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Abstract: Manual monitoring of animal behavior is time-consuming and prone to bias. An alternative
to such limitations is using computational resources in behavioral assessments, such as tracking
systems, to facilitate accurate and long-term evaluations. There is a demand for robust software
that addresses analysis in heterogeneous environments (such as in field conditions) and evaluates
multiple individuals in groups while maintaining their identities. The Ethoflow software was de-
veloped using computer vision and artificial intelligence (AI) tools to monitor various behavioral
parameters automatically. An object detection algorithm based on instance segmentation was imple-
mented, allowing behavior monitoring in the field under heterogeneous environments. Moreover, a
convolutional neural network was implemented to assess complex behaviors expanding behavior
analyses’ possibilities. The heuristics used to generate training data for the AI models automatically
are described, and the models trained with these datasets exhibited high accuracy in detecting indi-
viduals in heterogeneous environments and assessing complex behavior. Ethoflow was employed
for kinematic assessments and to detect trophallaxis in social bees. The software was developed in
desktop applications and had a graphical user interface. In the Ethoflow algorithm, the processing
with AI is separate from the other modules, facilitating measurements on an ordinary computer
and complex behavior assessing on machines with graphics processing units. Ethoflow is a useful
support tool for applications in biology and related fields.

Keywords: animal monitoring; convolutional neural networks; deep learning; machine learning;
object detection; tracking

1. Introduction

Behavioral studies are critical to understanding the fundamental aspects of animal
ecology [1,2]. The assessment of animal behavior by visual inspection is limited and
subjective and does not allow observations over long periods [3]. The use of computational
tools in behavioral assessments allows accurate and long-term evaluations of animals [2,4].
For instance, automatic tracking systems obtain the animal’s position in each frame of a
digital video and record the Cartesian or polar coordinates of the movement [5].

From animals’ coordinates over time is possible to calculate important kinematic
measurements (e.g., the animal walked distance and meandering). Furthermore, evaluating
complex behaviors (measurements based on characteristics extracted from specific animal
behaviors) can provide relevant insights into animal biology. For example, the evaluation
of complex behaviors among social insects, such as changes in trophallaxis (the complex
social behavior of food exchange among nestmates), is important for understanding their
response to stress agents such as pesticides [6,7].
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Robust systems are needed for animal monitoring in heterogeneous environments (i.e.,
complex environmental landscapes such as in the field or multi-scenes with variation in
color, luminosity, texture, and different objects) [2]. The greatest challenge in heterogeneous
environments involves extracting target objects from the background (segmentation) [8].
Background subtraction or thresholding are well-established in digital image processing
for object segmentation [5]. However, these approaches require video recordings of homo-
geneous environments (i.e., with similar pixel values or slight variation in color, luminosity,
and texture) and are not applicable in heterogeneous environments.

Using artificial intelligence (AI) technics such as machine and deep learning can be
sufficiently robust for animal behavior assessments in heterogeneous environments [9].
Convolutional neural networks (CNNs) are deep learning models widely used in computer
vision [10]. These models are organized into layers composed of several neurons and
convolutional kernels/filters with learnable weights. The CNNs comprise two basic
parts: a convolutional base and a densely connected classifier. In the convolutional base,
operations (convolutions) decompose the input in abstract and useful information (feature
extraction) for classification in dense layers. Thus, the convolutional base’s function is
finding appropriate representations (feature map) for the classification in the dense layers,
where the feature map undergoes successive nonlinear operations to obtain the predictions.
The learning process of neural networks consists of updating the network parameters in
the opposite direction of the cost function gradient, reducing the loss, until finding optimal
parameters that result in a minimal loss (i.e., minimal difference between the expected
value and the predicted value) [10].

Given the potential application of AI and the demand for studying animal behavior in
natural conditions [2], we developed the open-source desktop software Ethoflow. In the
software algorithm, (i) we used unsupervised machine learning to provides an optimal
identity assignment and maintain the identity among individuals in animal group tracking.
Using deep learning, (ii) we implemented instance segmentation for animal monitoring
in heterogeneous environments. Moreover, (iii) deep learning was applied to recognize
animal complex behaviors. Besides, (iv) we performed bioassays with two species of
eusocial bees to validate Ethoflow. Finally, (v) we evaluated parameters associated with
Ethoflow’s performance. Thus, the proposed software:

• has a graphical user interface (GUI) and has already been successfully applied in other
studies [11,12];

• performs animal tracking in homogeneous or heterogeneous environments;
• can maintain the identity among individuals in animal group tracking;
• evaluates various kinematic variables (e.g., mean speed, turning angle, and group interaction);
• supports complex behavior assessment (e.g., mating, grooming, and trophallaxis).

A brief overview of recent tools involving tracking methods and AI techniques for
animal behavioral assessments is presented in Section 2. The methods and results of the
Ethoflow algorithm, applications in different setups and bioassays, and performance in
processing speed and accuracy are described in Sections 3 and 4. Finally, the discussion
and conclusions are presented in Sections 5 and 6, respectively.

2. Related Work

The tracking software Tracktor uses unsupervised machine learning to track animal
groups maintaining individuals’ identities [13]. This software exhibited advantages in pro-
cessing speed and robustness compared to the software IdTracker [14] and the ToxTrac [15].
Some other tracking software exhibit outstanding performance using deep learning al-
gorithms [16], including the idtracker.ai [17] and the TRex [18]. These two software also
apply CNNs to track many animals simultaneously with high accuracy in maintaining
individuals’ identities.

