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Abstract
Traumatic spinal cord injury (SCI) results in direct and indirect damage to neural tissues, which results in motor and sensory
dysfunction, dystonia, and pathological reflex that ultimately lead to paraplegia or tetraplegia. A loss of cells, axon regeneration
failure, and time-sensitive pathophysiology make tissue repair difficult. Despite various medical developments, there are
currently no effective regenerative treatments. Stem cell therapy is a promising treatment for SCI due to its multiple targets
and reactivity benefits. The present review focuses on SCI stem cell therapy, including bone marrow mesenchymal stem cells,
umbilical mesenchymal stem cells, adipose-derived mesenchymal stem cells, neural stem cells, neural progenitor cells,
embryonic stem cells, induced pluripotent stem cells, and extracellular vesicles. Each cell type targets certain features of SCI
pathology and shows therapeutic effects via cell replacement, nutritional support, scaffolds, and immunomodulation
mechanisms. However, many preclinical studies and a growing number of clinical trials found that single-cell treatments had
only limited benefits for SCI. SCI damage is multifaceted, and there is a growing consensus that a combined treatment is
needed.
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Introduction

Spinal cord injury (SCI) is a devastating injury that is a

source of extensive psychological and economic burden for

patients and healthcare systems1,2. It is estimated that SCI

affects more than 1 million people in the United States alone,

with approximately 17,000 new cases each year3. Current

treatments include spinal decompression surgery, treatment

for spasticity, and rehabilitation therapy. Despite some

advances in clinical management that improve patient’s

quality of life4,5, SCI recovery is very limited, and finding

alternative treatments for paralysis remains a top priority.

The time-sensitive and complex pathophysiology make it

particularly difficult to investigate therapeutic targets for

SCI6. After the initial mechanical injury, there are a series

of secondary events that worsen the condition of patients7.

The inflammatory response, gliosis hyperplasia, formation

of an inhibitory environment8, and scar formation impede

axonal regeneration and limit the potential for many

therapeutic interventions (Fig. 1).

Cell therapies exhibit neuroprotective and nerve regen-

eration potential in SCI with different targets and responses

to stimuli, such as regulating inflammatory responses,

providing nutritional support, and improving plasticity.

With these excessive potential mechanisms, various cells

from different tissue sources, including bone marrow

mesenchymal stem cells (BM-MSCs), umbilical mesenchy-

mal stem cells (U-MSCs), adipose-derived mesenchymal

stem cells (AD-MSCs), neural stem cells (NSCs), neural

progenitor cells (NPCs), embryonic stem cells (ESCs),

induced pluripotent stem cells (iPSCs), and extracellular

vesicles (EVs), were studied. Previous reviews discussed

cell therapy for SCI, but there is a lack of systematic eluci-

dation, such as the original function of these cells, the
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Figure 1. Pathological characteristics of spinal cord injury at different stages. Neuronal apoptosis and axonal damage are abundant in the
acute stage. At the subacute stage, there is a large loss of neurons, axons, and myelin. Activated astrocytes, activated microglia, and
macrophages accumulate in the injury site. At the chronic stage, a glial scar and an injury cavity further develop, and the inhibitory
microenvironment is formed.
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function of modified cells, and the effect of combined ther-

apy. This review performed an up-to-date summary of the

current research status, challenges, and prospects for stem

cell therapy in SCI to provide an overview of this field9–13

(Table 1).

Stem Cell Transplantation Strategy

Bone Marrow Mesenchymal Stem Cells

BM-MSCs are partially differentiated progenitor cells that

are present in adult bone marrow and support sustained

hematopoiesis and bone regeneration60. These cells were

originally considered pluripotent, with the ability to differ-

entiate into neurons and glial cells. However, additional

studies showed that BM-MSC therapy primarily involved

in cell fusion and transdifferentiation instead of cell differ-

entiation. Early in vivo studies demonstrated that BM-MSC

introduction into the lesion site of spinal cord contusion rats

resulted in the formation of tissue bundles of astrocytes and

neuronal predecessors15. The introduction of BM-MSCs to

the injury site reduced inflammatory reactions17, astroglial

scarring density16, and blood-spinal cord barrier (BSCB)

leakage18; modulated astrogliosis; alleviated neuropathic

pain; and improved the functional recovery of hindlimb

movement, which may involve the matrix metalloproteinase

(MMP) 2/STAT3 pathway61. Conditioned medium from

MSCs exhibited a therapeutic effect on SCI and may regu-

late the autophagy- and survival-related proteins Olig 2 and

HSP7019.

