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Low-density lipoprotein receptor-related protein 8 facilitates the proliferation 
and invasion of non-small cell lung cancer cells by regulating the Wnt/β-catenin 
signaling pathway
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ABSTRACT
Low-density lipoprotein receptor-related protein 8 (LRP8) is involved in the development of 
multiple tumors, including lung cancer. However, the exact mechanism by which LRP8 exerts its 
oncogenic role in non-small cell lung cancer (NSCLC) remains elusive. Hence, in this study, we 
aimed to unravel the expression and role of LRP8 in the progression of NSCLC. We used online 
bioinformatics databases to identify the expression of LRP8 in multiple types of lung cancer. We 
validated LRP8 expression in NSCLC cell lines and tissues by Western blotting and immunohis-
tochemistry. The functions of LRP8 in NSCLC carcinogenesis and progression were determined 
using in vitro and in vivo systems. The Wnt pathway activator LiCl was further used to validate the 
regulatory role of LRP8 in Wnt/β-catenin signaling. We demonstrated that LRP8 was markedly 
overexpressed in NSCLC tissues and cell lines, and its overexpression significantly correlated with 
poor clinicopathological characteristics and prognosis. Moreover, LRP8 depletion suppressed cell 
proliferation, migration, invasion, and epithelial-mesenchymal transition in vitro and impeded 
tumor growth in vivo. Mechanistically, LPR8 knockdown elicited tumor-suppressive functions by 
suppressing the Wnt/β-catenin pathway, which was partially reversed by LiCl. Hence, our study 
revealed that LRP8 facilitates NSCLC cell proliferation and invasion via the Wnt/β-catenin pathway, 
and thus LRP8 could be a novel therapeutic target for NSCLC.
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Introduction

Non-small cell lung cancer (NSCLC) is among the 
most common cancers worldwide. It accounts for 

85% of lung cancers and has led to millions of 
cancer-related deaths [1]. Despite significant 
advancements in the diagnosis and treatment of 
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NSCLC over the past two decades, the overall 
survival rates are still low, especially in patients 
in whom the cancer has metastasized [2,3]. 
Therefore, it is imperative to explore promising 
novel targets to improve the survival of patients 
with NSCLC.

Low-density lipoprotein receptor-related pro-
tein 8 (LRP8), also known as apolipoprotein 
E receptor 2 (ApoER2), is a member of the low- 
density lipoprotein receptor (LDLR) family and is 
involved in signal transduction and specific ligand 
endocytosis [4]. Since its first identification in the 
brain regulating the cholesterol transport protein 
apolipoprotein E (ApoE), LRP8 has been found to 
be involved in numerous pathological or physio-
logical processes [5–7]. In addition, LRP8 pro-
motes the tumorigenesis and progression of 
several cancers, such as melanoma, gastric cancer, 
and prostate cancer [8–12]. Via a genome-wide 
CRISPR activation screening, Cai et al. [13] 
found that LRP8 is responsible for the resistance 
of hepatocellular carcinoma cells to sorafenib. 
Moreover, the ApoE2-LRP8 axis is critical for 
modulating pancreatic cancer cell proliferation 
and cell cycle progression [14]. However, the func-
tion and mechanism of LRP8 in NSCLC remain 
unknown.

The Wnt signal transduction pathway is 
a canonical pathway whose aberration in human 
tumor cells makes the cells susceptible to metastasis 
and adhesion by mediating the epithelial-to- 
mesenchymal transition (EMT) [15,16]. Based on 
the canonical Wnt signaling pathway hypothesis, 
the pathway is activated only when β-catenin accu-
mulates and translocates to the nucleus after receiv-
ing a Wnt ligand stimulation, which forms 
a complex with LRP [17]. Alterations in the Wnt/β- 
catenin pathway contribute to multiple cancers, 
including osteosarcoma and NSCLC [18,19]. LRP8 
also modulates osteoblast differentiation and 
mineralization by diminishing Wnt pathway activa-
tion [20]. Moreover, Lin et al. reported that deletion 
of LRP8 sensitizes triple negative breast cancer cells 
to chemotherapy [21]. However, whether LRP8 has 
a cancer-promoting role in NSCLC via Wnt/β- 
catenin signaling has not been reported.

