significant

risk of particulate exposure for the surgical team, but high-PM tissues pose a significant risk of

exposure to operating room personnel even if they are away from the immediate vicinity of the

source. Based on our estimates in Table 3, we can see that in high-PM procedures, even with

integrated smoke evacuation, the AQI classification at 30 cm distance from the cutting point

remains Very High. Very Low classifications are only achieved at distances of 1 m (or more)

when using integrated evacuation, and at 2 m when using general-purpose surgical suction.

Table 1. Measured aerosol median masses inside the surgical smoke evacuation stream from different tissue types, and the calculated mass depositions to the upper

airways (UA), the bronchus (B), and the alveoli (AL) for particles under 10 μm (PM10), under 2.5 μm (PM2.5) and under 1 μm (PM1).

PM10 (mg/m3) Muscle Liver Fat Renal pelvis Renal cortex Lung Bronchus Gray matter White matter Skin

Measured total mass 3000 9100 210 2400 2500 210 720 760 370 370

Mass deposited to UA 1900 5700 130 1500 1600 130 440 470 230 220

Mass deposited to B 110 320 7.4 85 88 7.4 25 26 13 13

Mass deposited to AL 160 460 11 120 130 11 37 39 19 20

PM2.5 (mg/m3) Muscle Liver Fat Renal pelvis Renal cortex Lung Bronchus Gray matter White matter Skin

Measured total mass 370 1100 28 300 330 29 100 100 52 61

Mass deposited to UA 110 320 7.9 85 92 7.7 26 28 14 14

Mass deposited to B 23 66 1.6 18 19 1.6 5.4 5.8 2.8 2.8

Mass deposited to AL 53 160 3.9 42 46 3.9 14 14 7.0 7.4

PM1 (mg/m3) Muscle Liver Fat Renal pelvis Renal cortex Lung Bronchus Gray matter White matter Skin

Measured total mass 150 470 12 130 140 14 52 47 25 34

Mass deposited to UA 9.9 31.0 0.74 8.0 8.9 0.83 3.0 3.0 1.6 1.9

Mass deposited to B 1.6 4.9 0.12 1.4 1.5 0.14 0.49 0.48 0.25 0.29

Mass deposited to AL 12 38 0.94 10 11 1.1 3.9 3.7 2.0 2.5

https://doi.org/10.1371/journal.pone.0195274.t001

Table 2. The result matrix for the p-values of the statistical analysis� based on the total mass of the particles created in tissue electrosurgery.

Muscle Liver Fat Renal pelvis Renal cortex Lung Bronchus Gray matter White matter Skin

Muscle 0.0028 0.0006 0.5205 0.1041 0.0002 0.0002 0.0002 0.0002 0.0003

Liver - 0.0003 0.0028 0.0028 0.0002 0.0002 0.0002 0.0002 0.0004

Fat - - 0.0022 0.0017 0.9698 0.0452 0.1859 0.1212 0.3847

Renal pelvis - - - 1.0000 0.0002 0.0006 0.0002 0.0006 0.0028

Renal cortex - - - - 0.0002 0.0002 0.0002 0.0002 0.0002

Lung - - - - - 0.0257 0.1859 0.0757 0.3447

Bronchus - - - - - - 0.4727 0.2123 0.3847

Gray matter - - - - - - - 0.9698 0.6776

White matter - - - - - - - - 0.7913

Skin - - - - - - - - -

�Mann-Whitney U test (99% CI).

https://doi.org/10.1371/journal.pone.0195274.t002
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Discussion

Our results show significant differences in the mass concentration and size distribution of the

particles in SS from different porcine tissues. The tissues can be divided into three groups

according to their particle production. Liver produces by far the highest number of particles.

Renal tissues and skeletal muscle produce a medium mass of particulate matter, while subcuta-

neous fat, lung tissue, bronchus, cerebral gray and white matter, and skin produce significantly

less particulate mass. Some of the tested tissues have large variations in the number of particles

that they produce (Fig 4). These variations can be explained by the heterogeneity of the histo-

logic structures within the tissue specimens, such as connective tissue, blood vessels and hema-

tomas, which can result in significant differences in the composition of the smoke produced

by the same specimen.

Our results differ from those of Hinz et al. [28]. While they observed similar particle

distributions from the liver and the kidney, we noted a pronounced difference between

these tissues. However, other research groups, such as Bruske-Hohlfeld et al. [29] and Pillin-

ger et al. [26], have presented results that support our findings. Bruske-Hohlfeld et al.

reported the largest particle concentrations from the surgery of hemangioma of liver, which

is in line with our results, even though a liver hemangioma and a porcine liver differ from

each other histologically.