In addition to tracking software, there are also tools for measuring the geometrical
configuration of body parts denoted as pose estimation [16]. Deep learning approaches
have also led to notable improvements in pose estimation software (e.g., DeepPoseKit,
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DeepLabCut, and LEAP) [19–21]. For instance, the DeepLabCut uses transfer learning
with a pre-trained network in large datasets (e.g., ImageNet). This approach can improve
performance and reduce the number of required training examples [19]. However, it may
come with the cost of slow inference due to excessive parameterization in large networks.
The LEAP framework uses a relatively simple 15 layers CNN to limit model complexity and
maximize inference speed [20]. However, the LEAP achieved limited accuracy compared
to the DeepPoseKit and DeepLabCut [21]. To improve the speed-accuracy tradeoff in
DeepLabCut and LEAP, the DeepPoseKit toolkit was developed using Stacked DenseNet,
a deep learning architecture that provides fast and accurate detection even at low spatial
resolutions [21].

The unfolding of behavioral assessments in tools without graphical user interface
(GUI) (e.g., Tracktor) [13] requires familiarity with programming, which can limit the
general public use. In this context, the Ethoflow software looks user-friendly due to the
GUI. The available tracking software measure large collectively animal groups with high
accuracy, especially those using deep learning. However, these tracking software operate
by background subtraction or thresholding [13–15,17,18]. These approaches require video
recordings of homogeneous environments and are not applicable in the field. In Ethoflow,
we implemented thresholding by Otsu’s method [22] (Section 3.1.3) to handle assessments
in a homogeneous environment. In addition, we also implemented instance segmentation
by Mask R-CNN [9] for evaluation in heterogeneous environments (Section 3.1.4).

With pose estimation toolkits, variables can be measured to predict complex animal
behavior after some posterior machine learning analysis [23]. Although our goal with the
Ethoflow software is tracking analysis, Ethoflow also directly measures complex behaviors.
After hyperparameter optimization, we defined a parsimonious CNN architecture to assess
complex binary behavior (Section 3.1.8). Deep learning software is computationally costly
and requires graphics processing unit (GPU) hardware. Accordingly, they are not feasible
to use on an ordinary computer. An interesting feature in our proposal is that the deep
learning algorithms (used for analysis in a heterogeneous environment and measurement of
complex behaviors) are separate from the other modules in Ethoflow. Wherefore, Ethoflow
covers kinematic measurements on an ordinary computer and assesses more complex
behavior with a GPU.

3. Materials and Methods
3.1. Software Features and Algorithm

The Ethoflow software was developed in modality desktop application with Python
language, including the image library OpenCV [24] and the framework TensorFlow [25]
with Keras for AI models. Other libraries, such as SciPy [26], Numpy [27], Pandas [28], and
SciKit Learn [29], were also used. We recommended Python version 3.6.8 and Microsoft
Windows 10 when running the Ethoflow. The main input and output files, formats, descrip-
tions, and quick examples of using these Ethoflow files are described in Supplementary
materials (Table S1). The following subsections will provide further details on the Ethoflow
algorithm steps (Figure 1).

3.1.1. Input Video

Multi-threaded processing was implemented in the algorithm. In this procedure, the
video is read in a thread independent of the processing thread, and the frames are stored
in a stack (Figure 1; step 1.1; Appendix A). This avoids the delay between frame reading
and other processing steps of the algorithm, whereby frames are always available to obtain
better rates in frames per second (fps).

3.1.2. Preprocessing

In preprocessing (Figure 1; step 1.2), the video is processed to eliminate the regions
that are not of interest to the user and transformed into a virtual primary color system (color
space XYZ). In this color space, the chromaticity (XZ) and luminance (Y) are coded sepa-
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rately, resulting in a more uniform response to the luminosity variation. Then, grayscale
transformation and normalization are applied to increase homogeneity between the frames.
Smoothing is also applied through a transformation based on the median of neighborhood
pixels to eliminate noise.
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Figure 1. Flowchart of the Ethoflow algorithm. The numbers on the right side of the rectangles
indicate the steps in the algorithm process. These steps are described in the subsequent sections from
Sections 3.1.1–3.1.9. Diamond symbols indicate the option of using the deep learning algorithms (for
analysis in a heterogeneous environment or measurement of complex behaviors) according to the
need. Thus, the Ethoflow performs kinematic measurements on an ordinary computer and assesses
more complex behavior with a graphics processing unit hardware.

3.1.3. Object Detection

After preprocessing, manual and automatic image thresholds are applied to detect
individuals (Figure 1; step 1.3). In manual thresholding, the classification of pixel (x, y) is
performed according to a global threshold defined by the user (g):

f (x, y) =
{

1 i f (x, y) > g
0 i f (x, y) ≤ g

}
. (1)

One of the automatic thresholding options is based on Otsu’s method [22], wherein
the optimal threshold minimizes the within-class variance. This algorithm attempts to find
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a threshold value (k) that minimizes the within-class variances c0 and c1 (background and
objects, respectively). If the set of gray levels of an image L = {1, 2, · · · , l} and the total
number of pixels N = {n1, n2, · · · , nl}, then the probability of occurrence of a gray level
(pi) is given by

pi =
nl
N

. (2)

As the method is based on the normalized histogram,

L

∑
i=1

pi = 1. (3)

Thus, the probability of occurrence (ωi), means (µi), and variances (σi) of each class,
are given by

ω0 =
k

∑
i=1

pi and ω1 =
L

∑
i=k+1

pi, (4)

µ0 =
∑k

i=1 i ∗ pi

ω0
and µ1 =

∑L
i=k+1 i ∗ pi

ω1
, (5)

σ2
0 =

∑k
i=1(i− µ0)

2 pi

ω0
and σ2

1 =
∑L

i=k+1(i− µ1)
2 pi

ω1
. (6)

The within-class (σw) and between-class (σb) variances are

σ2
w = ω0σ2

0 + ω1σ2
1 , (7)

σ2
b = ω0ω1(µ1 − µ0)

2. (8)

The total variance is σ2
t = σ2

w + σ2
b , and calculating the between-class variance im-

proves the computational time because the variance between classes is based on first-order
statistics (class means) [22].