In the present study, we aimed to understand 
whether LRP8 is involved in NSCLC and the 
mechanism behind its function. We found a high 

expression of LRP8 in NSCLC cells and tissues, 
and its overexpression was associated with poor 
prognosis in NSCLC patients. Moreover, LRP8 
promoted the proliferation, migration, invasion, 
and EMT of NSCLC cells. Mechanistically, LRP8 
accelerated the progression of NSCLC by modulat-
ing the Wnt/β-catenin signaling pathway. We 
believe that targeting LRP8 may be a new avenue 
to prevent the development of NSCLC.

Materials and methods

Tissue specimens

Sixty paired paraffin-embedded NSCLC tissues and 
adjacent normal tissues were obtained from patients 
with primary NSCLC diagnosed between June 2014 
and June 2018 at the First Affiliated Hospital of 
Nanchang University (Nanchang, China). The clin-
ical information of the patients is summarized in 
Table 1. This study has been approved by the 
Medical Research Ethics Committee of the First 
Affiliated Hospital of Nanchang University. All 
patients who participated in this study signed the 
written informed consent form.

Immunohistochemistry (IHC)

IHC assay was performed as previously described 
[22]. Briefly, the paraffin-embedded sections were 
deparaffinized with xylene for 30 min and rehy-
drated in graded ethanol. Subsequently, antigen 
retrieval was performed using citrate buffer (pH 
6.0) at a high temperature. The sections were 
blocked with goat serum at 37°C for 1 h, followed 
by incubation with primary antibody against LRP8 
(Abclonal, China) at dilution of 1:200 at 4°C over-
night and goat anti-rabbit secondary antibody 
(Abcam, USA) for 30 min at 37°C. The sections 
were then stained with diaminobenzobutyl and 
hematoxylin. All the sections were blindly and 
independently evaluated and scored by two experi-
enced pathologists. The staining index criteria 
were based on a previous study [23].

Cell lines and cell culture

The cell lines used in our study, including human 
NSCLC cell lines (95-D, H1299, H460, HCC-827, 

6808 Z. FANG ET AL.



A549, PC-9, and H1975) and human normal bron-
chial epithelioid cells (HBE) (Procell Life Science 
and Technology, Wuhan, China), were cultured in 
Roswell Park Memorial Institute 1640 (RPMI- 
1640) medium containing 10% fetal bovine 
serum (Biological, Kibbutz Beit Haemek, Israel) 
with penicillin and streptomycin and incubated 
in an environment with 5% CO2 at 37°C.

Cell transfection

To knock down LRP8 in NSCLC cells, two small 
interfering RNAs (siRNAs), scrambled short- 
hairpin RNA (shRNA) and matched negative con-
trols purchased from GenePharm (Shanghai, 
China) were transfected into NSCLC cells. The 
LRP8 overexpression plasmid or an empty vector 
(GenePharm) was used to upregulate the expres-
sion of LRP8. The NSCLC cells were seeded in 
6-well plates and transfected with the plasmids 
via the TurboFect transfection reagent (Thermo 
Fischer Scientific, USA) when the cell confluency 
reached 50–70%. After incubation for 48 h, the 
cells were harvested for further experiments. The 
sequences of the LRP8 siRNAs used in this study 
were as follows: LRP8-Homo-1082, 5′- 

CGCGACUGCAAAGACAAAUTT-3′; LRP8- 
Homo-1642, 5′-CUCCUACCGUAAGAUCUA 
UTT-3′.

Western blotting analysis

The tissues and cells were subjected to protein iso-
lation after lysis in RIPA buffer (Applygen Tech 
Inc., China) containing 1% protease/phosphatase 
inhibitor. Then, a 10% ExpressCast PAGE Gel 
Preparation Kit (New Cell and Molecular Biotech, 
China) was used to separate the proteins. The poly-
vinylidene difluoride membranes were used for pro-
teins transfer, and the membranes were then 
blocked with 5% milk. Subsequently, antibodies 
against LRP8 (NB100-2216, Novus Biologicals, 
USA), GAPDH (60,004-1-Ig; Proteintech, USA), β- 
catenin (8480s, Cell Signaling Technology, USA), 
c-Myc (5605s, Cell Signaling Technology), cyclin 
D1 (2978s, Cell Signaling Technology), E-cadherin 
(ab1416; Abcam), N-cadherin (ab98952, Abcam), 
and vimentin (5741s, Cell Signaling Technology) 
were used to incubate the membranes overnight. 
The bands were observed and analyzed using the 
chemiluminescence reagent (Proteintech) after 1 h 
incubation with the corresponding secondary anti-
bodies (Proteintech).

