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Abstract

This review is concerned with methods for assessing the processing of unrewarded responses in experimental animals and the
mechanisms underlying performance of these tasks. A number of clinical populations, including Parkinson’s disease, depression,
compulsive disorders, and schizophrenia demonstrate either abnormal processing or learning from non-rewarded responses in
laboratory-based reinforcement learning tasks. These effects are hypothesized to result from disturbances in modulatory neuro-
transmitter systems, including dopamine and serotonin. Parallel work in experimental animals has revealed consistent behavioral
patterns associated with non-reward and, consistent with the human literature, modulatory roles for specific neurotransmitters.
Classical tests involving an important reward omission component include appetitive extinction, ratio schedules of responding,
reversal learning, and delay and probability discounting procedures. In addition, innovative behavioral tests have recently been
developed leverage probabilistic feedback to specifically assay accommodation of, and learning from, non-rewarded responses.
These procedures will be described and reviewed with discussion of the behavioral and neural determinants of performance. A
final section focusses specifically on the benefits of trial-by-trial analysis of responding during such tasks, and the implications of
such analyses for the translation of findings to clinical studies.
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Deficits in reward omission processing
in clinical populations

Appropriate processing of positive and negative outcomes is a
requirement for adaptive reinforcement learning, broadly de-
fined as the ability to select actions in a manner that maximizes
positive outcomes (wins) and minimizes negative outcomes
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(losses) (Sutton and Barto 1998). Abnormal sensitivity to wins
and losses is a central feature of a number of psychopatholog-
ical conditions that are characterized by a failure to learn about
and respond adequately to outcomes or shifts in environmental
contingencies. Importantly, these changes in sensitivity to wins
and losses are thought to result in significant consequences for
functional outcomes in these conditions, including enduring
reductions in quality of life in both major depressive disorder
(MDD) (Victoria et al. 2018) and schizophrenia (Mueser et al.
1991; Dowd et al. 2016). Despite this, these deficits in function
have not been fully characterized in all psychopathologies and
much is still unknown regarding the mechanistic basis of these
disruptions. Reward processing can be assessed in clinical pop-
ulations via a number of procedures. Amongst these, reversal
learning, which requires subjects to accommodate a contingen-
cy shift (a change in outcomes associated with specific re-
sponses), and probabilistic reinforcement learning, which re-
quires subjects to maximize reward in the face of a set of un-
certain outcomes, are highly prevalent and have revealed dis-
tinctive patterns of performance impairments across distinct
clinical populations, with patient groups typically failing to ac-
commodate shifts in task contingencies or adapt appropriately
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to wins and losses (Elliott et al. 1997; Frank et al. 2004; Dowd
et al. 2016). In recent years, a number of closely related proce-
dures have been developed and validated for use in experimen-
tal animals, thus providing a methodological framework for
translational study of reinforcement-related processes.

As characterization of clinical populations on reinforcement
learning tasks has increased, it has become increasingly evident
that balancing learning from reward and non-reward and
reacting with appropriate behavioral responses is a common
disturbance across disorders. Moreover, many common proce-
dures that are used to characterize clinical populations comprise
responses that are non-rewarded, either inevitably due to task
design (e.g., ratio schedules, stochastically reinforced tasks) or
because subjects typically exhibit sub-optimal patterns of
responding (e.g., discounting procedures, reversal learning).
For example, progressive ratio schedules of reinforcement,
which are traditionally used almost exclusively in experimental
animals, have recently been used to assess effortful motivation
in schizophrenia (Strauss et al. 2016; Bismark et al. 2018) and
anorexia nervosa patients (Schebendach et al. 2007).

In a similar vein, cognitive flexibility has been assessed in a
number of clinical populations using reversal learning proce-
dures. In reversal learning, subjects must accommodate a shift
in task contingencies whereby a previously rewarded response
becomes non-rewarded and vice versa. Patients often display
“perseverative” deficits, in which responses are persistently
emitted at a previously rewarded but newly non-rewarded
response option (Miller 1990; Chamberlain and Sahakian
2006; Cools et al. 2007; Murray et al. 2008). These deficits
may be at least partially mediated by a failure to appropriately
process reward omission and reflect the central nature of
reinforcement-related executive dysfunction across a broad
range of psychopathologies. In perhaps the clearest clinical
example, MDD, which is known to possess a serotonin (5-
hydroxytryptamine; 5-HT) dysregulation component, is char-
acterized by both hyposensitivity to rewarding outcomes and
hypersensitivity to omission of reward. This is as measured by
non-optimal response switching in probabilistic learning tasks
in which MDD patients tend to switch response strategy fol-
lowing a loss, even if their previous strategy was optimal
(Murphy et al. 2003). This abnormal responsivity has been
shown to correlate with reduced activity in the dorsomedial
and ventrolateral prefrontal cortices, and increased activity in
the amygdala in unmedicated MDD patients (Taylor Tavares
et al. 2008). Moreover, the identified pattern of deficits is
consistent with both anhedonia and hyperactive emotional
responsivity to negative outcomes and predicts disease out-
comes (Vrieze et al. 2013), suggesting that imbalances in re-
ward processing in MDD may play a central role in the main-
tenance of low mood in this disorder. In addition to 5-HT,
other neurotransmitters are implicated in this set of behavioral
functions. For example, a distinguishable set of deficits related
to processing non-reward has been reported in Parkinson’s

@ Springer

disease, in which patients performing probabilistic discrimi-
nation tasks demonstrate heightened learning from reward
omission as compared to rewarding outcomes (Frank et al.
2004). This abnormality is dependent on treatment regimen,
as patients taking levodopa show heightened sensitivity to
reward and generally intact learning from reward omission,
a set of findings in general agreement with a model that em-
phasizes the importance of dopamine (DA) levels in reinforce-
ment learning feedback sensitivity.