Further investigation of the BM-MSC intravenous graft

model indicated that functional recovery was achieved via

the expansion of neurotrophic factors, including nerve

growth factor (NGF), brain-derived neurotrophic factor

(BDNF), and vascular endothelial growth factor (VEGF)14.

NGF and BDNF are key regulators of neuronal differentia-

tion, and VEGF is a key factor in the initiation and mainte-

nance of angiogenesis and vasculogenesis induction62,63.

Besides, BM-MSCs may be used as carriers due to their

tropism to the injury sites and of interleukin-13 (IL-13),

which is an inducer of the anti-inflammatory microglia/

macrophage phenotype that significantly improved motor

function recovery and decreased demyelination64.

Genetic engineering of BM-MSCs is an encouraging

method to enhance their therapeutic effect, such as the reg-

ulation of specific factors or proteins. Insulin-like growth

factor 1 (IGF-1) is an important factor for maintaining the

characteristics of NPCs. IGF-1 overexpression of BM-MSCs

strengthens antioxidant reactions and improves basso mouse

scale (BMS) scores65. Other approaches, such as modifica-

tion of the microRNA-124 gene66, silencing the Nogo-66

receptor gene67, inhibition of tumor necrosis factor a
(TNF-a)68, and overexpression of neurotrophin-3 (NT-3)69,

the chemokine stromal-derived factor-170, and neurotrophic

factor-derived glial cell (GDNF) genes71, exhibited better

efficacy than original BM-MSCs in motor function and

surrounding axon densities. The effects of individual cell

transplantation are enhanced by cotransplantation with cells

from other sources. These coupling strategies are primarily

Table 1. The Effects of Different Stem Cells on Spinal Cord Injury.

Cell type Effects

BM-MSCs Secrete neurotrophic factors14

Promote axonal regeneration15

Reduce astroglial scarring density16

Reduce inflammatory reactions17

Reduce BSCB leakage18

Regulate autophagy19

Alleviate neuropathic pain20

Improve bladder compliance21

U-MSCs Protect neurons22

Inhibit glial scars23

Decrease reactive astrocytes24

Attenuate ischemic compromise of the spinal
cord25

Alleviate allodynia and hyperalgesia26–28

Improve muscle tension, bladder function,
and urine control29

Improve SSEP30

Alleviate neuropathic pain30

AD-MSCs Protect neurons31–34

Promote cell survival and tissue repair35

Suppress immune activity36

Secrete anti-inflammatory factors36

Activate angiogenesis37

Reduce the formation of cavities36

Improve sensory and motor functions37

Ameliorate erectile dysfunction31–34

NSCs and NPCs Increase neuroprotective cytokines38,39

Improve cell proliferation38

Increase myelination40

Modulate the inflammatory response41

Promote respiratory recovery42

ESCs Promote astrogliosis43,44

Enable axons to pass CSPG45

Support nodal architecture46,47

Attenuate neuropathic pain48

iPSCs Improve neurotrophic factor secretion49

Promote axonal sprouting50

Inhibit demyelination51,52

Promote synapse formation53

Inhibit glial scar50

Reduce lesion size54

Improve respiratory function54

EVs derived from
stem cells

Regulate axon regeneration55

Protect cells from apoptosis55

Inhibit the activation of astrocytes56

Inhibit inflammation57

Reduce injury size58

Protect the integrity of the BSCB59

AD-MSC: adipose-derived mesenchymal stem cell; BM-MSC: bone marrow
mesenchymal stem cell; BSCB: blood-spinal cord barrier; CSPG: chondroi-
tin sulfate proteoglycan; ESC: embryonic stem cell; EV: extracellular vesicle;
iPSC: induced pluripotent stem cell; NPC: neural progenitor cell; NSC:
neural stem cell; SSEP: somatosensory-evoked potential; U-MSC: umbilical
mesenchymal stem cells.
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focused on MSCs and Schwann cells (SCs) because these

cells regulate the microenvironment and improve the sur-

vival, differentiation, and proliferation of cotransplanted

cells. Various studies reported that MSCs enhanced the

effects of SCs72 and olfactory ensheathing cells (OECs) by

decreasing cell apoptosis73.