3.1.4. Instance Segmentation

Instance segmentation (IS) [9] is another type of automatic segmentation available
in Ethoflow for animal behavior assessments in heterogeneous environments (Figure 1;
step 1.4). ResNet-101 [30] was the convolutional base used in this model, following a Mask
R-CNN implementation [31]. In this model, the video frames pass through a convolutional
base for feature extraction, leading to feature map generation. The region proposal network
(RPN) is then applied, which provides several candidate boxes (ROI proposals). As several
ROIs are generated, the model classifies these boxes into foreground proposals (animals)
and backgrounds. ROI pooling is applied to standardize the foreground proposals’ size,
slicing each foreground into a fixed number of parts, and max pooling is applied to
standardize the size. Finally, the boxes labeled as real animals are instantiated using a
pixel-wise sigmoid function (Figure 2).

3.1.5. Post-Processing

In post-processing (Figure 1; step 1.5), morphological operations are applied to elimi-
nate residues. First, dilation is used to fill parts that belong to the same individual but are
detected separately. Second, the gradient is calculated and subtracted from the expanded
frame to eliminate undesirable edges. Finally, erosion is applied to eliminate any noise
erroneously detected as individuals.

3.1.6. Position and Identity

In step 1.6 of the algorithm, the animal contours (the pixels contained in the animal
body) are identified. The contours are identified without establishing hierarchies while
retaining only the extreme points of the contour line segments. The contour measurements,
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such as the area, length, and the ratio between the area and length, are calculated to restrict
the contours that are identified based on the user’s inputs.
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When the number of contours identified is smaller than the number of individuals
specified by the user, the nonhierarchical clustering k-means algorithm is applied to
separate merged individuals. In this unsupervised machine learning algorithm, the number
of groups (k) in which the set of pixels will be grouped is equal to the number of individuals
specified by the user. The initial k centroids are randomly defined among the set of data
points. Then, the next set of centroids are chosen according to the probability of spreading
between the centers [32]. The contour points are compared with each centroid and are
allocated to the group where the Euclidean distance is minimal. Considering the inputs for
the algorithm X = {x1, . . . , xn} of n data points, this algorithm runs interactively to find a
set C = {c1, . . . , ck} that minimizes the function ϕx(C) as follows:

ϕx(C) = ∑
x∈X

d(x, C)2, (9)

where d(x, C)2 is the distance from x to the closest center in C. To choose centroids in the
k-means algorithm, the first set of centers C0 are randomly selected from the dataset. Then,
this step is repeated for 2 6 i 6 k: ci is chosen to be equal to a data point xn according to
the probability [32]:

d(x0, C)2

ϕx(C)
. (10)

A combinatorial optimization algorithm [33] is applied to maintain the identity of
individuals, which provides the optimal identity assignment among the centroids of animal
contours. This is based on the Euclidean distance between the set of centroids of the objects
in the framei+1 = {a1, a2, . . . , an} and the set of centroids in the framei = {b1, b2, . . . , bn}.
Considering that each an is assigned to only one bn, the goal is to minimize the total cost of
assignments about the distance matrix (D) between each an and bn:

D =


d1,1d1,2 · · · d1,n
d2,1d2,2 · · · d2,n

...
...

...
dn,1dn,2 · · · dn,n

. (11)
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The mathematical model [33] for the assignments is given as Minimum :
n
∑

x=1

n
∑

j=1
dij,

where dij is the cost (Euclidean distance) from centroid an to centroid bn. There are n!
ways to assign an to bn and achieve the optimal assignment, interactively, with the follow-
ing steps:

1. The minimum of each row is subtracted from the entire row.
2. The minimum of each column is subtracted from the entire column.
3. All zeros in the matrix are crossed with the minimum possible lines.

If crossing lines = n, then the optimal assignment is found.
Else:
To determine the smallest entry not crossed by any line,
Subtract this entry from each uncrossed row and add it to each crossed column.
Proceed to step 3.

3.1.7. Kinematic Variables

Among the identified and assigned animal contours, each individual’s centroid (Carte-
sian position) is determined. Based on this Cartesian position x, y of individuals over time
(video frames; f ), various kinematic variables are computed in algorithm step 1.7. The
distance that an animal walks during the video is tracked distance (td) (Equation (12)).
Dividing td by the total time of the video, the mean velocity can be calculated. Ethoflow
also calculates the maximum velocity achieved by the animal.

td =
f

∑
i=1

√
(xi+1 − xi)

2 + (yi+1 − yi)
2. (12)

The average angle that the individual rotated in each frame (turning angle; ta) is
computed by the absolute sum of the angles (◦) of the movement divided by the video
frames (f ) (Equation (13)), while the meandering (the average angle that the individual
rotated during the video; M) is divided by tracked distance (td) (Equation (14)); the angle
of the movement is the arctangent of the locomotion in planes y (∆yi) and x (∆xi).