Choice discounting of a preferred reward has also been
assessed in clinical patients using probabilistic discounting
and delay discounting. In typical discounting procedures, an
increasing cost, such as an escalating delay, or reduction in
probability, is systematically imposed on access to a preferred
reward. Subject choices typically shift from selecting the pre-
ferred reward to a less preferred but free reward as the cost
increases. Pathological gamblers have been characterized on
both probability (Miedl et al. 2012) and delay discounting
(Madden et al. 2011; Wiehler et al. 2015), with the results
tending to indicate that patients suffering from this condition
both select more risky choices and discount future rewards
more steeply. Moreover, a large number of clinical conditions,
including Parkinson’s disease (Housden et al. 2010),
frontotemporal dementia (Bertoux et al. 2015), and major de-
pressive disorder (Pulcu et al. 2014), are also characterized by
reduced tolerance of delayed reward. Imaging studies suggest
that brain regions including the lateral prefrontal cortex, pos-
terior parietal cortex (McClure et al. 2004), and inferior frontal
gyrus (Lin et al. 2015) are involved in the valuation of delayed
rewards. Additionally, a number of regions, including the ven-
tral anterior cingulate cortex (VACC) (Kruse et al. 2017) and
medial orbitofrontal cortex (mOFC) (Finger et al. 2008), have
been implicated in human appetitive extinction learning, sug-
gesting that a broad network of structures are involved in
processing reward omission in humans.

Taken as a whole, the extant body of clinical evidence
suggests that deficits in translationally viable tasks comprising
a substantial reward omission component are present and dis-
tinguishable across a number of psychopathological condi-
tions. Thus, this research area represents a valuable opportu-
nity for parallel study of these processes in experimental ani-
mals. Moreover, whilst such patient deficits are well charac-
terized and the available evidence suggests that they play a
central role in the development and maintenance of psycho-
pathology, the systems that mediate abnormal responsivity to
reward omission are not yet fully understood and specific
targets for novel treatments remain largely elusive. To facili-
tate understanding of the psychological and neural mecha-
nisms that govern reward omission processing, it is critical
to carry out preclinical studies in experimental animals, ideal-
ly using procedures that measure either identical or closely
related psychological processes. As feedback integration and
reward omission processing are clearly disturbed in numerous
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psychopathological conditions, the aim of this review is to
consider the preclinical application of operant methods that
involve an explicit reward omission component, including
single-contingency appetitive extinction (where only one re-
sponse option is available), ratio schedules, reinforcement
learning tasks, and discounting procedures. Both procedural
considerations and the neural systems implicated in the per-
formance of these tasks are discussed in the context of facili-
tating understanding of the behavioral methodology. We sug-
gest that applying multiple tasks characterized by reward
omission to the same experimental question can greatly facil-
itate understanding of the change in behavioral state resulting
from a defined manipulation. Additionally, this review aims to
examine the potential for cross-species translation of results
obtained on these tasks (in the context of trial-by-trial analysis
of performance (Daw 2011), and touchscreen operant testing
(Bussey et al. 2008) is considered.

Behavioral procedures involving reward
omission

Single contingency procedures: extinction and ratio
schedules

Single contingency procedures—as opposed to choice proce-
dures, considered below—involve only one possible re-
sponse. To assess responding in the face of non-reward in such
procedures, reward is omitted following a response. Two
widely used approaches of this type are appetitive instrumen-
tal extinction schedules, and ratio schedules. In an appetitive
extinction procedure, a previously rewarded response be-
comes abruptly non-rewarded and extinction learning is indi-
cated by discontinued responding. Persistent responding, rel-
ative to controls, in the absence of reward is taken to indicate
an extinction impairment (Balleine and Dickinson 2000). In
addition to the number of responses emitted on extinction
sessions, the rate of responding can be measured to generate
an additional index of response to non-reward. These sched-
ules have been used to characterize extinction learning in a
number of diverse rodent models, including models of frag-
ile x syndrome (Sidorov et al. 2014), NMDA receptor subunit
dysfunction (Brigman et al. 2008), and deletion of postsynap-
tic density protein 95 (Homer et al. 2017).

A number of methodological considerations should be taken
into account when applying extinction learning procedures in
experimental animals. For example, multiple distinct mecha-
nisms potentially contribute to performance on appetitive ex-
tinction schedules, including response suppression, instrumental
learning, Pavlovian processes, and detection of non-rewarded
responses (Bouton 2004). The reduction in responding under
appetitive extinction schedules following reinforcer devalua-
tion, an experimentally induced degradation of reinforcer value,

can also depend on reinforcer properties as demonstrated ele-
gantly by Adams and Dickinson (1981). In this study, a food
reinforcer was paired with an injection of lithium chloride, thus
inducing a conditioned food aversion, and was used in combi-
nation with instrumental extinction to reveal the mechanisms of
reinforcer relationship to extinction of responding. It was shown
that conditioned aversion to the reinforcer attenuated responding
at extinction relative to controls, suggesting that reinforcement
is represented in the associative structure even when not present
within the schedule structure (Adams and Dickinson 1981).
Thus, reinforcer valuation effects play a contributory role in
extinction schedule performance, even when the reinforcer itself
is absent. Thus, researchers should carefully consider the choice
of reward used in studies investigating extinction learning under
an intended experimental manipulation, as differences in reward
processing during acquisition may spuriously affect extinction
schedule performance.