A longitudinal study of BM-MSC-based treatment of cer-

vical SCI patients expanded autologous BM-MSCs and

introduced these cells via intradural injection. Improved

upper limb motor function and magnetic resonance imaging

(MRI) images were observed in 6 of 10 candidates 6 months

after transplantation21. Six patients with complete SCI

received autologous MSC and SC therapy, and the results

showed improvements in american spinal cord injury asso-

ciation (ASIA) grade, bladder compliance, and axonal regen-

eration. Similarly, a patient with chronic SCI received MSC

therapy, and neurological function and the ability to walk

were improved20. However, a phase III clinical trial demon-

strated that single MSC application was safe but had little

therapeutic effect. This result may be related to the timing of

MSC transplantation because the homing capacity of stem

cells is not substantial in chronic SCI74. Because of the con-

troversial reports on the extent of patient responses to BM-

MSC therapies, the efficacy of BM-MSCs must be further

confirmed75,76. Several trials are ongoing, and completion of

these studies will provide needed information to initiate a

larger investigation of the efficacy of BM-MSC therapies.

Overall, BM-MSC therapy is beneficial for SCI recovery by

improving the microenvironment of the injury site, enhan-

cing nutritional support, modulating the inflammatory

response, and alleviating BSCB leakage. Patients avoid

immunoreaction by receiving autologous cell transplanta-

tion. Therefore, BM-MSCs have huge potential for SCI

treatment due to their reduced immunogenicity and

improved availability. However, the therapeutic effects,

homing ability, survival, and proliferation of single-cell

types are limited. Further studies should focus on these

aspects and combinational therapy to improve the efficacy

of BM-MSCs.

Umbilical MSCs

Recent studies investigated MSCs separated from umbilical

cords and adipose tissue77,78. U-MSCs possess the ability to

develop into a homogeneous population that expresses

neural markers and develops neural phenotypic features79.

An early study found that U-MSCs migrated into the injury

site but not noninjured areas after transplantation80, which

lays the foundation for their therapeutic effects. Previous

studies demonstrated that U-MSCs protected neurons from

apoptosis22, inhibited the formation of glial scars via regu-

lation of MMP223, attenuated ischemic compromise of the

spinal cord25, decreased reactive astrocytes24, improved

motor function, and alleviated allodynia and hyperalgesia

after SCI in animal experiments26–28. U-MSCs demonstrated

a better effect for a wide dynamic range of neurons than

BM-MSCs28. Park and colleagues found that transplanted

U-MSCs exhibited a better effect 1 week after SCI than at

12 h and 2 weeks, which indicates a potential time point for

the treatment of SCI81.

Wnt proteins are involved in neural precursor (NP) dif-

ferentiation and axon development, and Wnt-3a plays impor-

tant roles in spinal cord dorsal interneuron differentiation.

To enhance the efficacy of U-MSCs, researchers established

Wnt3a-secreting U-MSCs by gene modification, which

showed a better therapeutic effect than primary U-MSCs in

SCI rats. Rats that received Wnt3a-MSCs had increased

motor function scores and elevated expression of axonal

regeneration-related proteins, including choline acetyltrans-

ferase, growth-associated protein 43, and microtubule-

associated protein 282. Cotransplantation may complement

and synergize to improve single-cell therapies83.

The cotransplantation of human U-MSCs and human NSCs

exhibited the best efficacy compared to that of transplanta-

tion of hU-MSCs or hNSCs alone84.

U-MSCs improved motor function in the lower limb and

expanded the atrophied spinal cord after injection into the

subarachnoid, intradural, or extradural space of the spinal

cord in patients with compressed fractures85. After U-MSC

transplantation, 7 of 10 patients with thoracolumbar SCI had

obvious improvements in movement, muscle tension,

bladder function, and urine control compared to those of

patients who received rehabilitation therapy alone29. The

somatosensory-evoked potential (SSEP) and clinical mani-

festations of neuropathic pain of a patient with 2-year com-

plete cervical SCI were significantly improved and

alleviated 1 year after U-MSC transplantation, and the phy-

siological function of myelinated large fibers was reflected

by the SSEP30. U-MSCs are conveniently obtained because

the umbilical cord is generally discarded. U-MSCs are

obtained from umbilical blood, perivascular regions, and the

umbilical vein subendothelium without ethical issues, and

these cells are beneficial in the recovery of SCI via different

mechanisms24. Further efforts are needed to fully assess the

effectiveness of UC-MSC transplantation.