ta =
1
n

f

∑
i=1

∣∣∣∣∣∣
 arctan

(
∆yi
∆xi

)
180

π

∣∣∣∣∣∣. (13)

M =
1
td

f

∑
i=1

∣∣∣∣∣∣
 arctan

(
∆yi
∆xi

)
180

π

∣∣∣∣∣∣. (14)

The movement of individuals is categorized based on the user-defined values. When
defining the analysis protocol, the user defines the thresholds for low (tl) and high move-
ment (th). Thus, considering the movement of individuals in each frame as mf : mf ≤ tl is
counted as resting (the time associated with no activity of the individual); tl < mf ≤ th is
counted as mean movement (the time in intermediated activity); mf > th is counted as fast
movement (the time in high activity). The sum of these counts is divided by the frames per
second (fps) used to sample the video to obtain these values in time.

The user also sets a threshold for interaction (ti). The interaction is considered when
the individuals approach a distance ≤ ti. The sum of all interactions of an individual is
defined as centrality. The network density (nd) is a measurement associated with group
interaction (Equation (15)). A network is a set of items in which the vertices are defined as
nodes (n), and the connections among them are defined as edges (m) [34]. Here, the nodes
are the individuals, and the edges represent the number of interactions among them.

nd =
2m

n(n− 1)
. (15)
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If the user defines a region of interest (ri), Ethoflow computes how long the individuals
stayed inside this region, considering the position (coordinates x, y) of each individual in
the video frames (f ):

f

∑
i=1

(xi, yi) ∈ ri. (16)

Considering the direction unit (u) of the individuals (i), the proportion of the group
polarized (p) at each frame is calculated as

p =
1
i

∣∣∣∣∣ i

∑
j=1

uj

∣∣∣∣∣. (17)

The angular momentum (rotate; r) for each frame is a cross product (or vector product;
×) between the distance (d) of an individual to the center of mass of the group and the
direction of movement (u):

r =
1
i

∣∣∣∣∣ i

∑
j=1

uj × dj

∣∣∣∣∣. (18)

These parameters provide information on the global structure of the group [35], such
as how much individuals are aligned in a group (polarization; gp), how much the group
displays low directional alignment between neighboring individuals (swarming; gs), and
how much the group moves around its center of mass (milling; gm). The sum of these
counts is divided by the fps to obtain these values in time:

gp =
∑ p > 0.65 and r < 0.35

f ps
, (19)

gs = ∑ p < 0.35 and r < 0.35
f ps

, (20)

gm =
∑ p< 0.35 and r >0.65

f ps
, (21)

3.1.8. Complex Behavior Model

Ethoflow also measures complex behaviors using a CNN model (step 1.8). Different hy-
perparameter configurations were tested to define the CNN model (Figure 3) (Appendix B).
In this step, the bounding box computed from animal contours passes through the convo-
lutional base (convolutional and max-pooling layers) for feature extraction. The activation
function is applied to the output of each layer to introduce nonlinearity. Then, behavior
classification is performed in the dense layers. When the complex behavior that the user is
evaluating occurs, the network output will be equal to behavior 1; otherwise, behavior 0.
The behavior occurrence sum is divided by the video frames to generate the percentage
of occurrence of the behavior. Thus, we are interested in determining the occurrence of
binary behaviors that are detectable through spatial information.

3.1.9. Output

In step 1.8, the behavioral parameters are automatically saved in a comma-separated
values (csv) file in the path defined by the user. This file also contains the raw data, the
coordinates (x, y) of movement in each frame. Thus, the user is free to calculate other
kinematic parameters, in addition to those automatically computed by the software. At
the end of the video processing, Ethoflow exhibits the detection rate (dr), which is the
proportion that the individual was detected during the entire video minus false detection.
False detection is considered when an individual has between frames velocity greater than
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the percentile at 95% of group velocity across all frames. Given the instantaneous speed
vector IS = (is1, . . . , isn) and f frames in the video, dr is defined as:

dr = 1−
((

∑
f
i=1 isi > 2 ∗ P.95(IS)

isi

)(
1
f

))
, (22)

where P.95 is the percentile at 95% of the IS vector.
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Figure 3. Convolutional neural network architecture defined after hyperparameter optimization
(Appendix B) to recognize animal complex behavior on Ethoflow. This model was configured with
stochastic gradient descent (learning rate at 0.0001 and momentum at 0.9) as an optimizer and
binary cross-entropy as a loss function. Batch normalization was applied before max-pooling layers.
Dropout was also applied after dense inner layers. In the inner layers (convolutional or dense), the
function activation was Elu. The dimensions (width × height × depth) of feature map are given in
each layer; the output dimensions of a layer are the same as the input dimensions of the next layer. In
the flatten process, the data are transformed into a vector to enter the dense layers. In the last dense
layer, a sigmoid function is applied, which gives the binary output.

