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Abstract: This paper describes a graph search-based exploration method. Segmented frontier nodes
and their relative transformations constitute a frontier-graph structure. Frontier detection and
segmentation are performed using local grid maps of adjacent nodes. The proposed frontier-graph
structure can systematically manage local information according to the exploration state and overcome
the problem caused by updating a single global grid map. The robot selects the next target using
breadth-first search (BFS) exploration of the frontier-graph. The BFS exploration is improved to
generate an efficient loop-closing sequence between adjacent nodes. We verify that our BFS-based
exploration method can gradually extend the frontier-graph structure and efficiently map the
entire environment, regardless of the starting position.

Keywords: mobile robots; exploration; frontier detection; breadth-first search; depth-first
search; loop-closing

1. Introduction

Mapping is one of the most critical prerequisites for mobile robots performing various high-level
tasks. Simultaneous localization and mapping (SLAM) algorithms construct maps of the environment
around a robot while localizing the robot at the same time using continuously received sensor data [1–3].
For two decades, many researchers have developed various SLAM algorithms to improve the accuracy
of SLAM states in terms of global consistency under the accumulated sensor error caused by large
motion sequences. However, SLAM does not select the next target destination for efficient mapping,
and only focuses on estimating the state of the robot.

Classic exploration methods find a path that increases information about the environment [4–6].
They rely on detecting frontier areas, edges between empty and unknown/unexplored areas.
Because these are usually at the limit of the sensors’ range, the robot has a higher probability
of obtaining new information about unexplored areas at frontiers than at non-frontier positions.
The purpose of frontier-based exploration methods is full coverage of the environment, rather than
accuracy of the mapping and localization states.

Instead of considering the mapping coverage, active localization algorithms increase localization
accuracy by only calculating a target position within the previously constructed map [7,8].
Active localization algorithms can be combined with path planning algorithms, and are suitable
for maintaining the uncertainty of the localization state below a certain level while the robot heads
towards its destination.

Integrated exploration, also known as active SLAM, plans a path to improve localization
accuracy and increase mapping coverage in an unknown environment [9]. Most integrated exploration
algorithms employ the concept of information gain to select the next target candidates for localization
and mapping [10,11] and define a cost function based on the information gain to choose one
target position. The final result of the integrated exploration algorithm should be an accurate map
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of the entire environment. Many integrated exploration algorithms detect frontiers using a grid map
to guarantee the mapping coverage. The frontier areas can also be detected on dense point cloud
maps or continuous representations for environments. Detecting frontier areas and inspecting the
mapping coverage can be easy from a grid map because mapped empty areas and unmapped areas are
clearly distinguished on grid maps. Although the basic SLAM framework of integrated exploration
constructs a feature map or a pose graph for state estimation, a grid map is also produced whenever
the robot needs to detect frontiers [12,13]. At this time, the estimated trajectory and corresponding
measurements at each pose are used to construct one global grid map.

This paper presents an integrated exploration method that constructs a frontier-graph structure
using a local grid map and selects the next exploration target based on this frontier-graph. We address
the exploration problems in two-dimensional (2D) environments. The proposed frontier-graph is based
on detecting frontier information on grid maps. If we define a frontier area in three-dimensional (3D)
representations, the proposed approach can be extended to 3D exploration problems. But, in this paper,
we think over 2D exploration problems. The previous integrated exploration approaches that maintain
one global grid map can suffer from decreasing efficiency due to the growing size of the map as
exploration proceeds. To overcome this, we propose a method that uses several local maps assigned to
frontier positions. Unlike most previous approaches that use extracted frontier information to decide
just the next target, and do not manage them systematically for further exploration steps, we construct
a frontier-graph structure from the frontier nodes on each local map. The frontier-graph structure
shows the exploration priority of the adjacent frontier nodes, and we can obtain a loop-closing path,
as necessary for the global consistency of SLAM. Therefore, the loop-closure of the SLAM algorithms
can be induced by the proposed exploration approach.

The remainder of this paper is organized as follows. Section 2 summarizes related work.
In Section 3, we present the frontier-graph structure constructed by the frontier cell segmentation
using a local grid map. In Section 4, we present an improved graph-search-based exploration method,
breadth-first search exploration, to select the next target node. Section 5 shows simulation results
in a well-known benchmark environment to compare the efficiency of two graph-search-based
exploration methods. In Section 6, we present our conclusions.

2. Related Work

Many integrated exploration algorithms detect frontier areas on grid maps to complete mapping
for the whole environment. Several works maintain only a feature map and do not depend on the
grid map [14–16]. In these cases, their target environments are usually simple, and the purpose is to
achieve accurate state estimation rather than full coverage.

Frontier-based integrated exploration algorithms repeat the following three steps until no frontier
cells are detected on a global grid map: identifying frontier cells, evaluating the frontier cells using a
defined utility function, and selecting the next target. Researchers have mainly studied how to define
an appropriate utility or cost function to evaluate the localization and mapping uncertainty reduction
at each frontier area. A balanced utility function, which independently calculates the localization
uncertainty based on a feature-based map and expected information gain on a grid map, was proposed
in [17]. In this approach, an Extended Kalman Filter (EKF) is used for the SLAM estimation problem.

An entropy-based utility function that calculates the joint map and path entropy decrease has
also been proposed [10,18]. One study [10] used a Rao-Blackwellized particle filter (RBPF) to estimate
and represent the posterior of the map and the robot’s trajectory. Unlike the EKF, the RBPF can be
performed in not only feature-based maps, also grid maps. Only one type of map representation,
the grid map, was used for both SLAM estimation and frontier detection. The expected information
gain along each action sequence for candidate frontier positions was computed by generating the
expected measurement on the grid map. Another study [18] employed a pose graph-SLAM as the
estimation framework. The pose graph-SLAM maintains the robot’s pose trajectory in the form of a
sparse graph [19,20]. It optimizes the graph using relative motion constraints that connect the pose
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nodes via sensory data. Because the graph-SLAM algorithm does not use a grid representation for
state estimation, two studies [11,18] constructed a global grid map using the mean pose of the node
in the graph, then used the corresponding raw sensor data or log-odds of the grid map to extract the
frontier information.