Another methodological consideration in the context of
extinction procedures is that previous instrumental experience
can modulate performance at extinction. For example, animals
previously exposed to partially reinforced schedules exhibit
enhanced resistance to extinction as compared to animals ex-
posed to a continuously reinforced schedule, an effect termed
the partial reinforcement extinction effect (PREE) (Weiner
et al. 1985; Bouton et al. 2014). This effect has been shown
to depend on dopamine (DA), as potentiation of DAergic neu-
rotransmission with d-amphetamine administration further in-
creases PREE (Weiner et al. 1985). Conversely, DA D2 recep-
tor blockade exerts effects that are partially overlapping with,
but not identical to, extinction in animals working on rein-
forced schedules (Wise et al. 1978; Salamone 1986). Taken
together, this evidence suggests that response to reward omis-
sion on appetitive instrumental extinction schedules is depen-
dent on exposure to previous schedule, previously encoded
incentive value of the reward and DA dynamics. In particular,
these DA-dependent effects on extinction responding repre-
sent an important consideration in the context of characteriza-
tion of instrumental extinction learning in genetically modi-
fied models with a reasonable probability of DA dysregulation
(e.g., mouse models of Parkinson’s disease or schizophrenia).

In contrast with extinction schedules, ratio schedules re-
quire emission of a set number of responses in order to gain
access to a reward (Sidman and Stebbins 1954; Hodos 1961).
Contingencies in ratio schedule testing can be arranged in a
number of ways and are typically designed to probe aspects of
reward-related behavior. In progressive ratio (PR) schedules,
the number of responses (i.c., lever presses, nose-spokes or
touches) required to obtain a single reinforcer increases pro-
gressively during the session according to a defined ramp. The
final ratio completed in a session (referred to as the
“breakpoint”) is frequently interpreted as an operational mea-
sure of reward value (Hodos 1961) or animal effort capacity
(Aberman et al. 1998). However, PR schedules may also probe
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parallel psychological processes including extinction learning,
reward expectancy, and tolerance of unrewarded delays (Ward
et al. 2011). In particular, as challenging PR schedules are
characterized by eventual large runs of non-rewarded re-
sponses at high work requirements, the results may reflect a
substantial appetitive extinction component, rather than moti-
vation per se (Ward et al. 2011). Researchers may carry out an
extinction schedule control in conjunction with their intended
manipulation on PR to assess this possibility.

Moreover, there is substantial evidence that PR and extinc-
tion do not assess fully overlapping processes. For example,
modulating the DA system affects effort in isolation in other
tasks, with systemic administration of DA antagonists and ago-
nists resulting in bi-directional modulation of performance. For
example, DA antagonists (i.e., raclopride, haloperidol, and
etriclopride) decrease lever presses for a preferred reinforcer
(i.e., sucrose pellets) in PR schedules and also increase con-
sumption of freely available chow in fixed ratio (FR) or PR/
free chow concurrent choice, suggesting that a number of the
effects observed following DAergic manipulations on PR may
be attributable to effort processes rather than reward omission
processing alone (Farrar et al. 2010; Nunes et al. 2013; Randall
et al. 2012; Heath et al. 2015). In addition, there are experimen-
tal dissociations between ratio and extinction schedule perfor-
mance. For example, heterozygous and homozygous DA trans-
porter knockout (DAT-KO) mice show neither higher
breakpoints in PR nor higher responses on an FR schedule
compared with their wild-type (WT) counterparts (Hironaka
et al. 2004). However, during extinction, homozygous DAT-
KO mice were more resistant to extinction than WT and hetero-
zygous DAT-KO mice (Hironaka et al. 2004).

Thus, whilst the potential effects of reward omission and
consequent extinction processes should be carefully consid-
ered in the context of the performance of PR schedules, there
is also a large body of experimental evidence suggesting that
PR depends on other processes including effort allocation.
Testing both PR and extinction procedures may help disentan-
gle the contribution of different psychological processes to
task performance. Further approaches to delineating the con-
tribution of different processes to PR performance, including
extinction learning and effort, are discussed in the third section
of this review. Overall, instrumental extinction performance
comprises a large reward omission processing component, but
performance also depends on prior reinforcer valuation pro-
cesses and DA-dependent processes, including previous in-
strumental contingency experience. Whilst PR performance
may depend partially on extinction learning, there is also a
large body of evidence suggesting the involvement of effort
processes in the determination of responding.