3.2. Applications and Performance
3.2.1. Application in Heterogeneous Environments

The Ethoflow was run on a machine with Intel i7-9750H CPU 2.60 GHz × 12, 8
GB RAM and GPU NVIDIA® GeForce® GTX 1660 (6 GB) Ti Max-Q. To apply Ethoflow
in a heterogeneous environment experiment, we trained the IS model to detect the bee
Melipona quadrifasciata through the 1325 images in various heterogeneous backgrounds
(Figure 4). In addition to these image data, the inputs with bounding box positions, classes,
and masks (pixel-wise positions of the animals) are required to train the IS model [9]. The
manual generation of these inputs is a laborious task. Then, we developed a heuristic to
automatically generate these inputs based on several random backgrounds and a video in
homogeneous conditions to detect objects using manual segmentation or Otsu’s method.
Frames are randomly sampled in the video and pass through the algorithm’s preprocessing
and object detection stages (Figure 5A). Then, the animals are “copied,” and the contours
are “pasted” into random backgrounds (Figure 5B). Concomitantly, the bounding box,
class, and mask of each animals are saved in a dictionary with the following structure:
Dictionary {imagei: {objectj: {box: {center: {x,y}, width, height}; class:{target}; mask:{all
points (x,y)}}}}.

Of all the data generated with the heuristic, 976 (74%) were used for training, 249
(19%) for validation, and 100 (7%) to evaluate the classification using the average precision
(AP) [36]. To obtain AP, we calculated the intersection over union (IoU) of the predicted
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bounding boxes (i.e., the x, y coordinates in the upper-left corner and width and height of
the rectangular box around the object of interest) and target bounding boxes. Based on the
IoU, the precision (Equation (23)) and recall (Equation (24)) can be calculated using the true
positives (TP), false positives (FP), and false negatives (FN) for the detected objects (DO) in
a determined threshold (x) (Equation (25)).

precision =
TP

TP + FP
. (23)

recall =
TP

TP + FN
. (24)

if IoU ≥ x, DO = TP
if IoU < x, DO = FP

if the model fails to detect a target object, DO = FN

 (25)

There is a tradeoff between the precision and recall, wherein the higher the recall,
the more the model tends to find all the target objects, i.e., a low FN value. However, an
increase in the recall tends to decrease the precision, as it increases FP. Considering equally
spaced recall levels n = (0, 0.1, · · · , 1.0), interpolation is performed using the highest
precision value for a given recall. Then, the AP is obtained from the interpolated values of
the precision

(
Pinterp(r)

)
:

AP =
1
n

n

∑
i=0

Pinterp(ri). (26)
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Figure 5. Schematic representation of the heuristic used to generate labeled images for the IS model
automatically. The segmented objects (indicated by green masks) on a homogeneous background
(A) are glued to random backgrounds (B).

3.2.2. Application in Complex Behavior

Ethoflow was also applied to learn the detection of trophallaxis, the complex social
behavior of food exchange among nestmates, in M. quadrifasciata. Thus, 1270 labeled images
were generated (724 for non-trophallaxis and 546 for trophallaxis) (Figure 6). In this dataset,
70% of the data was used for training, while 20% was used for validation. Another sample
dataset (10%) was used to assess the classifier’s performance based on the global accuracy
from the confusion matrix, Kappa index, and Z-test (5%).
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Figure 6. Examples of images that were automatically labeled with our heuristic to train the CNN
model to recognize trophallaxis in the stingless bee Melipona quadrifasciata. The images with green
outlines (top) are examples of trophallaxis. The images with dashed purple outlines (bottom) are
examples of non-trophallaxis.
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The labeled images used to train the CNN model for recognizing trophallaxis were also
generated through a heuristic automatically. When bees perform trophallaxis, they position
themselves in front of each other and exchange food. Based on this predictable positioning,
the heuristic was based on the individuals’ area and body length. Initially, the program
estimates the median (M) and standard deviation (sd) of the body area (a) and length (l)
in frames where there is no crossing (no meeting between individuals). Subsequently, the
software obtains the images (b) from the video and labels them as trophallaxis if :

area(b) > 2 ∗ (M(a)− sd(a)) and
area(b) 6 2 ∗ (M(a) + sd(a)) and

length(b) > 2 ∗ (M(l)− sd(l)) and
length(b) 6 2 ∗ (M(l) + sd(l))

, Else : b is not trophallaxis. (27)

3.2.3. Application in Behavioral Bioassays

A behavioral assay was performed with the two stingless bee species. Bees of both
species were collected from four colonies each of M. quadrifasciata and Partamona helleri in
Viçosa, State of Minas Gerais, Brazil (20◦45′ S and 42◦52′ W). The collected bees were kept
for 1 h in the laboratory under conditions similar to those found in their colonies (28 ◦C
and 80% relative humidity in total darkness) [37]. Subsequently, bee behavior was recorded
in the arenas (Petri dish, 9 cm diameter, 2 cm height) for 15 min with a digital video camera
(HDR-XR520V, Sony Corporation) at 30 fps and high definition (1920 × 1080 pixels). Be-
havioral bioassays were performed in a room with artificial fluorescent light at 25 ± 3 ◦C
and 70 ± 5% relative humidity. Bioassays were performed with 37 replicates, with each
replicate corresponding to a group of five bees of each of the two species. The kinematic
variables measured with Ethoflow included centrality, polarization, milling, resting, mean-
dering, and tracked distance. In the centrality response, the interaction was considered
when the individuals approached a distance ≤1.41 cm. An instantaneous tracked distance
≤0.046 cm frame−1 was counted as resting. Centrality was the response variable in the
model with interaction between polarization and bee species, or model with interaction
between milling and bee species. Meandering was the response variable in the model with
interaction between resting and bee species. Besides, the tracked distance between the bee
species was compared. These models were fitted with generalized linear models (GLM)
with a gamma distribution, displaying adequate distribution for continuous data in which
the variance increases with the square of the mean [38]. When an explanatory variable had
no significant effect, the model was simplified, and the results were plotted as a function of
the significant variable.