In the above grid map-based exploration methods, each grid cell shows the binary occupancy
information of the corresponding position in the environment. In two studies [21,22], a Gaussian
processes (GPs) occupancy map was constructed, with each cell of the GP map containing a
continuous occupancy probability. Using GPs’ high-dimensional map inference and a mutual
information-based greedy exploration strategy, one of these studies [21] completed mapping for
the entire environment with fewer observations than standard binary grid mapping. To learn
GP parameters, a study [22] applied a Rapidly Exploring Random Tree (RRT) search guiding a
robot towards unvisited informative locations.

Recently, deep learning approaches have been applied to the selection of the next-best-view
position on the grid map during integrated exploration. One study [23] proposed an exploration
architecture that uses a deep reinforcement learning model to integrate common knowledge in office
floor plans. Another study [24] used a deep neural network to predict a robot’s most informative
exploratory action.

Most of the methods mentioned above focused on two actions [25]. The first is exploration to
select the most informative frontier position on a global grid map constructed through accumulated
sensor data until the time of the decision. The aim of this action is to increase the robot’s knowledge of
the environment. The second action is exploration that leads the robot to the already mapped areas to
reduce the SLAM state uncertainty through active loop-closing. These actions are evaluated on the
current global grid map. As the exploration proceeds, the size of the global grid map increases.
The growing size of the global map means that the number of candidate positions or actions
to be evaluated becomes large. This affects the overall exploration efficiency for achieving full
coverage, because frontier-based exploration continues until there is no frontier on the global grid
map. The Wavefront Frontier Detector (WFD) and Fast Frontier Detector (FFD) were proposed to
avoid processing all the data characterizing the growing grid map [26]. WFD is a graph-search-based
algorithm that evaluates only known/observed areas. FFD examines only newly obtained laser
measurements to detect frontier cells.

The conventional integrated exploration approaches select the next exploration target from the
newly detected frontier regions and previously visited regions on the robot’s trajectory. These next
target candidates are re-calculated for each decision, but they are not systematically managed for
further decisions. Moreover, the efficiency of frontier-based exploration algorithms depends on the
frontier information on the grid map. The global grid map used for detecting frontier regions is
continuously merged with the current sensor data based on the current robot position obtained from
the SLAM algorithm. The resulting global grid map and its frontier information are affected by the
SLAM state’s accuracy. Prior to loop-closing, the uncertainty of the SLAM estimation becomes larger
as the travel distance increases [3,27]. In general, it is difficult to correct the occupancy information
using a single global grid map unless the robot accesses all the past trajectories and corresponding
sensor measurements. In terms of efficient exploration, we need a systematic map updating strategy
when the robot’s pose accuracy has been recovered by loop-closing.

Local map-based exploration methods have previously been proposed [28,29] to overcome the
inefficiencies that arise due to dependence on one global grid map for detecting frontier cells and to
systematically organize the target candidates. In local map-based exploration, the frontier cells are
detected from a local map constructed based on current sensor measurements, not from the global
grid map. A representative cell is selected among the local frontier cells, and the representative cell
and local map are registered to the frontier-tree structure as a node. The relative transformation
between the frontier nodes becomes the edge of the frontier-tree. We can efficiently extract real
frontier cells, which are frontiers in both the current local map and the local maps of the adjacent nodes,
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using the frontier-tree structure and map merging process. Moreover, we can select the next target
node of the frontier-tree structure according to the exploration priority using two graph search-based
exploration methods, depth-first search (DFS) exploration or breadth-first search (BFS) exploration,
i.e., a loop-closing event can be induced efficiently using frontier-tree structure. If global consistency of
the edge between the frontier nodes is achieved by loop-closing, the local maps of the corresponding
loop nodes are merged using the corrected edge information. The local maps of the loop nodes are
updated to the merged map.

In this paper, we extend these works in three respects. First, we refine the database of the
frontier-graph structure by focusing on the integrated exploration itself, and improve a method for
segmenting frontier cells. Segmenting the frontier cells and calculating the frontier node of each
segment is crucial to the exploration efficiency. Second, we present a method to register frontier
nodes that makes an efficient loop-closing sequence. Furthermore, we compare BFS exploration and
DFS exploration using a publicly available environment. This paper assumes that a robot has a 360◦

scanning range sensor to obtain range measurements for all directions. It means that we do not consider
the issues about sensing coverage according to the robot’s orientation. The proposed exploration
approach decides the next target position but not the robot’s orientation on the target position.

3. Frontier-Graph Structure

In our previous works, we proposed a method to extract frontier nodes on a local grid map
and construct the frontier-tree for local map-based exploration [28,29]. In this paper, we rename the
frontier-tree to obtain a frontier-graph that represents the proposed frontier node-edge structure.
The frontier nodes and their relative transformations constitute a graph. However, there are
several loops, and the nodes have hierarchical relationships: root, parent, and child nodes, unlike in the
case of a general graph. We present the tree-like graph structure containing the frontier information.

In this section, we elaborate on the frontier-graph structure used for local map-based exploration.
Figure 1 shows the overall process of the integrated exploration using the frontier-graph structure and
the corresponding local maps. The integrated exploration algorithm consists of three sub-processes:
SLAM, exploration, and path planning. When local sensor data are obtained, the SLAM algorithm
estimates the state vector, which contains the pose of the robot and representation of the environment.
Using the estimated pose of the robot and local sensor data, the exploration algorithm detects frontier
regions and decides the next destination. Then the robot goes to the next destination along the safe path
calculated by the path planning algorithm, until it reaches its destination. In this paper, we assume
that the SLAM and path planning algorithm performs adequately to estimate the pose of the robot
and steer it to the target position at the desired frequency. We focus on the function of the exploration
algorithm that selects the next target destination for expanding the map information or reducing the
uncertainty of the robot’s pose by loop-closing.
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Figure 1. Overview of the proposed integrated exploration algorithm using a frontier-graph structure
and graph search-based decision.

3.1. Constructing Frontier-Graph Structure Using Local Maps

3.1.1. Frontier-Graph Database

From the perspective of the proposed local map-based exploration method for constructing the
frontier-graph, exploration is the sequential process of expanding the graph by detecting and adding
frontier nodes until new nodes are no longer discovered. Eventually, the entire environment is modeled
as distributed nodes and edges between these nodes. Before we present details on the frontier-graph,
we define the frontier area and the non-frontier area for the sake of clarity. A frontier area is an edge
segment that separates the known (explored) empty regions from unknown (unexplored) regions.
It can be an unknown cell next to known empty cells or a known empty cell next to unknown cells.
In this paper, the frontier area is defined as a known empty cell next to unknown cells. The position
of the frontier area can be the next exploration target, and it needs to be empty so that the robot can
arrive there. A non-frontier area is a grid cell that is not a frontier cell. Table 1 shows the components
of the frontier node and local grid map database (DB) for the frontier-graph structure. There are
two types of DB: frontier node DB (Node) and local map DB (Map). The frontier node DB includes
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geometric information regarding the frontier segments and exploration state. The local map DB stores
local grid map information of each visited frontier node.