In addition to studies that have focused on general
neuromodulatory control of reward omission processing in sin-
gle contingency procedures, a large body of previous literature
has studied the neural circuitry involved in this set of behaviors,
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especially with respect to instrumental habits. Given that habits
are operationally defined as outcome insensitivity (Balleine and
Dickinson 1998; Robbins and Costa 2017), these investigations
are of obvious relevance to the systems involved in processing
reward omission. This body of work has revealed the involve-
ment of a broad network of cortical and sub-cortical structures
in the support of habitual responding. Within these broad net-
works, one particularly influential model of the transition from
initial goal-directed to eventual habitual responding at the neu-
ral level suggests that initial goal-directed responding is
dorsomedial striatum (DMS) dependent but later shifts to dor-
solateral striatum (DLS) dependency as habitual processes
come to control responding (Corbit et al. 2012). Some studies
in humans support this view that this region is critical for con-
trol of habitual behavior (Tricomi et al. 2009), whilst also im-
plicating a reduction in activity of the ventromedial prefrontal
cortex (vmPFC) in habitual responding (de Wit et al. 2009).
With respect to the precise striatal micro-circuitry mediating
habits in the DLS, a recent study demonstrated that the activity
of fast-spiking interneurons located in this region is closely
linked with food-reinforced habitual behavior (O’Hare et al.
2017). In this study, it was shown that silencing this population
of interneurons via chemogenetics blocks the behavioral ex-
pression of a previously acquired habitual response. In other
words, neuronal inhibition targeted at this specific population
of DLS interneurons caused mice that had acquired an instru-
mental habit to behave in a goal-directed manner, perhaps sug-
gesting that these neurons are specifically involved in determin-
ing responsivity to rewarding outcomes. Other midbrain sys-
tems are also known to encode both habitual responding and
reward omission processes. For example, building on the high-
ly influential finding that DA-releasing neurons in the ventral
tegmental area (VTA) and substantia nigra encode “reward
prediction errors” (i.e., the discrepancy between expected and
actual outcomes) (Schultz et al. 1997), Tobler and colleagues
later demonstrated that these cells are also predictive of reward
omission and behave in a manner consistent with a negative
reward prediction error (Tobler et al. 2003). Moreover, a recent
study by Verharen and colleagues utilizing fiber photometry
and chemogenetics suggested that processing of DA “dips” in
the nucleus accumbens encodes learning from losses, further
underlining the involvement of this neurotransmitter in reward
omission processing (Verharen et al. 2018).

Choice procedures: reversal learning and probabilistic
reinforcement learning procedures

Reversal learning procedures typically require subjects to
learn to discriminate between rewarded and non-rewarded re-
sponses, before the contingencies are switched so that the
previously optimal selection becomes non-optimal and vice
versa. At the point of reversal, subjects will typically continue
to respond at the previous location for an extended period, a
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pattern of responding termed perseverative. Whilst reversal
learning is designed to assess cognitive flexibility, this term
describes a complex construct with multiple constituent con-
tributory psychological components, including response inhi-
bition, attentional processing, reinforcement learning, and re-
ward sensitivity (Nilsson et al. 2015). Critically, in determin-
istic reversal learning, the previous always-rewarded stimulus
(S+) essentially shifts from maintenance under a continuous
reinforcement schedule to an extinction schedule, thus raising
the possibility that reversal learning performance in the per-
severative phase can be attributed to reward omission sensi-
tivity. However, experimental evidence suggests that reversal
learning and extinction learning, though perhaps overlapping,
are dissociable processes. For example, as pointed out by
Horner and colleagues, there is evidence dissociating perfor-
mance of these procedures (Horner et al. 2017). For example,
whilst Grin2a”~ mice are impaired on reversal learning but
not extinction (Brigman et al. 2008), Grial ’~ mice demon-
strate the opposite pattern of impairments (Barkus et al. 2012).
This suggests that, whilst reversal learning deficits can be
attributable to loss of sensitivity to extinction, other mecha-
nisms can also mediate impairments.

To perform reversal learning optimally, it is plainly advan-
tageous to not only learn from the absence of reward follow-
ing a response at the previous S+, but also from reward at the
newly rewarded S+. Thus, whilst non-reward processing is an
important factor in reversal learning, perhaps particularly in
the early stages of a reversal, learning from positive feedback
will likely come to predominate toward the end of reversal
learning (Phillips et al. 2018). This model of performance at
different stages of reversal is consistent with the density of
outcomes that is experienced at these stages whereby early
reversal is characterized by low performance levels and higher
losses and late reversal by high performance levels and higher
wins. Such patterns of learning at different phases of both
discrimination and reversal learning may also reflect the rela-
tive contributions of goal-directed and habitual processes to
choice behavior (Graybeal et al. 2011; Brigman et al. 2013;
DePoy et al. 2013; Izquierdo and Jentsch 2012; Bergstrom
et al. 2018). A number of behavioral probes and manipula-
tions are available to test the balance of these mechanisms,
with some results obtained using these procedures suggesting
that a number of manipulations that affect reversal learning
performance exert their effects by altering sensitivity to re-
ward omission. Methodological approaches for dissociating
these contributions will be considered below in the context
of studies focused on the neural basis of reversal learning.