According to Pillinger et al., the mean mass concentration of particle exposure for a sur-

geon was 137 μg/m3 when a smoke evacuation unit was not used [26]. This result is well in line

with our estimate for the surgeon’s particle exposure using the spherical model. At operating

distances, without a dedicated smoke evacuation system, high-PM and medium-PM tissues

produce PM2.5 concentrations over 150 μg/m3. According to European Union air quality indi-

ces [28] this is unhealthy. Wang et al. [24] observed that a wall-installed smoke evacuation unit

reduced the PM2.5 concentration by approximately half. Additionally, Pillinger et al. observed

a particle mass reduction of 88% [26], when a suction device was integrated into the surgical

blade. According to our results, is seems that with a smoke evacuation system, the surgeon is

only exposed to unhealthy concentrations of particulate matter when operating on high-PM

tissues, whereas general wall suction is adequate only for low-PM tissues.

Table 3. Spherical model approximation for particle concentrations from various distances, for the tested tissues.

Extrapolated particulate exposures Distance (cm) High-PM

μg/m3, AQI

Medium-PM

μg/m3 AQI

Low-PM

μg/m3 AQI

40 W, without any smoke removal 30 1700 VH 500 VH 86 H

50 360 VH 110 VH 19 L

100 46 M 14 VL 2.3 VL

200 5.6 VL 1.7 VL 0.29 VL

40 W, with general purpose surgical suction (-50%) 30 870 VH 260 VH 44 M

50 190 VH 56 VH 9.7 VL

100 24 L 7.1 VL 1.2 VL

200 2.9 VL 0.88 VL 0.15 VL

40 W, with integrated smoke evacuator (-88%) 30 200 VH 60 H 10 VL

50 44 M 13 VL 2.3 VL

100 5.6 VL 1.7 VL 0.28 VL

200 0.68 VL 0.21 VL 0.036 VL

A high-PM (liver), medium-PM (kidney, skeletal muscle) and low-PM (skin, subcutaneous fat, lung and brain). PM2.5 Air quality index (AQI) for one hour exposure.

Very low (VL), Low (L), Medium (M), High (H), Very High (VH).

https://doi.org/10.1371/journal.pone.0195274.t003
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In addition to smoke evacuators, the concentration of inhaled particles can be reduced with

surgical masks. Nevertheless, there are vast differences in the filtering efficiencies of such

masks, which can range from 13% to 99% [16]. In fact, it appears that only N95-respiratory

protectors can be regarded as being more efficient than smoke evacuators in reducing surgical

operating personnel’s exposure to particulates in SS [30]. According to the AQI classification

[27], surgical theatre personnel can be exposed from very low to very high doses of PM during

electrosurgery, so we suggest using a combination of masks and smoke evacuators for electro-

surgery on high-PM tissues, depending on the filtering options and the tissue being operated

on. Even though there have been no epidemiological studies that show an elevated lung cancer

risk in OR personnel [31], PM exposure is associated with an increased risk of lung cancer,

higher mortality [32] and a higher risk of persistent airway problems [33]. Even though elec-

trosurgery is used only for a fraction of the time during a whole surgical procedure, some OR

personnel, especially plastic surgeons, and urologic and general surgical practitioners do make

extensive use of electrosurgery. Without adequate protection, this population may be at risk of

long-term health problems related to PM exposure. Our results and the proposed PM class

division could be used as a reference for any surgeon when selecting protective measures for

an operation. For example, if the surgery only involves low-PM tissue surgery, the workplace

safety requirements for surgical masks would be lower than for medium-PM and high-PM tis-

sue operations. However, in order to validate these PM classes as a standard practice, more

particle measurements with a larger sample sizes are needed, including further testing of the

filtering efficiency of different types of surgical masks.

It must be acknowledged that there may be some limitations and contradictions in our

study. Krones et al. studied the production of volatile compounds (VOC) in electrosurgery

with porcine tissue samples and found that the VOC ratio between liver and fat was signifi-

cantly less than our aerosol ratio between the liver and subcutaneous fat [34]. However, VOC

and aerosol ratios may not be uniform. Another possible source of inaccuracy could be that

our diathermy unit does not compensate for variations in the tissue impedance, but instead

operates with a constant voltage. Tissue impedance compensation is used in some diathermy

devices to produce more balanced cutting efficiency for different tissue types [35]. As the

tested tissue types had different impedances, the results may have been different if the experi-

ment had been done with an instrument with impedance compensation. On the other hand,

our results do accurately reflect the relation between natural tissue impedance and smoke pro-

duction, without any bias from such compensation features. We standardized the cuts, so we

could directly measure the variations in smoke production from the heterogeneous samples

without any significant variance in the cuts themselves.