Table 1. Frontier node database and local map database of the frontier-graph structure.

Frontier node DB:
Node = {nodeid|1 ≤ id ≤ N}
nodeid =

{
id, idparent, cellsid, idmap, f lagknown, f lagloop−closing,

{
idchild1

, · · · , idchildn

}}
cellsid =

{
[x1, y1]

T , · · · ,
[

x f , y f

]T
∣∣∣∣ the metric position of each frontier cell in nodeid

′s
frontier segment w.r.t. nodeid

}
Edge =

{
edgei,j| the relative transformation from nodei to nodej

}
edgei,j =

{
disti,j, tri,j

}
Local map DB:
Map = {mapid|1 ≤ id ≤ M}
mapid =

{
id, gridmapid,

{
idnode1

, · · · , idnodem

}
,
{

pnode1
, · · · , pnodem

}}
N: the number of frontier nodes
n: the number of child nodes
f : the number of frontier cells in nodeid’s frontier segment
M: the number of local maps
m: the number of frontier nodes that share mapid
pnodem : the pose of nodem in the local map mapid

tri,j:
[

xi,j, yi,j, θi,j

]T

disti,j: the shortest distance between nodei and nodej

Each node, nodeid, has its own identification number (id). If a new representative node of the
frontier segment is selected from the current node’s local grid map, the new node is registered to
the frontier node DB as the child of the current node. idparent is the ID of the parent node, and cellsid
stores the metric position of each frontier cell in nodeid’s segment. Because the newly detected frontier
node means that it has not been explored yet, the ID of the local grid map, idmap, is initially set to
0. When the robot arrives at the node and obtains the local grid map, the local grid map is added to
the local map DB and the corresponding local map ID is assigned to idmap of nodeid. f lagknown is the
exploration state, which indicates whether the node has been explored or not. It is FALSE when the
node is initially registered, and transforms to TRUE after the robot has explored the node or the node
has been revealed to be a known area on the merged map. f lagloop−closing indicates whether a loop has
been closed at the node, and is initially set to FALSE. If the robot revisits the node and a loop-closing
event occurs, it becomes TRUE. If n frontier segments are extracted at the current node, the IDs of the
n representative cells are stored in

{
idchild1 , · · · , idchildn

}
as child nodes.

The root node is the starting position of the exploration process. If the robot detects n frontier
segments at the starting position, the information concerning the root node and n child nodes is
as follows:

root node : node1 = {1, 0, ∅, 1, TRUE, FALSE, {2, · · · , n + 1}} (1)

n child nodes : node2 = {2, 1, cells2, 0, FALSE, FALSE, ∅} , · · · , (2)

noden+1 = {n + 1, 1, cellsn+1, 0, FALSE, FALSE, ∅}

We define the root node’s ID to be 1, and its parent’s ID to be 0. Because the robot essentially
starts the exploration process in an empty region, the root node does not appertain to any frontier
segments: the third component in Equation (1) is ∅. edgei,j is the information concerning the relative
transformation from nodei to nodej, and consists of the shortest distance, disti,j, between the two nodes
and the geometric relative transformation vector, tri,j. A general tree structure only has directed edges
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between the parent and child nodes. In our frontier-graph structures, all child nodes have one parent
node, and there are edges between the parent and child nodes. Moreover, because we can compute the
relative transformations between child nodes when new child nodes are detected on the local grid
map, there are edges between child nodes, i.e., sibling nodes.

If the robot has visited a frontier node, the local grid map is assigned to the node and this
local map, along with its ID, is added to the local map DB. gridmapid of mapid contains the grid
map data, such as the occupancy probability.

{
idnode1 , · · · , idnodem

}
shows the IDs of the nodes that

share mapid, and
{

pnode1 , · · · , pnodem

}
are their positions in mapid. One local map has one node at the

time that it is added to the local map DB. If the robot constructs a local map at the current nodek and
there have already been q local maps in the local map DB, the new local map is added as follows:

mapq+1 =
{

q + 1, gridmapq+1, {k} ,
{
[0, 0, 0]T

}}
(3)

The pose of the node on the local grid map is initially set to [0, 0, 0]T because the local grid map
is constructed at the node. If a loop is closed at the current node, the local maps of nodes that make
up the loop will be merged into a larger grid map, and the poses of the loop nodes are corrected on
the larger grid map. The map information of the current node, i.e., the loop-closing node, is also
updated and contains several nodes and corresponding corrected poses. In other words, the loop
nodes with accurate states share the same merged map after loop-closing. An example of the node
and map DB before/after loop-closing when the root node has two child nodes is presented in Table 2.
The underlined components are the updated components. Notably, the loop-closing state of node1,
the sixth component, was changed to TRUE.

Table 2. An example of a frontier node and local map DB before/after loop-closing.

Before loop-closing:
node1 = {1, 0, ∅, 1, TRUE, FALSE, {2, 3}} , map1 =

{
1, gridmap1, {1} ,

{
[0, 0, 0]T

}}
node2 =

{
2, 1, cells2, 2, TRUE, FALSE,

{
idchild2_1

, · · · , idchild2_n

}}
,

map2 =
{

2, gridmap2, {2} ,
{
[0, 0, 0]T

}}
node3 =

{
3, 1, cells3, 3, TRUE, FALSE,

{
idchild3_1

, · · · , idchild3_n

}}
,

map3 =
{

3, gridmap3, {3} ,
{
[0, 0, 0]T

}}
After loop-closing:

node1 = {1, 0, ∅, 1, TRUE, TRUE, {2, 3}} , map1 =

{
1, gridmap1, {1, 2, 3},

{
[0, 0, 0]T , p2, p3

}}
node2 =

{
2, 1, cells2, 1, TRUE, FALSE,

{
idchild2_1

, · · · , idchild2_n

}}
, map2 = ∅

node3 =
{

3, 1, cells3, 1, TRUE, FALSE,
{

idchild3_1
, · · · , idchild3_n

}}
, map3 = ∅

3.1.2. Frontier Segmentation

If the robot arrives at a new frontier node, the current local grid map is assigned to the current node
of the frontier-graph structure. Because the efficiency of the graph-based algorithm depends on the
number of nodes, it is crucial to extract real frontier cells and register several representative nodes to the
frontier-graph by segmenting real frontier regions. Although conventional frontier-based exploration
uses global information from the entire grid map, the proposed local map-based exploration only uses
local information to detect frontiers and select the next target. The frontier cells are extracted from
the current local grid map. At this time, fake frontier regions, which are frontier regions on the local
map that have already been explored so are known regions on the adjacent nodes’ local maps, can be
detected. To prevent fake frontier nodes from being registered to the graph and distinguish them from
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real frontier cells, we merge the local maps of adjacent neighbor nodes. We segment the frontier cells
that are frontiers on both the current local map and the merged map.