Adipose-derived MSCs

AD-MSCs and BM-MSCS share some similarities, such as

morphology and cell surface antigen expression, but they

differ in proliferation rates and multilineage capabilities86.

Adipose tissue contains more somatic stem cells than bone

marrow, which makes AD-MSCs a good candidate for

MSCs, especially with adipose tissue availability87,88.

AD-MSC transplantation demonstrated satisfactory

effects in chronic and acute SCI. Intravenous administration

of AD-MSCs activates angiogenesis and upregulates ERK

and Akt, which improves hindlimb motor function37.

AD-MSCs also promote cell survival and tissue repair by

increasing the expression of beta3-tubulin, BDNF, and

ciliary neurotrophic factor (CNTF)35. AD-MSCs may
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protect neurons and ameliorate erectile dysfunction in rats

with SCI31–34.

In addition to the direct effects, human adipose-derived

stem cells transdifferentiate into neuron/motoneuron-like

cells, which reduce the formation of cavities and suppress

immune activity via the inhibition of astrocyte reactivation

and secretion of anti-inflammatory factors36. Hypoxic

preconditioning-treated AD-MSCs promoted cell survival

and increased the expression of marker genes in

DsRed-engineered neural stem cells, which enhanced the

effect of the combined treatment of stem cells and gene

therapy for SCI89.

Although AD-MSCs transplantation has been investi-

gated in animal SCI models, large longitudinal clinical trials

using stem cells derived from adipose tissue are lacking.

Early studies investigating the safety of intravenous

AD-MSCs showed no tumorigenicity or other adverse side

effects. One study investigated the effects of autologous

transplantation of AD-MSCs in 14 patients with SCI who

underwent intrathecal transplantation. ASIA sensory and

motor scores and electrophysiological evaluations, including

MRI and electromyography, were used to determine the

effect. After the intervention, 10 patients showed sensory

improvement, but the size of the lesion visualized using MRI

remained stable. None of the patients treated with AD-MSCs

had serious adverse events90. Some barriers should be elu-

cidated before clinical translation, such as standard protocols

of cell generation, cell characteristics, and clear disclosure of

the underlying mechanism, and larger experimental animals

that are closer to humans should be used.

NSCs and NPCs

NSCs and NPCs are pluripotent cells that are isolated from

the subventricular region of the ventricles and hippocampus

of the brain and the ependymal region of the central canal of

the spinal cord1,91–96. These cells are capable of differentiat-

ing into specific neuronal or glial cells, enhancing remyeli-

nation and providing nutritional support, which makes them

suitable for cell transplantation therapy in SCI38.

NPCs primarily differentiate into oligodendrocytes97,98,

increase myelination40, and improve hindlimb function. One

study also demonstrated that transplantation of NPCs

obtained from the subventricular zone promoted respiratory

recovery after SCI, which did not work by differentiation42.

NPC transplantation increased the expression of NGF,

CNTF, BDNF, IGF-1, and GDNF, which are beneficial for

SCI recovery39. NPCs also modulate the inflammatory

response41 via inhibition of the secretion of reactive macro-

phages and T cells and neuroprotective cytokines99. Previous

studies revealed that the transplantation of NPCs during the

acute stage demonstrated better efficacy than during the sub-

acute and chronic stages100, and transplantation in intact soft

tissue may produce better efficacy than transplantation in the

injury site during the subacute period101.