Much research has been directed toward the role of 5-HT in
the performance of reversal learning tasks. Landmark studies
in the marmoset demonstrate that orbitofrontal cortex 5-HT
depletions impair reversal learning by increasing the number
of perseverative responses emitted in the early phases of re-
versal (Clarke et al. 2004). This deficit is highly specific, as

performance of an extradimensional shifting task, in which
subjects have to adapt to discriminating another pair of stimuli
based on a different rule, was unimpaired (Clarke et al. 2005).
Additionally, the deficit was further investigated using stimu-
lus replacement procedures, in which either the previously
rewarded or non-rewarded stimulus is replaced with a novel
stimulus. These procedures are designed to determine whether
a reversal learning deficit is attributable to stimulus persever-
ation or learned avoidance of the previous S—. The observed
pattern of responding under these manipulations revealed a
specific failure to disengage from responding at the previously
rewarded stimulus, perhaps suggesting a specific non-reward
omission processing deficit in orbitofrontal cortex (OFC) 5-
HT depleted subjects (Clarke et al. 2007).

A large body of additional evidence supports a key function
for 5-HT in reversal learning, at least partially through influenc-
ing the processing of non-rewarded responses. In rodents, treat-
ment with selective serotonin reuptake inhibitors (SSRI) and
transgenic SERT (5-HT transporter) inactivation improves per-
formance on reversal learning tasks (Bari et al. 2010; Brigman
et al. 2010). At the level of neural circuitry, a recent study
combined SERT-cre transgenic mice with fiber photometry to
image the activity of dorsal raphe nucleus (DRN) neurons dur-
ing a reversal learning task (Matias et al. 2017). The results
suggest that DRN 5-HT neurons encode trial-by-trial prediction
errors in a positive/negative outcome-independent fashion
(termed “unsigned” prediction errors). Thus, the authors sug-
gest that DRN 5-HT may have non-specific involvement in
processing worse-than-expected rewards by modulating atten-
tion or general learning capacity, providing a potential neural
substrate for reward omission in the 5-HT system.

In addition to subcortical 5-HT systems, other circuitry has
also been shown to be involved in encoding multi-
contingency task outcomes during procedures characterized
by frequent reward omission. For example, a recent study,
utilizing an attentional set-shifting procedure in which rats
had to flexibly adapt to discriminate between different
reward-predictive features, found that a set of dorsomedial
prefrontal cortex (dmPFC) neurons reliably predicted task out-
come not only prior to outcome presentation but also post-trial
outcome encoding (Del Arco et al. 2017). The role of the PFC
is further emphasized by multi-unit recordings carried out in
rats performing a gambling task, in which subjects choose
between multiple options with different probabilities of more
or less desirable outcomes, demonstrating that poor perfor-
mance in a model of maternal separation was correlated with
a loss of synchrony between the anterior cingulate cortex and
amygdala (Cao et al. 2016). More broadly, studies in animals
carrying out reversal learning procedures have implicated a
broad network of structures in encoding outcomes on a trial-
by-trial basis including the dorsal raphe nucleus (Barlow et al.
2015; Matias et al. 2017), striatal regions (Klanker et al.
2015), and frontal cortices (Marquardt et al. 2017), suggesting
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that the neural encoding of outcome signaling is broadly rep-
resented in both cortical and sub-cortical circuitries.

In similar approaches, a number of studies have sought to
determine the 5-HT subreceptor-specific mechanisms involved
in reversal learning performance. The available evidence indi-
cates a central role for 5-HT2C receptors in mediating the in-
fluence of 5-HT in processing non-rewarded responses in re-
versal learning tasks. Specifically, a number of studies have
demonstrated that antagonism of the 5-HT2C receptor facili-
tates reversal learning (Boulougouris et al. 2008), and this effect
has been localized both temporally, to the early phases of re-
versal, and anatomically, to the lateral orbitofrontal cortex
(Alsio et al. 2015). Again, specific effects on early reversal
performance are perhaps indicative of alterations in the process-
ing of reward omission. To formally assess the contribution of
positive and negative feedback learning to discrimination and
reversal performance, a recently developed version of a
stimulus-based visual discrimination task leverages a third
probabilistically reinforced stimulus to assess learning from
positive and negative feedback (Nilsson et al. 2015; Phillips
et al. 2018). In the valence-probe visual discrimination
(VPVD) task, deterministically reinforced S+ and S— stimuli
are occasionally presented in conjunction with an S50 which is
reinforced on 50% of the trials. By comparing performance on
S+ vs S50 and S50 vs S— trials, it is possible to assess to which
stimulus more learning has accrued, thus determining whether
the subject has a bias toward learning from reward or omission
of reward. The partially reinforced discrimination trials can be
presented either during initial discrimination or following a
reversal, enabling the contribution of positive and negative
feedback learning to these distinct probe trials to be assessed.
The task is designed to assess learning from wins and losses in a
similar way to multiple procedures available for application in
humans. Notable examples include the probabilistic and transi-
tive selection tasks used to characterize reinforcement learning
biases in Parkinson’s disease (Frank et al. 2004), Schizophrenia
(Waltz et al. 2007), and depression patients (Chase et al. 2010).
Additional related tasks used in humans include probabilistic
reversal learning tasks that are designed to assess immediate
responses to positive and negative feedback (Evers et al. 2005)
and reinforcement learning tasks intended to dissociate model
based from model free learning (Gléscher et al. 2010). A com-
mon structural theme amongst these procedures is that subjects
are required to emit responses at (often visually complex) stim-
uli that are each associated with a probability of reward. Thus,
in adopting the same basic features, VPVD may represent a
viable translational tool for assessing similar biases in reinforce-
ment learning function in rodent models.