mapmerged = mapcurrent ∪mapparent
current ∪mapprevious

current (4)

Three adjacent nodes take part in this map merging operation, as in Equation (4). The local maps
of the current, parent, and previous nodes are merged. The previous node is the node that the robot has
visited just before arriving at the current node. If the previous node is the parent node, two local maps,
the local maps of the current and the parent nodes, are merged. In Equation (4), the reference frame
of the merged map is the same as the reference frame of the current local map, and the previous and
parent local maps have to be transformed with respect to the pose of the current node. Figure 2 shows
how local maps and their merged maps are used to detect real frontier cells. In Figure 2d, the robot
is at the root node, and only one grid map is used. Two adjacent local maps, the local maps of the
current node and parent node, are merged in Figure 2e. Three adjacent local maps, the local maps of
the current node, parent node, and previous node, are merged in Figure 2f.

(a) (b) (c)

(d) (e) (f)

Figure 2. Examples of frontier segmentation. Medium gray indicates unknown cells; black indicates
occupied cells; very light gray indicates empty cells; red stars are detected frontier cells; cyan dots are
representative nodes; red dots are current nodes; yellow dots are unexplored next targets; the blue
dot is the next explored target; cyan lines show the solution to the traveling salesman problem (TSP)
for the current node and its child nodes: (a) Local map constructed at the root node (b) local map
constructed at the root node’s first child node (c) local map constructed at the root node’s third child
node (d). A single map is used at the root node to discriminate real frontiers. (e) The local maps of the
current and parent nodes are merged. The previous node is the parent node. The root/parent node’s
second child node is not at the frontier area in the merged map, and is eliminated from the exploration
target list to obtain a new observation. (f) The local maps of the current, parent, and previous nodes
are merged. The previous node is the sibling node.
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In our previous works, we constructed a polar histogram of the frontier cells with respect to the
current robot pose so that we could segment them. To distinguish the disconnected frontier region,
we used a threshold value: the number of empty histogram bins between two frontier cells. If the
orientation differences in two adjacent frontier cells are higher than the threshold value, two cells are
divided into different segments. However, this previous method does not deal with the case where
there is a thin obstacle between frontier regions, and the threshold value depends on the size of a grid
cell and the distance to the frontier cell. To overcome these problems, we apply an efficient computer
vision approach, the connected components labeling (CCL) algorithm [30]. The CCL algorithm is an
image segmentation algorithm that assigns a unique label to all pixels of each connected component in
a binary image. We convert the local grid map to a binary image where the frontier cells are 1 and the
others are 0. Applying the CCL algorithm with 8-connectivity to the frontier binary image, we can
obtain several frontier segments and select the representative frontier cell of each segment.

Algorithm 1 shows the new node registration algorithm by frontier segmentation for when the
robot arrives at the newly visited node. We describe the algorithm assuming that the current node
is noden, the parent node is noden−2, and the previous node is noden−1. The current node and the
previous node are siblings to each other. In other words, they were detected at the parent node, noden−2.
The map IDs of the parent node and the previous node are M− 2 and M− 1. At the current node,
the current local grid map is constructed and added to the local map DB according to Equation (3),
and the local map ID is M (line 1). The current local map is merged with the local maps of adjacent
nodes in line 2. In line 3, we detect frontier cells in the current grid map, gridmapcur. The empty cells
adjacent to unknown/unobserved cells are extracted as the frontier cells. The second input argument,
window_size, is the range to check the safety against occupied cells by obstacles. The algorithm
inspects whether there are any occupied cells within the window centered each frontier candidate
position or not. Among the extracted frontier cells of the local grid map, we select the real frontier
cells that are also frontiers on the merged map (lines 4–13). The cell position, [r, c]T , in the local map is
transformed to the position with respect to the merged map frame using the edge DB (line 7), and is
inspected by Algorithm 3 (line 8). The real frontier cells are divided into several segments according to
their adjacent connectivity using CCL algorithm (line 14). For each frontier segment, we decide the
representative frontier node that is the nearest cell to the median of the frontier cell positions in the
segment and calculate the edge information about the relative transformation between the current
node and the representative cell that becomes a child node (lines 18–22). In addition, we calculate
the edge information between the child nodes (line 23), which can be obtained by the composition
operator [31], as follows:

trchild1,child2 = 	trcur,child1 ⊕ trcur,child2 (5)

The shortest travel distance, disti,j, among the frontier nodes of Edge, can be determined by the
grid-based path-finding algorithm such as A* search algorithm using the local grid map [32].

In our previous works, we added new nodes to the frontier node DB in any order.
Here, we propose registering new nodes according to the solution of the traveling salesman problem
(TSP) (line 24). As described in Section 4, we use BFS exploration to select the next target from the
frontier nodes, which induces sequential loop-closing from the root node. The robot goes back to
the parent node after exploring all child nodes during the “induced” loop-closing, and the nearest
child or sibling node was selected as the next target according to the previous method. In this paper,
we treat finding an efficient loop-closing path, an efficient exploration order, among the parent and
the child nodes as solving a TSP [33,34]. Using the shortest traveling distance, disti,j in Edgenew, is the
cost matrix of the TSP algorithm, we decide the exploration priority for the current and new nodes.
The new nodes are registered to the node DB as the current node’s child nodes in the order of the
solution to the TSP (lines 24–26). This means that the higher number of the node’s ID, the higher its
priority during the induced loop-closing. Figure 2d–f shows the solutions to the TSP for the current
and child nodes (cyan lines).
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Algorithm 1 Registration of new nodes by frontier segmentation

Require: current local grid map gridmapcur, frontier-graph database Node = {nodeid|1 ≤ id ≤ N},

Edge, Map = {mapid|1 ≤ id ≤ M− 1}, size of window for detecting safe frontier cells window_size

Ensure: updated frontier-graph database, Node, Edge, Map
. The algorithm assumes that the current node is noden, the parent node is noden−2, and the

previous node is noden−1. noden and noden−1 are siblings to each other. The map IDs of the parent

node and previous node are M− 2 and M− 1.