Modified NSCs may exhibit better therapeutic efficacy

than naı̈ve cells. Inhibition of leucine-rich repeat and immu-

noglobulin domain-containing protein (LINGO)-1 in NSCs

facilitated neuronal differentiation and recovery in SCI

rats102. Transplantation of recombinant NSCs with VEGF

reduced transient receptor potential vanilloid (TRPV1),

increased the release of neurotrophic factors, and promoted

neuronal recovery103. NSCs with high expression of

E-cadherin, a transmembrane adhesion protein, increased the

survival of NSCs, decreased the release of inflammatory

factors, and promoted functional recovery104. Overexpres-

sion of the antiapoptotic gene Bcl-XL105, upregulation of

miR-124106, upregulation of NT-3107, or polarization toward

a more oligodendrogenic fate108 also achieved better recov-

ery. Mild hypothermia109 or hypoxia pretreated110 of NSCs

showed a more favorable effect on SCI than untreated NSCs

by improving cell proliferation and upregulating neuro-

trophic and growth factors. Combined with MSCs111, SCs112

and OECs113 also enhanced neuronal differentiation and cell

survival, which further improved motor recovery.

A 2018 study demonstrated that perilesional intramedul-

lary injections of NSCs were safe, but the dose should be

verified114. Twelve amyotrophic lateral sclerosis patients

received transplantation of human spinal cord–derived

NPCs, and the results showed that NPC transplantation was

safe, which initiated further clinical trials115,116. NPCs

showed great potential for SCI treatment, but the functional

recovery was limited. Quintessential combinational methods

have raised much hope to enhance the efficacy of NPCs.

However, rodents were generally used as subjects in previ-

ous studies, and some specific larger animals that are closer

to humans should be used as experimental subjects to

address the problems and move toward clinical

translation117.

Embryonic Stem Cells

ESCs are multipotent stem cells that are capable of differ-

entiating into new cell types in the body. ESCs differentiate

into neurons and glial cells to replace nonfunctional cells or

tissues in SCI118,119. However, their undifferentiated form is

rarely used due to the risk of tumorigenicity. Previous stud-

ies demonstrated that ESC transplantation was effective for

SCI recovery120–122. ESCs transfected with cell adhesion

molecule L1, which promotes neuronal survival and neurite

sprouting, had promising potential for SCI treatment122.

ESC-derived definitive neural stem cells express myelin

basic protein46,123, support nodal architecture, and display

multilayer myelination in SCI animal models46,47. Human

embryonic stem cell–derived oligodendrocytes43,124 or

oligodendrocyte progenitor cells43,44 and motoneuron pro-

genitors promote astrogliosis and enhance motor recovery.

ESC-derived neural lineage cells enable axons to pass

through chondroitin sulfate proteoglycan (CSPG), which is

a tremendous barrier to axonal regeneration, and exhibit

therapeutic potential for SCI treatment. The expression of

Huang et al 5



nerve glial antigen 2 and MMP945 is involved in this process.

Transplantation of GABAergic neurons derived from mouse

ESCs attenuated neuropathic pain and increased the paw

withdrawal threshold and vocalization threshold48.

A clinical study in 2014 showed that human ESC-derived

oligodendrocyte progenitor cell transplantation was safe for

SCI patients125,126. Another two studies in 2016 demon-

strated that SCI patients had restored body functions after

intervention with human ESCs127, and there were no serious

complications. However, the pluripotency of ESCs may

result in tumor formation due to their considerable prolifera-

tive ability. There may be genetic changes during the cell

culture process128. Therefore, it is critical to optimize the

differentiation protocol to decrease tumor occurrence and

control cell populations to match the different recovery

requirements in SCI patients129.

Induced Pluripotent Stem Cells

There is significant controversy about ESCs due to their

origin. iPSCs, which share the same pluripotent characteris-

tics as ESCs, may neutralize this problem. iPSCs are gener-

ated from reprogrammed somatic cells12,130–132, which are

separated from accessible tissue, such as autologous skin,

which avoids ethical issues, allows autologous cell

transplantation, and prevents rejection.

NPs derived from a clone of human iPSCs led to restora-

tion of the injury site133. IPSCs-derived neural stem/progeni-

tor cells (iPSC-NS/PCs) inhibited demyelination51,52 and

promoted synapse formation53 and neurotrophic factor

secretion, which improved functional recovery in common

marmosets after SCI without tumor formation49. Research-

ers found that only spinal cord-type NPCs from human

iPSCs exhibited efficacy, compared to that with forebrain-

type NPCs from human iPSCs, which indicates the impor-

tance of the regional identity134. A comparative study

demonstrated that iPSC-NPs exhibited the best effect due

to their strong graft survival, glial scar inhibition, and axonal

sprouting enhancement compared to those of BM-MSCs and

NPs derived from an immortalized spinal fetal cell line

(SPC-01)50. Different transplantation regions may lead to

different effects, and researchers found that intraspinal

implantation (cells present in the tissue) may produce better

long-term efficacy than intrathecal implantation (paracrine

only mechanism)135.