In addition to this potential for translational study, VPVD
has already been used to evaluate a potential serotonergic
antidepressant in mice (Phillips et al. 2018). In this study, it
was found that the 5-HT2C receptor antagonist, SB 242084,
impaired discrimination learning of the standard S+ > S—
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trials. This effect was particularly pronounced in the late ses-
sions, where the performance level of vehicle-treated control
animals is high. In terms of the impact of positive and negative
feedback on learning as assayed by the additional trial types,
5-HT2C antagonism appeared to shift the balance toward
learning from negative feedback. Subsequent experiments
employing a spatial probabilistic reversal learning procedure
provided further support for this finding, as the same manip-
ulation resulted in a reduction in “win-stay” proportions, an
operational index of positive feedback sensitivity.

In addition to deterministic discrimination and reversal
tasks, the role of non-rewarded responses in performance of
tasks assaying cognitive flexibility and reinforcement learning
is also demonstrated by probabilistic reinforcement learning
tasks in humans (Elliott et al. 1997) and experimental animals
(Bari et al. 2010) (Fig. 1). In these procedures, responses are
stochastically reinforced so that optimal choices are occasion-
ally non-reinforced and vice versa. Contingencies are typical-
ly arranged so that overall, approximately 20% of trials are
spuriously reinforced. Thus, a requirement for optimal
responding in such tasks is that subjects continue to response
at the highly reinforced stimulus even following spurious re-
ward omission. Sensitivity to reward and reward omission is
measured by analyzing the proportion of trials on which a
subject persists at the same stimulus following a rewarded
response (win-stay) or responds at the alternative stimulus
following a non-rewarded response (lose-shift).

A consistent finding using such procedures is that lose-shift
proportions are substantially higher than win-shift propor-
tions, indicating that experimental animals are in general high-
ly sensitive to omission of reward on a trial-by-trial basis (Bari
et al. 2010; Ineichen et al. 2012). These proportions are sen-
sitive to a number of manipulations including modulation of
5-HT and glutamate systems (Bari et al. 2010; Rychlik et al.
2016). Specifically, 5-HT appears to be particularly implicated
in encoding win-stay lose-shift proportions. In rats, the selec-
tive serotonin reuptake inhibitor (SSRI) citalopram exerts
dose-dependent effects on accommodation of spurious reward
omission (Bari et al. 2010). A recent study suggests that these
effects may at least be partially attributable to activity at the 5-
HT2C receptor, as systemic agonism of this receptor in mice
recapitulates this reduction in lose-shift proportions (Phillips
et al. 2018). Taken together, these data suggest that the 5-
HT2C receptor is a likely target for the capacity of 5-HT to
process reward omission in probabilistic tasks.

Delay and probability discounting procedures

Discounting refers to the reduction in value of a preferred
option when it becomes associated with a cost such as delay,
uncertainty, or effort (Cardinal et al. 2000; Bickel 2015). In
perhaps the simplest version of delay discounting, an incre-
mentally increasing delay is imposed between choice and
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Fig. 1 Schematic of a typical
rodent spatial probabilistic
reversal learning procedure.
Rewarding outcomes are
stochastically delivered following
responses at both spatial
locations. Lose-shift is defined as
a selection of the alternate spatial
location following a non-
rewarded trial and is taken as a
measure of negative feedback
sensitivity. Conversely, win-stay
is defined as a selection at the
same location following a
rewarded trial and is taken as an
index of positive feedback
sensitivity

a Reward Probabilities

80% 20%

Every 5 optimal choices

20% 80%

~_

reward delivery. A characteristic discounting choice curve fol-
lows a hyperbolic function, reflecting the iterative devaluation
of the large reward as a function of delay (Fig. 2). In a similar
approach, decision-making under risk can be assessed by prob-
abilistic discounting, in which the probability that a preferred
large reward is delivered is systematically reduced across a
session (Ghods-Sharifi et al. 2009; Abela and Chudasama
2013). For example, the probability of large reward delivery
may begin at 100% and then reduce by 25% across subsequent
trial blocks until the probability of large reward is small.

Despite superficial similarities, it is widely recognized that
delayed and probabilistic reinforcement recruit distinct neural
and psychological processes, as they display differential sen-
sitivity to a number of manipulations (Cardinal 2006).
Moreover, since probabilistic discounting is the only proce-
dure amongst these examples in which the outcome is unpre-
dictable, it can be methodologically leveraged to isolate pro-
cesses associated with reward omission decision-making by
comparing results obtained with this procedure with results
obtained under delay discounting. In this vein, some studies
have utilized delay and probabilistic discounting in parallel to
reveal the specific neural mechanisms involved in reward un-
certainty and reward delay, thus isolating mechanisms unique
to reward omission within an otherwise consistent framework
(Yates et al. 2015; Yates et al. 2018).

However, accurate interpretation of results acquired from
discounting procedures requires a number of considerations.
For example, a potential alternative explanation of delay
discounting data is that the response becomes uncoupled from
the rewarding outcome as the delay increases. This shift in con-
tingencies at the large reward location could result in a reduction
in associability between a response at the large reward response
contingency and the delivery of the large reward itself. Thus, in
the same sense that PR schedules could potentially be

b Lose-shift

(Negative feedback sensitivity)

C Win-stay

(Positive feedback sensitivity)

Non-rewarded
Response

Next trial
Next trial

Rewarded
Response

“Lose shift”

“Win Stay”
Response

Response

characterized as reflective of extinction processes (because the
time between the initiation of a bout of responding and the
reward deliver increases), delay discounting could also possess
an extinction component. Experimental findings suggest that
delay discounting does potentially comprise an extinction com-
ponent. For example, rats may exhibit reduced preference for
the large reward choice during the very first session in which
delays are presented (Cardinal et al. 2000). However, it has been
demonstrated that reward omission only partially resembles a
typical discounting function in well-trained animals, suggesting
that extinction learning likely cannot fully account for typical
discounting-related preference reduction (Cardinal et al. 2000).