1: add mapM =
{

M, gridmapM, {M} ,
{
[0, 0, 0]T

}}
into Map

2: obtain gridmapmg by merging the adjacent local maps, mapM−2, mapM−1, mapM,

3: gridmap_ f rontier ← DETECT-FRONTIER-CELL(gridmapcur, window_size)

. RowSize is the number of rows gridmap_ f rontier and gridmapcur.

. ColSize is the number of columns gridmap_ f rontier and gridmapcur.

4: for r = 1 to RowSize do

5: for c = 1 to ColSize do

6: if gridmap_ f rontier (r, c) = 1 then

7:
[
rmg, cmg

]T ← cell_coordinate_transform
(
[r, c]T , gridmapcur, gridmapmg, Edge

)
8: if INSPECT-SAFE-FRONTIER-CELL

([
rmg, cmg

]T , window_size, gridmapmg

)
= 0 then

9: gridmap_ f rontier (r, c)← 0

10: end if

11: end if

12: end for

13: end for

14: f rontier_segment← connected_component_labeling (gri f map_ f rontier)

15: if f rontier_segment 6= ∅ then

16: relative_trans← ∅

17: new_Node← ∅

18: for all f rontieri ∈ f rontier_segment do

19:
{

nodeidnew , trn,idnew

}
← INITIALIZE-NEW-NODE( f rontieri, n, idnew)

20: new_Node← new_Node ∪
{

nodeidnew

}
21: relative_trans← relative_trans ∪

{
trn,idnew

}
22: end for

23: Edgenew ← calculate_edge (noden, new_Node, relative_trans, gridmapcur)

24: new_Node_ordered← TSP (noden, new_Node, Edgenew)

25: update_node_DB (Node, new_Node_ordered)

26: update_edge_DB (Edge, Edgenew)

27: end if

Algorithms 2–4, which are used in Algorithm 1, are to detect frontier cells on a grid map, inspect
a safe frontier cell without nearby occupied cells, and initialize new node information, respectively.
Algorithm 2 first finds empty cells whose occupancy probability is lower than the empty threshold
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(lines 4–8). By applying the morphological closing operation to the image that presents 1(TRUE) for
empty regions and 0(FALSE) for the other regions, we can remove tiny unknown noise cells between
empty cells (line 9). We perform morphological erosion with the closed grid map image (line 10).
The windows for the morphological operations, wdw_close and wdw_erosion, determine how many
noise cells are removed and the width of the internal boundary. We obtain the empty regions’ internal
boundary by subtracting the eroded image from the closed image (line 11), and the cells consisting of
the internal boundary are frontier candidate cells. The safe frontier cells are obtained by inspecting the
nearby occupied cells presented in Algorithm 3 (line 14).

Algorithm 2 Frontier cell detection

Require: gridmap = {cell (i, j) |1 ≤ i ≤ RowSize, 1 ≤ j ≤ ColSize}, window_size

Ensure: gridmap_ f rontier

1: function DETECT-FRONTIER-CELL(gridmap, window_size)

2: set gridmap_empty = {empty (i, j) |empty (i, j) = 0, 1 ≤ i ≤ RowSize, 1 ≤ j ≤ ColSize}
3: set gridmap_ f rontier = { f rontier (i, j) | f rontier (i, j) = 0, 1 ≤ i ≤ RowSize, 1 ≤ j ≤ ColSize}
4: for all cell (i, j) do

5: if cell (i, j) < thempty then

6: empty (i, j)← 1

7: end if

8: end for

9: gridmap_empty_close← image_morph_close (gridmap_empty, wdw_close)

10: gridmap_empty_erosion← image_morph_erosion (gridmap_empty, wdw_erosion)

11: gridmap_empty_edge← gridmap_empty_close− gridmap_empty_erosion

12: for all grid_empty_edge (i, j) ∈ gridmap_empty_edge do

13: if grid_empty_edge (i, j) = 1 then

14: f rontier (i, j)← INSPECT-SAFE-FRONTIER-CELL
(
[i, j]T , window_size, gridmap

)
15: end if

16: end for

17: return gridmap_ f rontier

18: end function

Algorithm 3 counts the occupied and unknown cells around a frontier candidate cell (lines 5–13).
If there are no occupied cells and the number of unknown cells is higher than the threshold around
one frontier cell, we classify the cell as a safe frontier cell (lines 14–16). Figure 3 shows an example of
how to detect safe frontier cells using morphological operations. The safe frontier cells are indicated as
red stars in Figure 3d.

Algorithm 4 initializes a new node for each frontier segment. The representative node position
that could be the robot’s exploration target position in future steps is determined to be the nearest cell
to the median of the frontier segment cells (lines 2–4). The edge information defined by the relative
transformation between two nodes is also calculated (line 5). With the metric positions of the frontier
segment cells with respect to the current node, the new node is initialized and registered as a child of
the current node (lines 6–11).
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Algorithm 3 Safety inspection of a frontier cell

Require: empty cell position [r, c]T , size of window for detecting safe frontier cells window_size,

gridmap = {cell (i, j) |1 ≤ i ≤ RowSize, 1 ≤ j ≤ ColSize}
Ensure: f lagfrontier

1: function INSPECT-SAFE-FRONTIER-CELL([r, c]T , window_size, gridmap)

2: f lagfrontier ← 0

3: number_o f _unknown← 0

4: number_o f _occupied← 0

5: for p = r− round (window_size/2) to r + round (window_size/2) do

6: for q = c− round (window_size/2) to c + round (window_size/2) do

7: if cell (p, q) > thoccupied then

8: number_o f _occupied← number_o f _occupied + 1

9: else if cell (p, q) > thempty then

10: number_o f _unknown← number_o f _unknown + 1

11: end if

12: end for

13: end for

14: if number_o f _occupied < 1 and number_o f _unknown > thnum_unknown then

15: f lagfrontier ← 1

16: end if

17: return f lagfrontier

18: end function

(a) (b) (c) (d)

Figure 3. Frontier cell detection: (a) Local grid map. (b) Empty region of local grid map. (c) Internal
boundary of empty region extracted by morphological operations. (d) Safe frontier cells (red stars) on
merged map.