Cell counting Kit-8 (CCK8) assay

Briefly, the transfected cells were seeded into a 96- 
well plate at a density of 2 × 103 cells per well. 
Then, 10 µL CCK8 solution (Glpbio, California, 
USA) was added into the wells with 100 µL of 
complete medium and incubated for 30 min. The 
proliferation of NSCLC cells was measured and 
evaluated at 450 nm for four consecutive days.

Colony formation assay

At 48 h after transfection, approximately 500 cells 
were seeded into 6-well plates and cultured in 
a fresh medium for 12 days. Then, 4% paraformal-
dehyde and crystal violet were used to fix and stain 
the colonies, respectively. Finally, the colonies 
were quantified.

Table 1. The relationship between LRP8 and clinical factors of 
NSCLC patients.

LRP8 expression

Parameters n = 60 Low (18) High (42) p-value

Gender
Male 30 11 19 0.260
Female 30 7 23

Age(y)
≤60 34 10 24 0.909
>60 26 8 18

Differentiation
Poor 35 9 26 0.391
Moderate/well 25 9 16

Tumor size (cm)
≤4 23 11 12 0.018
>4 37 7 30

TNM stage
I + II 31 13 18 0.037
III + IV 29 5 24

T stage
pT1 + pT2 40 16 24 0.019
pT3 + pT4 20 2 18

Lymph node status
N0 25 12 13 0.010
N1 + N2+ N3 35 6 29

Total 60 18 42
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Transwell assay

Transwell migration and invasion assays were 
carried out as previously described [24]. After 
transfection with si-LRP8 or LRP8 plasmid for 
48 h, the collected cells were resuspended in 
a serum-free medium. Then, 200 µL serum-free 
medium containing 3 × 104 cells were added to 
the transwell upper chamber coated with 60 µL 
Matrigel (Corning, USA) for the invasion assay 
and without the Matrigel for the migration 
assay. The lower chamber was filled with 
600 µL of complete medium for both assays. 
After incubation for 24 h, the cells that invaded 
or migrated to the bottom surface of the upper 
compartment were fixed and stained with 4% 
paraformaldehyde and crystal violet, respectively. 
The cells were imaged and counted under 
a microscope.

Mouse xenograft tumor growth assay

Ten five-week-old female nude mice purchased 
from Hangzhou Ziyuan Laboratory Animal 
Technology Company (Hangzhou, China) were 
randomly divided into two groups. The H460 
cells transfected with the lentiviral vector con-
taining LRP8 shRNA (Lv-sh-LRP8) or negative 
control (Lv-sh-Con) (Genechem, China) were 
screened using puromycin to obtain stable cell 
lines. The assay was performed as described in 
our previous study [25]. We subcutaneously 
injected 1 × 107 steady H460 cells of sh-LRP8 
and sh-Con groups into the left axillary skin of 
nude mice. The volume and weight of the 
tumors in the two groups were measured and 
recorded every week for four consecutive weeks. 
The volume was calculated as follows: 
volume = (length × width2)/2 (mm3). The mice 
were euthanized, and the tumors were harvested 
for further study. All experiments involving ani-
mals were approved by the institutional research 
ethics committee.

Statistical analysis

All experiments involved in our study were 
repeated at least thrice. The data were analyzed 
using the SPSS software (version 26.0; SPSS Inc., 

Chicago, IL, USA) and presented as mean ± stan-
dard deviation (SD). The differences between 
groups were distinguished by the two-tailed 
Student’s t-test or the χ2 test. The Kaplan–Meier 
method was used to confirm the overall survival 
rate of NSCLC patients recruited in our study. 
Statistical significance was set at p < 0.05.

Result

LRP8 is associated with the poor prognosis of 
NSCLC patients

The expression of LRP8 in the two most prevalent 
types of NSCLC, lung adenocarcinoma (LUAD) and 
lung squamous cell carcinoma (LUSC), and adjacent 
normal lung tissues were evaluated by bioinfor-
matics analysis [26]. The Tumor IMmune 
Estimation Resource (TIMER) database (https://cis 
trome.shinyapps.io/timer/) showed that LRP8 was 
highly expressed in various tumor tissues, including 
NSCLC (Figure 1(a)) [27]. Similarly, data obtained 
from StarBase3.0 (http://starbase.sysu.edu.cn/) 
revealed that LRP8 was elevated in LUAD and 
LUSC compared to normal tissues (Figures 1(b) 
and (c)) [28]. Subsequently, IHC analysis showed 
that the expression of LRP8 was remarkably higher 
in most of the NSCLC cell lines, especially in H460 
and H1299 than in HBE normal cells (Figure 1(d)). 
In addition, IHC analysis of the 60 paired NSCLC 
tissues and their adjacent normal tissues demon-
strated a high level of LRP8 in the cytoplasm of 
the NSCLC tissues than that of the non-cancerous 
tissues (Figure 1(e)). We classified 70% (42/60) of 
NSCLC tissues and 40% (24/60) of paired normal 
tissues as having high LRP8 expression (p < 0.001, 
Figure 1(f)). Furthermore, the Kaplan–Meier curve 
analysis revealed that the increased expression of 
LRP8 was related to a poorer prognosis in patients 
with NSCLC (Figure 1(g)).