Natural aerosol particle size distributions typically have multiple modes, e.g. the aerosol

emission from a vehicle exhaust typically contains a nucleation particle mode (median particle

diameter around 10 nm) and a soot particle mode (median particle diameter around 50 nm).

Unfortunately, the ELPI size range is limited and particles smaller than 10 nm are only partly

detected. The particle size distribution curves presented in Fig 3 indicate that there are two

particle modes: the first around 10 nm and the second around 100 nm, but the curves are simi-

lar to those of ELPI measurements in vehicle exhaust emissions [36] [37].

Conclusions

Our results indicate significant differences in particle production from different types of tissue

during electrosurgery. The results suggest that the tissues can be divided into three groups

according to their particle emissions: high-PM tissues (liver), medium-PM tissues (renal cor-

tex, renal pelvis, muscle), and low-PM tissues (skin, cerebral gray matter, cerebral white
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matter, bronchus, subcutaneous fat). These classes can be related to surgery-specific PM doses.

These results are of clinical importance for the protective measures used by surgeons and OR

staff who employ electrosurgery extensively. We recommend smoke evacuation and particu-

late filtration masks, especially for high-PM and medium-PM tissue surgery. More studies on

smoke production and mask efficiency are still needed in order to produce yet more accurate

health hazard limits and practical recommendations for electrosurgical procedures.

Supporting information

S1 Dataset. Raw data from the ELPI. Consists the ELPI measurement data from the per-
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21. Yli-Ojanperä J. Improving the Nanoparticle Resolution of the ELPI. Aerosol Air Qual Res. 2010; https://

doi.org/10.4209/aaqr.2009.10.0060

22. Charvet A, Bau S, Bémer D, Thomas D. On the Importance of Density in ELPI Data Post-Treatment.

Aerosol Sci Technol. Taylor & Francis; 2015; 49: 1263–1270. https://doi.org/10.1080/02786826.2015.

1117568
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37. Pirjola L, Lähde T, Niemi J V, Kousa A, Rönkkö T, Karjalainen P, et al. Spatial and temporal characteri-

zation of traffic emissions in urban microenvironments with a mobile laboratory. Atmos Environ. Else-

vier; 2012; 63: 156–167.

The characterization of surgical smoke from various tissues and its implications for occupational safety

PLOS ONE | https://doi.org/10.1371/journal.pone.0195274 April 12, 2018 13 / 13

https://doi.org/10.1080/027868291009189
https://doi.org/10.4209/aaqr.2009.10.0060
https://doi.org/10.4209/aaqr.2009.10.0060
https://doi.org/10.1080/02786826.2015.1117568
https://doi.org/10.1080/02786826.2015.1117568
https://doi.org/10.1007/s11255-015-1080-3
http://www.ncbi.nlm.nih.gov/pubmed/26271645
https://doi.org/10.1002/bjs.4214
http://www.ncbi.nlm.nih.gov/pubmed/12945072
https://doi.org/10.1016/j.scitotenv.2013.10.060
http://www.ncbi.nlm.nih.gov/pubmed/24238948
https://doi.org/10.1007/s00216-011-5465-6
http://www.ncbi.nlm.nih.gov/pubmed/22002560
https://doi.org/10.1186/1745-6673-3-31
http://www.ncbi.nlm.nih.gov/pubmed/19055750
http://www.ncbi.nlm.nih.gov/pubmed/17460802
http://www.ncbi.nlm.nih.gov/pubmed/17460802
http://www.ncbi.nlm.nih.gov/pubmed/17460802
https://doi.org/10.1289/ehp.1408095
https://doi.org/10.1289/ehp.1408095
http://www.ncbi.nlm.nih.gov/pubmed/25712504
https://doi.org/10.1097/JOM.0b013e318297325b
http://www.ncbi.nlm.nih.gov/pubmed/23887704
https://doi.org/10.1007/s10353-006-0305-1
https://doi.org/10.1016/j.gie.2013.04.164
https://doi.org/10.1016/j.gie.2013.04.164
http://www.ncbi.nlm.nih.gov/pubmed/23867369
https://doi.org/10.1016/j.atmosenv.2015.11.047
https://doi.org/10.1371/journal.pone.0195274