Sensors 2020, 20, 6270 13 of 23

Algorithm 4 New node initialization

Require: cell positions of one frontier segment cells_ f rontier, the current node’s ID idcur, a new

frontier node’s ID idnew

Ensure: nodeidnew , tridcur ,idnew

1: function INITIALIZE-NEW-NODE(cells_ f rontier, idcur, idnew)

2: [rm, cm]
T ← calculate_median_position (cells_ f rontier)

3:
[
rrep, crep

]T ← arg min
[p,q]T∈cells_ f rontier

∥∥∥(p− rm)
2 + (q− cm)

2
∥∥∥

4:
[
xrep, yrep

]T ← find_metric_position
([

rrep, crep
]T , gridmapcur

)
5: tridcur ,idnew ←

[
xrep, yrep, 0

]T

6: cellsidnew ← ∅

7: for all [p, q]T ∈ cells_ f rontier do

8: [x, y]T ← find_metric_position
(
[p, q]T , gridmapcur

)
9: cellsidnew ← cellsidnew ∪

{
[x, y]T

}
10: end for

11: nodeidnew ←
{

idnew, idcur, cellsidnew , 0, FALSE, FALSE, ∅
}

12: return
{

nodeidnew , tridcur ,idnew

}
13: end function

3.2. Updating Frontier-Graph Structure by Loop-Closing

We register new frontier nodes as child nodes to the frontier-graph structure when the robot
arrives at the previously unexplored node and detects safe frontier cells. We update the node and local
map DB if the SLAM algorithm corrects the edge information by loop-closing. The SLAM algorithm
deals with detecting the loop-closing event and the consequent state update, and is beyond the scope
of this paper. We focus on how to update the proposed frontier-graph structure after loop-closing.

There are two types of loop-closing events: induced loop-closing and accidental loop-closing.
Induced loop-closing is intentionally performed using the exploration algorithm to select the next target.
Accidental loop-closing is caused by the property of the local map-based approach, namely that
the robot only depends on adjacent local information to inspect the exploration state of the nodes,
whether explored or not. This is the case when the robot revisits the same node by chance. The robot
does not realize that the target node has already been explored or is very close to a previously
visited node.

In induced loop-closing from a child node to its parent node, the loop sequence is distinct. We can
obtain the node hierarchy from the frontier-graph, and the sequence is composed of the parent node
and explored child nodes, as follows:

nodeparent → nodechild1 → nodechild2 → · · · → nodechildn → nodeparent (6)

We can obtain the loop constraint from the edge information of the node DB, and the SLAM
algorithm optimizes and corrects the corresponding states according to the constraint. Based on the
corrected edge information, the local maps are merged into a larger map, and the loop nodes are
computed with respect to the parent node.

In accidental loop-closing, we first must find a sequence that is not composed of just a parent node
and its child nodes. To do this, we find a path from the revisited node (the start node) to the previous
node (the target node) using the edge information of the node DB and a shortest path algorithm for
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graphs, such as Dijkstra’s algorithm. This path, together with the current node, makes the following
loop sequence:

noderevisited → nodes1 → · · · → nodesn → nodeprevious → nodecurrent → noderevisited (7)

The edge between the current node and the revisited node is acquired from SLAM’s
loop-closure detection. We update the edge and local maps of the loop nodes in the same manner
as induced loop-closing. We also register the edges between the current and revisited nodes’
neighbor nodes.

Figure 4 shows the updated edges after accidental loop-closing. Considering the fact that the
current and revisited nodes are close to each other, it is reasonable to think that the current node and
the revisited node share the same parent and child nodes. In Figure 4, we generate the edge that
links the parent node (nodep2) of the current node (nodei′ ) and the revisited node (nodei). The parent
node (nodep1) of the revisited node and the current node are connected. Edges between the current
node and the revisited node’s children are created. Using this additional edge registration, two parts
that are distant from each other in the graph structure, but close together in the geometric structure,
will be connected.

Figure 4. Registering the edges between the current and revisited nodes’ neighbors in the frontier node
DB after accidental loop-closing.

4. Graph-Search-Based Exploration for Frontier-Graph Structure

One of the essential aspects of exploration is to efficiently select the next target according
to priority. We can recognize exploration priority by inspecting the exploration state and adjacency of
the frontier-graph structure’s nodes. We can induce a loop-closing event by going back to a previously
explored adjacent node or making the robot go to the nearest unexplored node by traversing the edges
of the graph.

In the BFS exploration, unexplored sibling nodes have a higher priority than child nodes [29].
If all sibling nodes have been explored and have local maps, the robot goes back to the parent node for
loop-closing. Until then, BFS exploration prefers to improve the accuracy and consistency between the
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registered nodes rather than add new nodes to expand the mapped area. However, the DFS selects
the nearest unexplored child node as the next target until the robot reaches a leaf node that has no
child nodes [28]. When new frontier nodes are not detected at the current node, the robot returns
to the parent node. This means that the number of nodes increases until we arrive at the leaf node.
In simple corridor environments with closed walls at both ends, the DFS performs efficiently because
the walls become leaf nodes. However, in complex or large environments, the efficiency of DFS-based
exploration depends on the loop-detection performance of SLAM. If no opportunity for accidental
loop-closing is detected, updating the node DB and merging the local maps are delayed, and there is a
higher probability of adding fake frontier nodes. This issue becomes severe where there is a structural
loop in the environment. The robot continuously adds new nodes while traveling multiple times
around the loop, until loop-closing occurs by chance. To efficiently manage the number of frontier
nodes according to the consecutive map merging from the beginning of the exploration process,
we improve BFS exploration in this paper.

The previous BFS exploration algorithm selects the nearest unexplored child node after exploring
the parent node, or selects the nearest unexplored sibling node before induced loop-closing to the
parent node, i.e., the shortest traveling distance plays a critical role in deciding the next target node.
In this paper, we applied the TSP solution to register new child nodes in Section 3.1.2. This is used to
find an efficient loop-closing sequence, and we improve BFS-based exploration using the loop-closing
sequence obtained from the solution to the TSP.