LRP8 promoted NSCLC proliferation in vitro

To explore the role of LRP8 in NSCLC cell viabi-
lity in vitro, we performed the CCK8 and colony 
formation assays. After transfecting plasmids into 
NSCLC cells, the plasmids showed a high transfec-
tion efficiency, as reflected by a significantly 
decreased LRP8 expression in the LRP8 siRNA 
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groups in H1299 and H460 cells, and significantly 
increased LRP8 expression in the LRP8 overex-
pression group in H1975 cells (Figures 2(a) and 
(d)). The CCK8 assay showed that silencing LRP8 

lowered the cell viability in both H1299 and H460 
cells (Figure 2(b)). In contrast, LRP8 overexpres-
sion in H1975 cells promoted proliferation 
(Figure 2(e)). Similarly, colony formation assays 

Figure 1. LRP8 is related to the poor prognosis of NSCLC patients. (a–c) Expression of LRP8 in NSCLC tissues as analyzed by TIMER 
and StarBase3.0 databases. (d) Western blotting assays to detect the expression of LRP8 in seven NSCLC cell lines and the normal 
bronchial epithelioid cells. (e) Immunohistochemistry staining of two representative cases showing the expression and location of 
LRP8 in NSCLC tissues. (f) Four-grid table showing the statistical difference of LRP8 level between tumor tissues and normal adjacent 
tissues. (g) Kaplan–Meier curve based on LRP8 expression in 60 NSCLC patients (log-rank test, p < 0.05). n.s, no significant difference, 
*p < 0.05, **p < 0.01. At least three independent biological experiments were repeated, and the data were presented as mean ± SD.
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revealed that the number of colonies significantly 
reduced in H460 and H1299 cells transfected with 
LRP8 siRNA and significantly increased in H1975 
cells transfected with the LRP8 plasmid compared 
to the corresponding negative control group 
(Figures 2(c) and (f)). In summary, the expression 
of LRP8 positively correlated with NSCLC cell 
proliferation in vitro.

LRP8 enhanced the metastasis of NSCLC cells

We performed transwell assays to evaluate the role 
of LRP8 in the migration and invasion of NSCLC 
cells. Suppressing LRP8 decreased the migration 
and invasion abilities of both H460 and H1299 
cells (Figure 3(a)). In contrast, enhanced expres-
sion of LRP8 was accompanied by increased 
migration and invasion of H1975 cells (Figure 3 

(b)). Concordantly, Western blotting revealed the 
downregulation of N-cadherin and vimentin and 
upregulation of E-cadherin in the LRP8-depleted 
H460 and H1299 cells (Figure 3(c)). However, 
ectopically elevated LRP8 expression elicited the 
opposite effects (Figure 3(d)).

LRP8 regulated the development and metastasis 
of NSCLC via the Wnt/β-catenin signaling 
pathway

Previous studies have reported that dysregulation 
of the Wnt/β-catenin signaling pathway is respon-
sible for NSCLC tumorigenesis and progression 
[29,30]. Moreover, Kureel et al. [31] illustrated 
that LRP8 could increase osteoblast differentiation 
by activating the Wnt/β-catenin pathway. 
However, the correlation between LRP8 and the 

Figure 2. LRP8 promoted NSCLC proliferation in vitro. Western blotting experiments were conducted to validate the transfection 
efficiency of LRP8 siRNA in H460 and H1299 (a) and LRP8 overexpression plasmid in H1975 (d). CCK-8 assay was used to evaluate the 
proliferation ability of H460 and H1299 cells transfected with LRP8 siRNAs (b) and H1975 cells with LRP8 plasmid (e). (c) Colony 
formation analysis showing differences in H1299 and H460 cell proliferation among the three groups. (f) H1975 cell viability was 
measured using colony formation analysis. **p < 0.01. All experiments were performed independently at least three times, and the 
results were presented as mean ± SD.