A toxicological bioassay was also performed with M. quadrifasciata to demonstrate
trophallaxis recognition under pesticide stress conditions. The acclimated bees were orally
exposed to the commercial formulation (cf) (water-dispersible granules at 700 g a.i. Kg−1,
Bayer CropScience, São Paulo, SP, Brazil) of the neonicotinoid imidacloprid in a sublethal
concentration (0.2 mg cf L−1). This concentration is 300× smaller than that recommended
for controlling the whitefly Bemisia tabaci (60 mg cf L−1) [39]. The pesticide imidacloprid is
commonly associated with bee decline and causes motor impairments in bees [40]. After
3 h of exposure, the bees were filmed as previously described, and trophallaxis behavior
was quantified using Ethoflow. Trophallaxis response (n = 60) to the pesticide was assessed
using a GLM with a Poisson distribution, a suitable distribution for count data [38].

3.2.4. Performance

Using videos with variations in resolution, the number of individuals, animals, and
backgrounds (Supplementary Materials; Figure S1), we evaluated some parameters asso-
ciated with Ethoflow’s performance and also compared it with other tracking software
that has a satisfactory processing rate, based on the processing speed obtained by Srid-
har et al. (2019) [13]. A multiple regression model was applied to assess whether the fps
rate responds to the interaction between the resolution and the number of individuals.
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The effect of centrality and the number of individuals in fps was assessed using a GLM
with a gamma distribution. Analysis of covariance (ANCOVA) was performed to assess
whether the detection rate varied with the interaction between the number of individuals
and background (homogeneous and heterogeneous).

4. Results
4.1. Heterogeneous Environment and Complex Behavior

Ethoflow was efficient in detecting the tested bees with high precision and low false
positives in heterogeneous environments (average precision± standard error = 0.916± 0.02;
Figure 7A). In addition, in complex behavior assessment, the CNN model exhibited high
accuracy in the validation process (global accuracy = 92.13%, Kappa index = 0.84, Z = 24.74,
Figure 7B).

4.2. Behavioral Bioassays

The results of the bioassays demonstrated significant differences between behaviors,
bee species, and response to pesticide stress. In both species, the centrality increased
with the polarization of the group (F 1, 35 = 25.1, p < 0.0001) and decreased with milling
(F 1, 35 = 46.2, p < 0.0001) (Figure 8A). Meandering was influenced by the statistical inter-
action between the variables resting and bee species (F 1, 33 = 4.71, p = 0.037; Figure 8B).
Moreover, a difference between species was observed in the tracked distance (F 1, 35 = 13.6,
p = 0.0008; Figure 8C), and bees exposed to the pesticide exhibited significantly reduced
trophallaxis (χ2 = 94.9, df = 58, p < 0.0001; Figure 8D).

4.3. Performance

In homogeneous backgrounds, Ethoflow achieved a median rate of 32.5 fps. This rate
is a satisfactory processing speed compared to other tracking software that does not use
AI in their algorithms (e.g., idTracker = 5.5 fps; ToxTrac = 28.6 fps; Tracktor = 25.7 fps)
(Figure 9).

Statistical interaction was observed between the variables video resolution and group
size in fps rate (F 1, 130 = 12.81, p = 0.0005, Figure 10A). The heterogeneous environ-
ment quantification was not influenced by the video resolution or number of individuals
(F 1, 28 = 0.81, p = 0.37, Figure 10B), and the fps rate in a heterogeneous environment (0.386)
was lower than in homogeneous backgrounds. The fps decreased with an increase in the
centrality of individuals (F 1, 38 = 81.24, p < 0.0001, Figure 10C). There was no significant ef-
fect on the number of individuals (F 1, 37 = 0.009, p = 0.93), and no interaction was observed
between the centrality and individuals (F 1, 36 = 1.62, p = 0.21). Besides, the software exhib-
ited high detection rates with significant interaction between the number of individuals
and type of background (F 1, 94 = 137.85, p < 0.0001, Figure 10D), where an increase in the
number of individuals had a greater influence on the heterogeneous environments.
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Figure 7. Performance of the AI models used in Ethoflow. (A) Animals’ detection in heteroge-
neous environments based on instance segmentation (IS). The high average precision (left panel;
n = 100) implies that the model precisely detects real animals in the scenes with no false positives, as
demonstrated by (right panel) the detected animals (marked Melipona quadrifasciata bees with masks
in random colors) in different heterogeneous backgrounds. (B) The training process of the CNN
model (top panel) and validation (percentage confusion matrix; bottom left panel) (n = 127) for the
monitoring of trophallaxis (green circles) in bees (bottom right panel).
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Figure 8. Behavioral assessments conducted using the Ethoflow software. (A) Association between centrality and group
dynamics polarization (top panel) and milling (bottom panel) (n = 37). The 2D density plots and network diagrams showed
that a higher interaction exists among individuals in more polarized bee groups, while this interaction is reduced in the
milling groups. In the networks, the circles represent individuals, and connections correspond to the edges, where their
widths are proportional to the frequency of interactions. (B) Meandering behavior is associated with resting proportions
(left panel) (n = 37) and histograms of polar coordinates (rays and azimuth angles) for the two bee species (right panel).
(C) The tracked distance of the assessed bee species (n = 37). In group representative tracks, the track color reflects the
individual identity (right panel). (D) Trophallaxis alteration in Melipona quadrifasciata after pesticide exposure (n = 60).
* p < 0.05 in the generalized linear model.
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Figure 10. Quantification of the performance of Ethoflow. (A) Frames per seconds (fps) response
to the video resolution (in pixels) and the number of individuals in homogeneous backgrounds;
the dots (n = 134) represent the raw data. (B) Histogram of the fps in heterogeneous environments
(n = 30). The box plot indicates the median and range of dispersion (lower and upper quartiles and
outliers). (C) Fps in response to centrality. The proportion of group interaction per frame was used to
quantify the centrality (n = 40). (D) Accuracy of the software as a function of the interaction between
the number of individuals and type of environment (homogeneous and heterogeneous); the symbols
represent the raw data (circles; n = 98).
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5. Discussion