Algorithm 5 shows the improved BFS exploration using the solution to the TSP. First, the robot
inspects whether there are unexplored siblings or not (line 1) using the component f lagknown in the
node DB. If unexplored sibling nodes are recognized, the robot selects the next node from these.
At this time, among several unexplored siblings, the node next to the current node along the node
sequence obtained from the solution to the TSP is selected (line 3). If all siblings have been explored,
we consider the loop-closing state f lagloop−closing of the parent node. If loop-closing has not been
completed at the parent node, the robot goes to the parent node to close the loop composed of the
parent, current, and sibling nodes (lines 4 and 5). The fact that loop-closing has not been performed at
the current node means that there have not been sufficient measurements to make loop-constraints
between the current node and the child nodes. Therefore, the robot goes to one of the unexplored
child nodes to obtain measurements and local maps (line 7). Next, we check the loop-closing state
of the siblings and child nodes. The corresponding un-loop-closed node is selected as the next
target according to the solution of the TSP (lines 10–16). If loop-closing has been performed at all
adjacent nodes and all adjacent nodes’ local maps are merged, the robot goes to the nearest unexplored
node (line 20). When there is no unexplored node in the frontier-graph, the exploration process is
considered complete.

Algorithm 6 describes a method for finding the next target node of the reference/current node
from the TSP solution among adjacent nodes. Because we added new child nodes to the frontier-graph
DB in the order of the TSP solution, which makes a loop consisting of adjacent nodes, we can
determine the traveling priority between the adjacent nodes through each node’s ID. We arrange the
adjacent nodes, NodeTSP, in the ascending order of each node’s ID (line 2). Next, we find the position
of the reference node in the sorted array (line 3). The next target node of the TSP node sequence is at
the position next to the reference node. If the reference node’s position is the end of the array, the next
node is the first node of the array, because these compose the loop (lines 4–8).
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Algorithm 5 Breadth-first search (BFS) exploration to decide the next target node

Require: node DB Node, the current node’ ID idcur, local map DB Map
Ensure: the next target node nodenext

1: Nodeunexp_sibling ← find_unexplored_siblings (Node, idcur)

2: if Nodeunexp_sibling 6= ∅ then
3: nodenext ←FIND-NEXT-NODE-IN-TSP-SOLUTION

(
Nodeunexp_sibling, idcur

)
4: else if

(
f lagloop_closing ∈ nodeparent

)
= FALSE then

5: nodenext ← nodeparent

6: else if
(

f lagloop_closing ∈ nodecur

)
= FALSE then

7: Nodeunexp_child ← find_unexplored_child (Node, idcur)

8: nodenext ←FIND-NEXT-NODE-IN-TSP-SOLUTION
(

Nodeunexp_child, idcur

)
9: else

10: NodeunLC_sibling ← find_unLoopClosed_siblings (Node, idcur)

11: if NodeunLC_sibling 6= ∅ then
12: nodenext ←FIND-NEXT-NODE-IN-TSP-SOLUTION

(
NodeunLC_sibling, idcur

)
13: else
14: NodeunLC_child ← find_unLoopClosed_child (Node, idcur)

15: if NodeunLC_child 6= ∅ then
16: nodenext ←FIND-NEXT-NODE-IN-TSP-SOLUTION(NodeunLC_child, idcur)

17: else
18: Nodeunexp ← find_unexplored (Node)
19: if Nodeunexp 6= ∅ then
20: nodenext ← find_nearest

(
Nodeunexp, idcur

)
21: else
22: nodenext ← 0 . The exploration has been completed.

23: end if
24: end if
25: end if
26: end if

Algorithm 6 Next node selection in the solution to the traveling salesman problem (TSP)

Require: NodeTSP, the reference node’s ID idRe f

Ensure: nodenext

1: function FIND-NEXT-NODE-IN-TSP-SOLUTION(NodeTSP ∪ nodeRe f )

2: Nodeordered ← sort_node_ascend (NodeTSP)

3: posRe f ← find_node_position_in_node_array
(

Nodeordered, idRe f

)
4: if posRe f < N then . N: the number of components in Nodeordered

5: nodenext ←
[

posRe f + 1
]th

component of Nodeordered

6: else
7: nodenext ← the first component of Nodeordered

8: end if
9: return nodenext

10: end function
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5. Simulation Results

We simulated our BFS-based exploration algorithm to verify that it efficiently manages frontier
information and merges the local maps assigned to the frontier position from the root node, until the
robot has explored the whole environment. We compare BFS- and DFS-based exploration in terms of
the nodes’ state in the frontier-graph structure.

We used a publicly available cave-like environment [35] for this comparison. All the simulations
were performed in Matlab. We assumed that the robot has a laser range finder (LRF) that scans
in all directions (360◦) around the robot. We assume that the SLAM algorithm gives the robot’s
state in the global reference frame at every decision step in all simulations, because we focus on the
exploration method itself in this paper. However, we only use the SLAM global state to calculate
the relative transformation between the frontier nodes. Our local map-based exploration does not
depend on SLAM’s global information, and is performed using local information about the frontier
nodes, which will be merged incrementally as the exploration proceeds. To merge the local grid maps,
the overlapped regions are updated using Bayes’ rule [36]. Figure 5 shows the environment used
in the simulations. The robot started the exploration process at 80 different positions (blue dots) for
each exploration method. The starting positions were extracted by quadtree cell decomposition [37].
The size of the environment was 20 × 20 m, and it was simulated as a 500 × 500-pixel array. Each local
map was constructed using grid cells of 0.1 × 0.1 m size.
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Figure 5. The environment and 80 starting positions.

Figures 6 and 7 compare the results of the DFS- and BFS-based exploration. Tables 3 and 4 are
the corresponding statistical results. We compared both methods in terms of four criteria. The first is
the number of exploration (exp.) steps, which indicates how many steps/decisions were performed
until the entire environment had been mapped. The fewer exploration steps needed, the more efficient
the exploration method. Next, we compared the number of registered nodes in the frontier-graph
structure. Because the local map-based exploration continues its mapping process until there are no
unexplored frontier nodes in the graph, it is crucial to detect and register well-distributed frontier
nodes to cover the entire environment. If too many nodes have been registered to the graph, then there
are repetitive nodes at similar positions, which makes the exploration process inefficient. Active nodes
are the frontier nodes that have been actually explored/visited by the robot among the registered
frontier nodes of the frontier-graph structure. The number of active nodes is the same as the number
of local maps or measurements used for the entire mapping. The total travel distance is the sum of the
distance that the robot went along while traversing the shortest path between the current node and the
next node.
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Table 3. Simulation results for 4 m LRF in Figure 6.