Another set of important considerations regarding the ap-
plication of delay discounting procedures has been highlight-
ed by analysis of the effects of DAergic manipulations on
choice behavior. Specifically, the effects of d-amphetamine
on choice behavior are equivocal, with studies reporting both
decreased (Evenden and Ryan 1996; Helms et al. 2006) and
increased (Krebs and Anderson 2012) large, delayed reward
preference. Critically, the effects of this compound on choice

LR choices

Delay or
Probability of Reward

Fig. 2 Typical hyperbolic discounting curve observed as a result of
discounting procedures. Raw number or percentage choices resulting in
the large reward decrease as delay to large reward increases or probability
of large reward decreases
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behavior can be reversed by reversing the delay presentation
order, perhaps suggesting that the effects of amphetamine un-
der baseline conditions reflect a tendency to perseveratively
repeat patterns of choices emitted early in the session (Tanno
et al. 2014). Alternatively, these results may reflect the ten-
dency of d-amphetamine to accentuate the effects of condi-
tioned reinforcers (Taylor and Robbins 1984; Cardinal et al.
2000), or control timing perception, a set of cognitive process-
es in which DA is known to play a role (Meck 1983; Soares
etal. 2016). Thus, discounting procedures undoubtedly recruit
a large number of complex mechanisms and processes that
could be examined by modification of discounting procedures
to probe alternative psychological explanations. For example,
researchers may consider reversing the order of presentation
of'trial bins on some probe sessions, carrying out sessions run
in extinction and closely examine other parameters (e.g., the
presence or absence of cues during task performance).

In comparison with delay discounting, the underlying neu-
ral and pharmacological mechanisms underlying probabilistic
discounting are less well studied. However, a number of inves-
tigations have sought to determine the neuropharmacological
basis of probabilistic discounting. The available evidence indi-
cates an important role for DA, with activation of both D1 and
D2 receptors increasing the proportion of choices emitted for a
larger but riskier reward (St Onge and Floresco 2009). In ad-
dition to DA manipulations, the involvement of defined neural
structures involved in probabilistic discounting has been stud-
ied in rodent models. These studies have demonstrated the
involvement of the nucleus accumbens (Stopper and Floresco
2011), amygdala (Jenni et al. 2017), and OFC (Abela and
Chudasama 2013). In one example, Abela and colleagues
(Abela and Chudasama 2013) investigated the effects of
OFC and ventral hippocampus lesions in rats performing
touchscreen-based delay and probabilistic discounting. It was
found that, compared to sham-lesioned controls, OFC-lesioned
rats tended to show a reduced tolerance for risk but normal
tolerance of delay. However, this pattern of performance was
reversed in ventral hippocampus lesioned rats, which exhibited
reduced tolerance of delay but normal tolerance of risk. These
results suggest an important role for the OFC in encoding
reward omission in this task framework, thus demonstrating
the utility of comparison between delay and probabilistic
discounting following defined experimental interventions.

From a methodological perspective, the test species is an
important consideration in the context of the application of
discounting tasks. There are few published studies that have
successfully demonstrated the ability of mice to distinguish
between large and small rewards in the context of discounting
procedures. However, some authors have reported successful
quantity discrimination in the context of “adjusting-amounts”
procedures in which the delays are held constant and the
amount of reward delivered parametrically varied (Mitchell
2014). In our laboratory, we have found that mice are capable
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of discriminating different quantities of a palatable liquid re-
ward (strawberry milkshake) to a high level and that this pref-
erence supports robust delay and effort discounting (Phillips
et al. unpublished data; Lopez-Cruz et al. unpublished data).
Moreover, in laboratories employing variants of these tasks
with a range of apparatus, rewards, and species, it is important
to confirm that subjects are able to both discriminate reward
quantities under baseline conditions (i.e., no delay or 100%
reward probability) and that this preference is not disrupted
by the experimental manipulation.

More broadly, some studies have demonstrated that rodents
behaviorally express preferences for rewards of different
sweetness/flavor that are of the same quantity (Pardo et al.
2015) and that such preferences may be subject to a high
degree of variability between individuals (Sweis et al. 2018).
Whether the same processes would be recruited for the per-
formance of discounting tasks leveraging preferences for the
same quantity of differentially preferred rewards is an inter-
esting open question.