6812 Z. FANG ET AL.



Wnt/β-catenin signaling pathway in NSCLC cells 
remains to be elucidated. As clearly illustrated in 
Figure 4(a), LRP8 deficiency reduced the down-
stream molecules of the Wnt/β-catenin pathway, 
including β-catenin, c-Myc, and cyclin D1, in 
H460 and H1299 cells. Conversely, overexpression 
of LRP8 dramatically elevated the levels of core 
components of the Wnt/β-catenin pathway in 
H1975 cells (Figure 4(b)). Hence, LRP8 positively 
modulated the Wnt/β-catenin signaling pathway. 
To further investigate whether LRP8 affected 
NSCLC cell proliferation and metastasis via the 
Wnt/β-catenin pathway, we used lithium chloride 
(LiCl), an activator of Wnt signaling [32]. The 
CCK-8 assay showed that the proliferation of 
H460 and H1299 cells treated with LRP8 siRNA 
together with LiCl were partly rescued compared 
to the cells treated with the LRP8 siRNA group 
alone (Figure 4(c)). Similarly, colony formation 
analysis revealed that the decline in cell viability 
induced by LRP8 knockdown was partially rescued 
by LiCl (Figure 4(d)). In addition, the reduced 
migration and invasion caused by LRP8 silencing 
could be partially abrogated by LiCl treatment in 
NSCLC cells (Figure 4(e)). Furthermore, the 

decrease of N-cadherin and vimentin and the 
increase of E-cadherin in the LRP8 siRNA group 
of H460 and H1299 cells were reversed by LiCl 
(Figure 4(f)). Interestingly, we also observed that 
changes in Wnt/β-catenin pathway-related pro-
teins (β-catenin, c-Myc, and cyclin D1) caused by 
LRP8 knockdown could be recovered by LiCl 
(Figure 4(g)).

Knockdown of LRP8 inhibited tumor growth 
in vivo

To evaluate the role of LRP8 in vivo, a nude mouse 
xenograft model was established. H460 cells trans-
fected with Lv-sh-LRP8 or scramble negative con-
trol were amplified and injected subcutaneously 
into the left armpits of nude mice. The tumor 
mass was obtained carefully and imaged after a 28- 
day feed (Figure 5(a)). The volume and weight of 
tumors in the Lv-sh-LRP8 group were lower than 
those in the control group (Figures 5(b) and (c)). 
Additionally, compared to the control group, the 
expression of β-catenin, c-Myc, and cyclin D1 was 
reduced in the tumors obtained from the LRP8 
knockdown group (Figure 5(d)). In summary, 

Figure 3. LRP8 enhanced the metastasis of NSCLC cells. (a) Transwell analysis was performed to compare the metastasis potential in 
the LRP8 knockdown group. (b) H1975 cells migration and invasion capability were detected by transwell assays. The expression of 
proteins related to metastasis in H1299 and H460 cells (c) and H1975 cells (d) were detected by Western blotting. **p < 0.01. At least 
three replicate experiments were performed, and the final results were presented as mean ± SD.
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LRP8 promoted tumor growth by modulating 
Wnt/β-catenin signaling in vivo, consistent with 
the in vitro results.

Discussion

In this study, we explored the effects of LRP8 on 
NSCLC and its underlying molecular mechanisms. 

Figure 4. LRP8 motivated NSCLC cells development and metastasis via the Wnt/β-catenin signaling pathway. (a) Expression of Wnt/ 
β-catenin signaling components after silencing LRP8 as detected by Western blotting assays. (b) Expression of Wnt/β-catenin 
signaling-related factors in overexpression LRP8 group of H1975 cells. CCK-8 assay (c) and colony formation analysis (d) were carried 
out to evaluate the proliferation abilities of H1299 and H460 cells transfected with LRP8 siRNA or negative vector or LiCl and LRP8 
siRNA. (e) Invasion and migration of H1299 and H460 cells after LRP8 downregulation and LiCl addition as detected by Transwell 
assay. (f) Western blotting analysis for E-cadherin, Vimentin, and N-cadherin to detect the effect of LiCl in LRP8 knockdown. (g) 
Western blotting assays were performed to elaborate the role of LiCl in Wnt/β-catenin signaling-related factors induced by LRP8 
silencing. **p < 0.01. Each experiment was repeated in three independent trials, and mean ± SD was used to describe the results.
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LRP8 was overexpressed and correlated with dis-
ease prognosis in patients with NSCLC. Moreover, 
LRP8 facilitated cell proliferation and invasion by 
activating the Wnt/β-catenin pathway. Therefore, 
LRP8 serves as a positive regulator of the Wnt/β- 
catenin signaling pathway, thereby representing 
a potential therapeutic target for NSCLC 
treatment.