DFS Exp. BFS Exp.

Min. Avg. (Std.) Max. Min. Avg. (Std.) Max.

# of exp. steps 46 128.4 (85.9) 663 44 55.6 (10.4) 115

# of frontier nodes 62 143.9 (72.5) 555 23 29.9 (4.5) 53

# of active nodes 36 80.9 (41.1) 332 19 21.5 (3.0) 38

Travel distance (cells) 1929 4401.8 (2754.8) 22278 1173 1500.3 (258.4) 2852

Table 4. Simulation results for 8 m LRF in Figure 7.

DFS Exp. BFS Exp.

Min. Avg. (Std.) Max. Min. Avg. (Std.) Max.

# of exp. steps 42 78.3 (35.3) 267 15 23.7 (5.2) 47

# of frontier nodes 95 194.9 (74.2) 466 19 26.3 (3.9) 47

# of active nodes 31 55.6 (18.6) 135 8 11.0 (1.7) 20

Travel distance (cells) 1617 3142.4 (1054.8) 7203 809 1082.8 (139.2) 1383
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Figure 6. Simulation results. Maximum range of the LRF is 4 m: (a) Number of exploration steps
until the exploration is completed. (b) Total number of registered frontier nodes in the frontier-graph.
(c) Number of active nodes. (d) Total traveling distance.

As shown in Figures 6 and 7, almost every value for BFS exploration is lower than the
corresponding value for DFS exploration, except in very few simulations. The difference between the
BFS’s results and the DFS’s results was larger in the case of 8 m LRF than 4 m LRF. Moreover, BFS is
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more stable than DFS for different starting positions. This means that the efficiency of DFS exploration
is critically affected by where the robot starts its exploration process. This is because the local map
merging by loop-closing is delayed until the leaf node and multiple frontier nodes can be detected at a
similar position in the DFS exploration. The environment is not a simple corridor, which made the
exploration inefficient before the accidental loop-closing event.

Tables 3 and 4 explicitly show the effects of varying the starting position for each method.
The ratio of the maximum value to the minimum value ranges from 9.0 to 14.4 in the case of
DFS-based exploration with 4 m LRF. The DFS exploration’s maximum travel distance is extremely
high, 22,278 cells. However, the ratio of the maximum value to the minimum value ranges from 2.0 to
2.6 in the case of BFS. this is relatively low compared to that of DFS-based exploration. In the case of
the results from 8 m LRF, the maximum-minimum ratio is in the range 4.4–6.4 for DFS, while it is in
the range 1.7–3.1 for BFS.
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Figure 7. Simulation results. Maximum range of the LRF is 8 m: (a) Number of exploration steps
until completion of exploration. (b) Total number of registered frontier nodes in the frontier-graph.
(c) Number of active nodes. (d) Total traveling distance.

The robustness of the BFS exploration is validated based on the standard deviation (SD). The SD
of the DFS exploration is much higher than that of the BFS exploration. Because the DFS results
are very different for each simulation, we need to select the starting position very carefully to use
DFS for exploration. However, this does not coincide with the general mapping assumption or
situation, in which the process starts in an unknown environment. The SD of the BFS exploration
is low, which implies that we can efficiently explore the environment from any starting position
using BFS-based exploration. The local maps of the frontier nodes are systematically merged from
the root node, and the merged map is critical for deciding whether each locally detected frontier
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cell is valuable or not. This prevents a fake frontier region in the local map being registered to the
frontier-graph as an exploration target. Therefore, BFS-based exploration proceeds under a stable
graph structure, in terms of the number of frontier nodes.

Figure 8 shows the resulting frontier-graph structure. The numbers indicate the ID of each
frontier node, and ID-1 is the root node and starting position. The starting positions are the same in
both simulations. The red lines show the edges between the parent and child nodes. The dotted green
lines indicate the edges between sibling nodes. The blue circles are the active frontier nodes, at which
the robot arrived and obtained local maps. The white circles are the nodes that were registered to
the frontier-graph, but the robot did not visit. In both results, the entire environment is represented
by well-distributed frontier nodes and edges between them. We also carried out simulations using
another benchmark environment, Freiburg 079 building [35]. This environment is composed of a
corridor and several rooms, and its size is 40 × 13.8 m. The 4 m LRF was used, and the grid map was
constructed from 0.07× 0.07 m grid cells. We can see that the frontier nodes are distributed throughout
the environment in Figure 9.
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Figure 8. Resulting frontier-graph structure on the final grid map by the BFS exploration. The number
is the ID of each frontier node. Red lines are edges between the parent and child nodes. Dotted green
lines are edges between sibling nodes. Blue circles are active nodes, and white circles are inactive nodes:
(a) Frontier-graph from 4 m LRF. (b) Frontier-graph from 8 m LRF.
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Figure 9. Frontier-graph structure on the final grid map obtained from BFS exploration. The numbers
indicate the ID of each frontier node. Red lines are edges between the parent and child nodes.
Dotted green lines are edges between sibling nodes. Blue circles are active nodes, and white circles are
inactive nodes.
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6. Conclusions

This paper describes a graph search-based exploration method using frontier detection
and segmentation. The proposed method can overcome the difficulty of updating a single global
grid map that depends on the exploration state or SLAM in conventional exploration methods.
The detected frontier segments on each local grid map and their relative transformations constitute
a frontier-graph structure. Because the frontier-graph structure systematically contains the frontier
information for the growing map, the robot can gradually construct a map of its environment by
traveling along the edges between the frontier nodes.

To select the next exploration target from adjacent frontier nodes, we applied BFS-based
exploration that induces incremental map merging by loop-closing from the root node, which is the
starting position. Because the proposed method uses only adjacent local information to detect frontiers,
BFS is more efficient for exploration than DFS. We verified that BFS-based exploration could achieve
more stable results, regardless of the starting position, than DFS-based exploration by carrying out
simulations using benchmark environments. Therefore, we can efficiently map unknown environments
using the proposed BFS-based exploration method with a frontier-graph structure.

In this paper, we assumed the robot could obtain range measurement in all 360◦ directions.
The field of view of sensors definitely affects exploration efficiency. The reduced field of view sensors
can be used for the proposed approach, but the travel distance and the number of active nodes
may increase. Taking into account the sensing coverage according to the robot’s orientation will be a
valuable future work for a wide range of practical applications.
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