Trial-by-trial analysis and cross-species
translation

Assessing responses to non-reward in experimental animals
arguably necessitates trial-by-trial approaches to data analysis.
This is because the usual whole-session measures fail to cap-
ture the animal’s immediate responses to changes in the pat-
terns of outcomes. For ratio tasks, one approach to trial-by-trial
analysis is to calculate a rate of responding for each trial, the
form of which can then be subsequently described by mathe-
matical equations (Killeen 1994; Bradshaw and Killeen 2012).
In PR for example, it is typical for rodents to first emit re-
sponses rapidly, before declining toward inactivity as the num-
ber of trials increases. This decay is known to follow an expo-
nential function. A simple approach is to fit this in a trial-by-
trial manner with an equation that captures this decay
(Simpson et al. 2011; Phillips et al. 2017). From there, coeffi-
cients that represent the predicted peak response rate and decay
rate can be extracted and tested for between-group signifi-
cance. From these, decay rate is hypothesized to reflect rein-
forcer control over behavior and extinction sensitivity (Ward
et al. 2011), whereas peak response rate may reflect initial
motivation for the reward or differences in motoric capacity.
For reinforcement learning procedures, a set of recent ad-
vances have utilized trial-by-trial modeling to reveal hidden
parameters that drive task performance (Daw 2011). These
models tend to be based on prediction error learning algo-
rithms that update choice values based on the discrepancy
between expected and actual outcomes. From such models,
it is possible to extract values for a number of different param-
eters, including but not limited to learning rates, which can be
separated by wins and losses, “stickiness” (the tendency to
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repeat choices), and inverse temperature (a measure reflective
of the sharpness of choice, i.c., the degree to which a subject
chooses either in accordance with the perceived value of the
available responses). These approaches have already been ap-
plied in human (Gléscher et al. 2010), non-human primate
(Clarke et al. 2014), and rodent (Verharen et al. 2018) studies,
and have been used to investigate the roles of both DA (den
Ouden et al. 2013; Eisenegger et al. 2014) and 5-HT (den
Ouden et al. 2013; Tigaya et al. 2018) on performance. For
example, this class of approaches has shown that rats treated
with a stimulant that potentiates DAergic neurotransmission,
methamphetamine, exhibit impaired learning from losses (re-
ward omission) on a reversal learning task (Verharen et al.
2018). Additionally, in the general context of decision-
making under risk, it has been demonstrated that D2Rs play
an important role in encoding trial-by-trial choices when re-
ward omission is possible (Zalocusky et al. 2016). Thus, re-
inforcement learning modeling is a promising novel direction
for investigation of the learning mechanisms related to reward
omission across species. However, ensuring equivalent task
design as far as possible is an important requirement to fully
realize the potential of such approaches so that the extracted
parameters can be compared as far as is reasonably possible.
More broadly, in translational terms, it is beneficial to employ
tasks with a high degree of translational potential across multiple
species, not only to ensure that findings in animals are as trans-
lational as possible but also to facilitate back-translation of hu-
man findings to preclinical studies. One approach directed to-
ward this end is the operant touchscreen testing system, which
has already been used to directly assess the performance of both
rodents and humans with comparable genetic mutations on the
same cognitive tasks (Nithianantharajah et al. 2013;
Nithianantharajah et al. 2015). This approach is advantageous
not only because tasks can be applied in very similar ways in
multiple species but also because a battery of tasks can be ap-
plied using the same stimuli, responses, and reinforcers within
the same species (Bussey et al. 2008). Indeed, all the tasks
described in this review are available in the touchscreen appara-
tus, and the internal consistency of this approach may allow for
better comparison of the effects of reward omission across mul-
tiple tasks. It would in theory be possible to apply a large set of
the preclinical tasks described here in the same cohort of exper-
imental animals, thus facilitating more precise comparison of
results and a better understanding of the mechanisms involved
in different aspects of behavioral responses to reward omission.

Conclusions

Clinical data suggest that the processing of the omission of
reward is a dysregulated process in a number of neuropsychi-
atric and neurodegenerative conditions including MDD,
Parkinson’s disease, obsessive compulsive disorder (OCD),

and addiction. A clear example is MDD, in which oversensi-
tivity to reward omission manifests as impairments in rein-
forcement learning in laboratory tasks and may constitute a
central pathological process in the maintenance of low mood
in this disorder (Elliott et al. 1997). Failures in appropriate
reward omission processing can be hypothesized to result
from dysregulation of a number of neural systems. For exam-
ple, both DA and 5-HT appear to play a particularly important
mechanistic role in this domain in both health and disease.

A large number of procedures at the preclinical level fea-
ture omission of rewarding outcomes, though the focus and
interpretation of many such studies often hinge on response to
reward. A good deal of progress has been made in elucidating
the neural basis of processing reward omission using such
tasks. Some conclusions regarding behavioral effects across
preclinical tasks can be drawn. For example, reward omission
tends to promote decreased vigor in single contingency tasks
whilst tending to promote choice switching in multiple con-
tingency tasks. These baseline tendencies can be affected by
manipulation of the neuromodulatory systems involved in
encoding these responses, specifically DA and 5-HT.
Importantly, it is known that whilst these systems may possess
distinct behavioral functions, they closely interact in the con-
text of encoding wins and losses (Daw et al. 2002).

Given the clear importance of reinforcement learning def-
icits from a clinical perspective, we suggest that researchers
continue to develop preclinical procedures specifically de-
signed to assess processing of, and response to, reward omis-
sion, and that trial-by-trial analytical techniques are applied to
maximize translational potential. Moreover, we suggest the
application of multiple types of preclinical procedures to study
this set of clinically relevant domains, as patterns of
responding are divergent across tasks and afford an unprece-
dented opportunity to dissect the precise neural circuitry in-
volved in encoding reward omission responses.
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