Modified human iPSC-derived astrocytes reduced lesion

size and morphological denervation of respiratory phrenic

motor neurons and improved respiratory function54.

Similarly, g-secretase inhibitors promoted iPSC-derived

NPCs maturation and increased neuronal commitment via

regulation of the NOTCH signaling pathway136.

A case report demonstrated that NSCs derived from

iPSCs obtained from a healthy 86-year-old male differen-

tiated into neurons and glia, and axons extended long dis-

tances and formed synapses after cell transplantation137.

Another study suggested that the iCaspase9 gene alleviated

adverse events after iPSC-derivative transplantation138.

Another study demonstrated that hydrogels modified with

an RGD peptide and platelet-derived growth factor

(PDGF-A) promoted cell survival and differentiation and

reduced teratoma formation139. However, there are opposite

results that human iPSC-derived NPCs do not provide ben-

eficial results for SCI therapy. Some of these studies had

limitations with graft survival or time to transplant140,141.

The tumorigenesis of iPSCs and the prohibitively high

cost–benefit for developing treatments142 hinder the clinical

translation143. It is crucial to develop optimized solutions,

including standard protocols for collecting cells, the ideal

time for cell delivery, and the safe and effective routes of

administration in clinical treatment.

EVs Derived From Stem Cells

EVs have come into the spotlight in recent years because of

their satisfying therapeutic potential. They are small vesicles

(100–1,000 nm) secreted from a variety of cells and have a

lipid bilayer membrane. EVs work as cell communication

messengers by carrying nucleic acids, proteins, and

lipids144,145. EVs are not a single type of vesicle but consist

of ectosomes, microvesicles, and exosomes. Exosomes, with

diameters of 50–150 nm, are remarkable carriers with low

immunogenicity and high biocompatibility146, which protect

their cargo from degradation and maintain their biological

activity147.

EVs exhibit robust chemotaxis to the injury site and coop-

erate with neurons. Recent studies reported that MSC-57 and

NSC-derived55 EVs inhibited inflammation, protected cells

from apoptosis and reduced injury size, and the mechanism

may involve autophagy55 and the microRNA-21-5p/FasL

gene axis58. Lankford et al. found that exosomes accumu-

lated in the injury sites of the spinal cord and spleen after IV

injection148,149. Other studies demonstrated that exosomes

derived from BM-MSCs were primarily incorporated in

microglial cells, downregulated nuclear factor kappa-B150,

protected the integrity of the BSCB49, inhibited the activa-

tion of A1 astrocytes56, and played a protective role in rats

after SCI.

Exosomes derived from gene-modified stem cells showed

more therapeutic potential than exosomes derived from

native stem cells. For example, exosomes derived from

miR-133b-modified adipose-derived stem cells regulated

axon regeneration and improved neurological function after

SCI55. Phosphatase and tensin homolog (PTEN) exists in

neurons and axons, and it plays an inhibitory role in the

growth of axons. Therefore, suppression of PTEN in

MSC-derived exosomes showed desirable therapeutic

effects on SCI151,152. Similarly, the downregulated expres-

sion of phosphatase and tensin homolog pseudogene

1 (PTENP1) in exosomes derived from differentiated P12

cells and MSCs promoted neuronal survival and functional

recovery by regulating the expression of miR-19b and miR-

21153. There was an obvious decrease in miR-544 expression
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after SCI, and exosomes derived from miR-445-modified

MSCs improved functional recovery in rats after SCI154.

MiR-126 loaded in MSC-derived exosomes enhanced angio-

genesis, inhibited inflammation, and had an encouraging

effect on SCI155. Similarly, miR-21 deficiency in exosomes

derived from MSCs also displayed desirable effects156. Iron

oxide nanoparticles (IONPs) carried by exosome-mimetic

nanovesicles (NVs), which were derived from IONP-

treated MSCs, enhanced NV homing capacity and further

promoted the therapeutic potential of NVs in SCI157. Since

few studies demonstrated the pathophysiology of EVs in

SCI, further studies are needed to identify the molecular

mechanism and related signaling pathways of the therapeutic

effects of EVs. Some nontargeted EVs have also been

reported158, and normalizing the isolation and acquisition

of EVs is paramount before translating this therapeutic

method to SCI patients clinically159.