We developed Ethoflow software using computer vision, machine learning and deep
learning techniques. This program had consistent speed rates and accuracy on processing.
In addition to the possibility to study complex behaviors, Ethoflow allows multivariate
assessment of kinematic behaviors. Multivariate assessment of behavioral traits can bring
important insights into animals’ ecological aspects, for instance, in studies of toxicological
assessments and animal behavior [41–43]. Some modern software programs that use deep
learning to evaluate behaviors demand powerful machines with GPU [17,18,44], which
makes the analysis of laboratory routines in ordinary computers difficult. In the Ethoflow
algorithm, the AI processing is separate from the other modules, enabling kinematic
measurements on an ordinary computer and assessing more complex behavior using a
GPU. Wherefore, to perform kinematic measurements in homogeneous environments, an
ordinary computer is sufficient (e.g., a central process unit of the 3.60 GHz) to run Ethoflow.
In complex behavior assessments and heterogeneous environments, a GPU computer is
interesting for optimizing speed-up computational processes.

Unraveling complex behaviors can be limited by software without adequate tools
or software that are complex to set up or does not have a GUI, requiring familiarity
with their tools [13,17,45], limiting their usage in the general public. Thus, there is a
demand in research for powerful software with simplified-interface that, at the same
time, increase the ability to study more complex behaviors. In this context, the Ethoflow
software looks friendly and does not require line commands to be used due to the GUI.
Additionally, Ethoflow does not require a great familiarity with computational tools and
has multidisciplinary applications.

During the processing in homogeneous backgrounds, the effects of resolution and
number of individuals in the fps demonstrated that the frame reading step (higher resolu-
tion, higher reading time) and calculating identities (more individuals, more combinations)
could decrease the processing speed. Nonetheless, the implementation of multi-threaded
reading [46] in Ethoflow solves these problems. This type of reading avoids the delay be-
tween calculating the identity and reading the frames, whereby there will always be frames
available in the queue for immediate calculation of the identity. This procedure possibility
satisfactory fps rates compared to other software available for the same purpose [13–15].
The identity calculation algorithm step occurs when at least two individuals interact. Thus,
fps showed a negative correlation with centrality because the greater the interaction, the
greater the identity calculations. The number of individuals (mainly in groups > 3) had no
binding effect on the fps, probably, because the amount of interaction between individuals
depends on the density of the group (i.e., number of individuals per space) and not only
on the size (i.e., the number of individuals) [35].

In heterogeneous environments, there is no influence of the video resolution or num-
ber of individuals on the processing, and the fps rate is lower than in homogeneous
backgrounds. This shows that the main bottleneck in processing occurs in the detection
of animals by Ethoflow through the instance segmentation model. With instance seg-
mentation, real-time processing (~30 fps) has not been achieved; processing around 5 fps
was reported using a robust GPU [9]. Even though it is not possible to achieve real-time
processing with instance segmentation, this functionality in the Ethoflow imposes great
advantages given the various possibilities of analysis in heterogeneous environments.
Furthermore, video acquisition by Ethoflow is independent of processing, which enables
real-time video records.

The reliable detection rates obtained with Ethoflow demonstrated that this software
is sufficiently robust for applications in different assays. Moreover, using the heuristic to
generate training data automatically made it possible to obtain a high average precision
model. Such in heterogeneous environments, there was a more pronounced decrease in the
detection rate of objects; therefore, increasing the amount of data for training can improve
the detection [47]. With the use of our heuristic, increasing the amount of data does not
take much time from the user, but it could increase the time of computational training and
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inference. Another alternative would be to increase the quality of the data with images
annotated manually. One tool that can be used to label images manually is VGG Image
Annotator (VIA) [48].

6. Conclusions

This study provides information about the development of e-applications of computer
vision and the artificial intelligence-based software Ethoflow. This software is suitable
for multivariate kinematic evaluations, behavioral assessments in heterogeneous envi-
ronments, tracking individuals in groups maintaining their identities, and can be trained
to learn complex behaviors. Ethoflow was applied to biological assessments and was
efficient to detect significant differences between different bee species and pesticide stress.
Some possibilities of data analysis and representation were demonstrated with Ethoflow’s
output. The deep learning models were implemented to expand the possibilities of animal
behavior analyses to other fields, including the behavioral monitoring of domestic animals
in precision livestock farming. According to demand, Ethoflow will be constantly updated
for future improvements and new functions, such as tracking three dimensions. Therefore,
Ethoflow is a helpful support tool for technical and scientific applications in biology and
related fields.