Previous studies have reported that LDLR greatly 
contributes to the development of several human 
cancers [8,33]. In early 2014, Deng et al. [34] con-
firmed a positive association between LRP6 and 
NSCLC among the Chinese population via time-of- 
flight mass spectrometry. Subsequently, the critical 
role of LRP5/6 in lung cancer progression has also 
been documented [35,36]. Consistent with the 
above observations of the Wnt signaling coreceptor 
LRP5/6, LRP8 was also identified as a target of miR- 
30b-5p in lung cancer progression and cisplatin 
resistance [37]. Nevertheless, few studies have 
described the biological functions and mechanisms 

of LRP8 in NSCLC. However, in contrast to those 
studies [38], this is the first study to identify that 
a higher LRP8 expression significantly correlated 
with the poor prognosis of NSCLC patients. 
Moreover, LRP8 silencing suppressed cell prolifera-
tion and invasion of NSCLC cells, further implying 
that LRP8 is a candidate oncogene in NSCLC 
patients.

Numerous studies have demonstrated that the 
Wnt/β-catenin signaling pathway is responsible for 
the migration and metastasis of cancer cells, 
mediated by the estrogen receptor/NOD-like recep-
tor-LRP8 axis in colon cancer [39,40]. Further, 
LRP8 depletion reduces breast cancer stem cells 
and inhibits EMT by regulating the Wnt/β-catenin 
signaling pathway in triple-negative breast cancer 
[21]. Therefore, we speculated that LRP8 might play 
a profound role in NSCLC cells by regulating the 
Wnt/β-catenin signaling. Mechanistically, our data 
demonstrated that silencing LRP8 attenuated cell 
proliferation, invasion, and EMT via the Wnt/β- 

Figure 5. Knockdown of LRP8 inhibited tumor growth in vivo. (a) The pictures of nude mice injected with Lv-sh-LRP8 and 
corresponding control and the tumors formed after 28-day feeding. (b–c) Tumor volumes and weights were calculated between 
the two groups. (d) Western blotting experiments detecting the expression of Wnt/β-catenin signaling components and LRP8 
expression in subcutaneous tumors. **p < 0.01. Three independent trials in each experiment were needed, and the data were 
presented as mean ± SD.
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catenin signaling. In contrast, enhancing LRP8 
expression exerted the opposite effect. More intri-
guingly, rescue assays performed using LiCl, a Wnt 
pathway activator, showed that LiCl partially res-
cued the weakened cell proliferation, invasion, and 
migration induced by LRP8 knockdown. This result 
agrees with previous studies that have reported that 
activated Wnt/β-catenin signaling facilitates tumor 
growth and E-cadherin production in meningioma 
development and lung cancer [39]. In summary, 
our data revealed an oncogenic role of LRP8 in 
NSCLC by orchestrating the Wnt/β-catenin 
signaling.

However, the exact mechanisms by which LRP8 
modulates Wnt/β-catenin signaling remain 
unknown. LRP8 stimulates Wnt/β-catenin signal-
ing by suppressing Axin2 transcription, thereby 
controlling osteoblast differentiation [20]. 
Moreover, LRP8 triggers the phosphorylation of 
the cytoplasmic adaptor protein Disabled-1 to 
inactivate glycogen kinase 3-beta, subsequently 
activating the Wnt/β-catenin pathway [41,42]. 
Thus, we hypothesize that LRP8 may promote 
the activation of Wnt signaling via different reg-
ulatory mechanisms. Future studies are needed to 
unravel the exact mechanisms of how LRP8 reg-
ulates the Wnt/β-catenin signaling in NSCLC.

Conclusion

In conclusion, our study provides evidence that 
LRP8 contributes to NSCLC cell proliferation and 
invasion by orchestrating the Wnt/β-catenin sig-
naling pathway. Our results highlight that the 
LRP8-Wnt/β-catenin axis could be a potential 
prognostic avenue for NSCLC therapy.

Highlights

● LRP8 is upregulated in NSCLC cells.
● LRP8 significantly correlates with cancer pro-

gression in NSCLC patients.
● LRP8 promotes cell proliferation, invasion, 

and EMT of NSCLC cells.

LRP8 functions as an oncogene by activating the Wnt/β- 
catenin pathway.
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