Other Combinatorial Methods

Neuroprotection

Neuroprotective drugs aim to minimize pathological damage

and preserve neural tissue. Only methylprednisolone has

been clinically proven to provide benefits post-SCI, but it

also brings some risks, including gastrointestinal bleeding,

wound infection, and thromboembolism160. However,

increasingly promising neuroprotective interventions are

under investigation (e.g., chondroitinase161,162, alginate

scaffolds163, TNF-a antagonists, anti-Nogo antibodies,

minocycline, and Lavandula angustifolia extract164). These

interventions may be used before or during cell transplanta-

tion to create a microenvironment that improves stem cell

efficacy. Therapeutic hypothermia in combination with cell

therapy has been successfully used for neuroprotection.

Hypothermia lowers the basal metabolic rate and reduces

inflammation to provide synergistic action in SCI165.

Minocycline synergistically improved the anti-

inflammatory effects of MSCs166. Although the initial

results are encouraging, additional work is needed to opti-

mize the efficacy of combination treatment. The combina-

tion of BM-MSC transplantation and propofol injection

effectively improved neuroprotection167, increased horse-

radish peroxidase-positive nerve fibers, and shortened the

latencies of SSEPs and motor-evoked potentials in the hin-

dlimb168. Zhang et al. injected NSCs into the tibial nerve and

investigated the effect of lithium chloride (LiCl) on the sur-

vival of neurons and axons. They found that LiCl promoted

NSC differentiation, and this combinational therapy

increased the regeneration of axons in the tibial nerve and

decreased the formation of glial scars169. Electroacupunc-

ture170, folic acid, substance P171, and granulocyte-

macrophage colony-stimulating factor172 also exhibited

synergetic effects by improving NSC proliferation and neu-

ron survival in SCI rats.

Biomaterials

Although stem cell therapy has gained momentum in the

field of SCI therapy, it has room for improvement. Biologi-

cal material use is an encouraging approach for cell therapy

by bridging the lesion cavity, replacing damaged extracellu-

lar matrices, and integrating the host tissue and transplanted

cells. Matrigel is primarily composed of laminin, collagen

IV, heparan sulfate proteoglycans, and growth factors that

support cell survival and differentiation173; increase neuro-

nal markers; decrease fibrosis, astrogliosis markers, and

inflammatory factors174; and enhance behavioral recovery

in SCI animals. Hydrogels possess a three-dimensional

(3D) network structure that provides the benefits regarding

electrostatic forces, steric hindrance, and entanglement.

These gels are injected or implanted directly because of their

soft texture. Laminin-coated hydrogel enhanced the viability

of IPSC-NPs and promoted host axon and astrocyte growth

in the lesion site175. Ischemia and hypoxia following the

primary injury may exacerbate the pathological process of

SCI and extremely impede functional recovery after SCI.

To address the ischemia and hypoxia in SCI, prevascularized

nerve conduits based on the stem cell sheet were designed

and implanted in the injury spinal cord, which exhibited

satisfactory potential176. Self-assembling peptides form 3D

nanofibers via self-assembly after direct injection to the

injury site, act as structural framework, and regulate the

microenvironment. The use of NPCs with the self-

assembling peptide QL6 reduced cystic cavity formation and

inflammation and enhanced synaptic connections by reduc-

ing astrogliosis and CSPG, which improved forelimb func-

tion in a cervical injury SCI model177. A previous study

reported that chondroitinase ABC (ChABC) enhanced the

therapeutic effect of NPCs in SCI, but the ChABC delivery

efficiency was unsatisfactory. Nori et al. manufactured

NPCs biased toward an oligodendrogenic fate and upgraded

the ChABC delivery system via a crosslinked methylcellu-

lose biomaterial, and this combinatorial therapy promoted

oligodendrocyte differentiation, remyelination, and synaptic

connectivity178. An N-cadherin-modified linearly ordered

collagen scaffold promoted the migration and differentiation

of endogenous neural/progenitor stem cells and produced a

desirable therapeutic effect in rats after SCI179. The collagen

microchannel scaffold and paclitaxel-liposome combination

induced neuronal differentiation of NSCs and growth of

neurons and axons, which exhibited great potential for SCI

treatment180. Other scaffolds, such as silk fibroin combined

with neurotrophic factors181,182, fibrin scaffolds containing

growth factors183, polycistronic delivery of IL-10 and

NT-3184, also promoted the differentiation, proliferation, and

viability of transplanted cells, which has desirable therapeu-

tic potential for SCI treatment.