7. Patents

This software is registered with the Brazilian National Institute of Intellectual Property
(INPI, Ministério da Economia, Brazil, reg. no. BR 51 2020 000737-6).
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Appendix A

The video is read by a thread that is independent of the processing thread, and the
frames are stored in a stack (queue). This queue is a linear data structure that stores items
in a “FIFO” (First In, First Out) manner (Figure A1). Frames are exchanged between the
reading and processing threads. This increases the processing speed, as frames are always
present in the queue and ready for processing, and no time is spent waiting for the next
frame to be read.
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Appendix B

Different hyperparameters were tested to find a suitable convolutional neural network
(CNN) model. This model was trained to recognize trophallaxis in the stingless bees,
Melipona quadrifasciata, and can be used to recognize many binary behaviors. Using the
validation accuracy of such a variable response, the interaction between the dropout and
the activation function of the network output was evaluated (Figure A2A). Dropout is
a regularization technique that randomly zeros out the input units of a layer, breaking
fixed patterns to avoid overfitting [49]. Here, a better response was obtained, deactivating
neurons with a probability of 0.2 (dropout = 0.2) (Figure A2A). The higher rates, despite
reducing overfitting, decreased the accuracy. The activation function of the network output
that presented the best response was the sigmoid function (Equation (A1)) (Figure A2A).
This function binarizes the network output (0 or 1). As it involves a binary behavior
classification, the sigmoid function is expected to generate better output.{

f (x) =
1

1 + e−x , where x is the output from the previously hidden layer
}

. (A1)

The activation function of the inner layers and the optimization method were also
evaluated. The best result was obtained with the exponential linear unit (Elu) function,
along with mini-batch stochastic gradient descent (mini-batch SGD) as the optimizer
(Figure A2B). The Elu function (Equation (A2)) is an identity function for positive values,
and it tends smoothly to −α for negative values. This function saturates for very small
(extremely negative) values, resulting in the activation average being close to zero. Thus,
ELUs tend to normalize the layer’s output, accelerate learning, and increase accuracy [50].

f (x) =
(

x, i f x > 0
α ∗ (ex − 1), i f x 6 0

)
. (A2)

In the mini-batch SGD, the term stochastic refers to a random sampling of batches in
the data. Based on the loss value, the optimizer plays the role of updating the network’s
trainable parameters (weights). This is executed by calculating the loss gradient concerning
the parameters (current weights) of the network. Mathematically, this process is performed
by deriving the cost function and finding the gradient of the current weights. Then, the
weights are updated in the gradient’s opposite direction, reducing the loss slightly with
each batch. Since the classification is binary (the output from the network is a probability),
binary cross-entropy (Equation (A3)) was used as the cost function. Cross-entropy is a
measure of the distance between the expected result y and the predictions p(y).

Hp(q) =
−1
n

n

∑
i=1

yi ∗ log(p(yi)) + (1− yi) ∗ log(1− p(yi)), (A3)

where n is the number of network outputs.
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As an increase in the learning rate tended to decrease the accuracy (Figure A2C), the
lowest rate tested (0.0005) was maintained. The learning rate determines the magnitude of
gradient descent. At high learning rates, network updates can result in great randomness.

The network interacts with the data in mini-batches, i.e., it does not process an entire
dataset simultaneously; rather, the data is divided into small batches. Although this
hyperparameter is important in CNN models [51], it does not play an important role in our
model (Figure A2D). Therefore, one of the smallest values (batch size = 5) was selected to
accelerate the network’s training time.
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Figure A2. Hyperparameter optimization of the CNN model used in Ethoflow. (A) Compilation of
the validation accuracy in response to the dropout and the activation function of the network output.
(B) Validation accuracy in response to the optimizer and activation function of the inner layers. (A,B)
The bars represent the mean ± standard error. The values at the base of each bar represent the
number of times a given configuration was tested. Scatterplot of the accuracy as a function of the (C)
learning rate and (D) batch size. The translucent band around the line of regression represents the
confidence interval (n = 432).

In many statistical models, the normalization of variables is important (e.g., to avoid
the predominance of some variables due to different scales). To this end, batch normaliza-
tion layers were used in the CNN model. This layer can adaptively normalize the data as
the mean and variance change during training [52].

Using the hyperparameters defined above, the network’s size (number of layers) was
also evaluated, and better accuracy was obtained with smaller architectures (Table A1).
While more layers (a higher-dimensional representation space) allow the network to learn
more complex representations, this increases the network’s computational cost; accordingly,
model L7 was employed.
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Table A1. Different architectures tested to ascertain the ideal number of layers in the CNN model
(n = 28).

Number of Layers
Validation Accuracy (Mean ± sd) Convolutional Dense Model

0.63 ± 0.028 5 4 L1
78 ± 0.036 5 3 L2

0.83 ± 0.042 5 2 L3
0.81 ± 0.063 4 4 L4
0.8 ± 0.121 4 2 L5
0.8 ± 0.020 3 4 L6

0.91 ± 0.031 3 3 L7

Data augmentation is a powerful technique for mitigating overfitting. Using the
defined architecture (model L7 in Table A1), different data augmentation configurations
were tested (Table A2). Excessive data augmentation reduces the accuracy, while sets with
little augmentation increase overfitting. Thus, set 3 was deemed the best option to address
the problem of overfitting.

Table A2. Sets tested for data augmentation. In all the tests, the horizontal flip and fill mode = the
“nearest” was used. Model L7 in Table A1 was used for these tests.

Parameters Set 1 Set 2 Set 3 Set 4

Rotation range 20 16 14 11
Width shift range 0.1 0.08 0.06 0.01
Height shift range 0.1 0.08 0.06 0.01

Shear range 0.05 0.02 0.01 0.008
Zoom range 0.1 0.08 0.06 0.01
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