Many kinds of biomaterial scaffolds have been used to

deliver MSCs to damaged spinal cords. Unlike NPCs, MSCs

likely provide nutritional support, promote axonal regenera-

tion and angiogenesis, and reduce inflammation. Modified

Huang et al 7



biodegradable chitin conduits in combination with BM-MSC

transplantation improved the microenvironment for MSCs,

prevented scar formation, and promoted recovery after right

spinal cord hemisection injury185. Superparamagnetic iron

oxide labeling of BM-MSCs coupled with magnetic gui-

dance offers a promising avenue for the clinical treatment

of SCI by enhancing the homing efficiency of cells186.

AD-MSCs encapsulated in a fibrin matrix, which is a bio-

polymer that simulates the natural microenvironment, inhib-

ited injury cavity expansion, increased tissue retention, and

promoted recovery of function and structure187. However,

some previous studies demonstrated that some biomaterials

stimulated a disadvantageous microenvironment in the

lesion site, such as a proinflammatory milieu188. Other tissue

engineering scaffolds, such as acellular spinal cord scaf-

folds189, polycaprolactone190, 3D gelatin methacrylate

hydrogels191, and 3D fibrin-based scaffolds192, enhanced

axonal regeneration and tissue remodeling and improved the

therapeutic effect of stem cells. In general, the use of biolo-

gical materials is a promising combination approach for SCI

cell therapy by improving cell implantation, delivering cer-

tain factors, promoting neural marker expression and axonal

regeneration, inhibiting the inflammatory response, and con-

tacting the injured central nervous system (CNS) tissue.

Challenges and Prospects

Stem cells have neuroregenerative and neuroprotective

effects in SCI cell therapy. Cell-based therapies in SCI have

different mechanisms in functional recovery, such as immu-

nomodulation, cell replacement nutrition, and scaffold

support. However, stem cell therapies present particular

safety concerns. First, cell therapy–related immunotoxicity,

immunogenicity, and tumorigenicity are often discussed in

preclinical studies. Second, limited cell survival and limited

integration were common obstacles in previous studies with

different experimental designs, including cell number, tim-

ing of treatment193, and strategies of transplantation194.

Third, it is important to ensure the genetic stability, genera-

tion consistency, and storage safety162 of stem cells195.

The quality and repeatability of stem cell transplantation are

critical to clinical translation. Small differences in cell origin

and growth conditions may have a significant impact on the

outcomes196,197. Fourth, the mechanism of the effects and

biological properties should be further investigated to guide

the clinical application187. Finally, small sample size, lim-

ited supervision, and poor quality are the common problems

of most registered clinical trials that hinder the development

of stem cell therapy198. Standard protocols are difficult to

confirm due to the heterogeneity of the injury type and level,

the particular time of treatment, and the different number of

transplanted cells.

Encouraging preclinical studies, coupled with publicity,

led to early clinical deployment, but the results were mixed.

One specific type of stem cell achieves only a limited ther-

apeutic effect. Therefore, many researchers are committed to

enhancing the efficacy of stem cells. The use of genetic

engineering technology, cell coupling, combinational ther-

apy with neuroprotective agents, trophic factors, biomater-

ials, and rehabilitation may help improve the therapeutic

effectiveness of stem cells in heterogeneous patient popula-

tions. Research is needed to optimize their use.

Conclusion

Although cell therapy offers important promise for SCI treat-

ment, there are many obstacles to clinical translation.

These obstacles include suitable cell types and sources, cell

survival, quality and repeatability of stem cells and optimal

transplantation dosage and timing. There are endogenous

differences between experimental animals and humans, and

much work should be completed before clinical transforma-

tion. Each type of stem cell has unique benefits. Previous

studies already focused on how to enhance the efficacy of

stem cells and made positive achievements. Future treat-

ments may use a variety of novel strategies to address the

problems of SCI.
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