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Modeling is widely used in biomedical research to gain insights into pathophysiology

and treatment of neurological disorders but existing models, such as animal models

and computational models, are limited in generalizability to humans and are restricted in

the scope of possible experiments. Robotics offers a potential complementary modeling

platform, with advantages such as embodiment and physical environmental interaction

yet with easily monitored and adjustable parameters. In this review, we discuss the

different types of models used in biomedical research and summarize the existing

neurorobotics models of neurological disorders. We detail the pertinent findings of these

robot models which would not have been possible through other modeling platforms. We

also highlight the existing limitations in a wider uptake of robot models for neurological

disorders and suggest future directions for the field.

Keywords: neurorobotics, robot models, computational models, simulation, pathophysiology, neurophysiology,

artificial neural networks

1. INTRODUCTION

Modeling is widely used in contemporary biomedical research to gain insights into pathophysiology
and treatment of neurological disorders. Models may share physiological, behavioral, or other
characteristics with humans yet allow for manipulations that are not possible in human studies,
and allow faster data collection. They have contributed to our knowledge in a variety of fields by
improving our understanding of pathophysiology, from genetics andmolecular biology to systemic
neural disturbance and behaviors, and guide the search for therapeutic solutions (Ericsson et al.,
2013). However, the use of animal models for predicting the effectiveness of treatment strategies
in clinical trials has remained controversial due to (1) their translational failure, which may be
explained in part by methodological flaws in animal studies and critical disparities between the
animal models and the clinical trials testing treatment strategies (van der Worp et al., 2010), and
(2) the guiding principles for ethical use of animals in research, in particular the “Replacement,
Reduction, and Refinement” principle (Russell and Burch, 1960). Furthermore, there is increased
focus in ascertaining the impact of social interactions on neurological disorders (Kennedy and
Adolphs, 2012). The rise of computational modeling and robotics may complement and overcome
some of these limitations. This review aims to expand and summarize all published robot models
designed to mimic prevalent neurological disorders by detailing their methodologies, experimental
paradigms, and translational outcomes. It further aims to contextualize robotics within the various
modeling platforms; and act as a reference guide to allow further development of the approach.
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1.1. Computational Neural Models
Computational neural models can focus on specific parts of
the nervous system in isolation, or account for changes to a
single neural population in a complex multilevel system, as
well as extract highly-detailed data that are difficult to obtain
from animal models on causative mechanism, neural dynamics,
and treatments (Humphries et al., 2006, 2018). Nevertheless,
computational neural models are limited by being a partial
implementation of a complete system. For example, fully
modeling the human brain is not yet computationally tractable
due its high complexity architecture—86 billion neurons running
in parallel each with an average of 7,000 connections to other
neurons1(Richardson, 2017).

Computational models can reveal behaviors that are beyond
the scope of non-computational ones. For example when
characterizing visual attentional deficits (i.e., neglect) resulting
from stroke during viewing a straight line, Mozer et al.
(1997)’s computational model showed that neglect was related
to the total line length, despite the patient not apprehending
the entire line. Additionally, electrophysiological data from
animal models, such as monkey single-cell recordings during
a visual attention task (e.g., Lanyon and Denham, 2004), can
be used to implement computational models. Due to the
ability to adjust neural function, computational models are
able to explain symptoms of disorders using simple and
neurologically plausible principles, such as the prediction error
minimization mechanism to explain autism symptoms even
if the underlying pathophysiology has not yet been identified
(Lawson et al., 2014).

Parkinson’s Disease (PD) mechanisms are frequently
contextualized by network models, allowing easy translation
to computational modeling (Albin et al., 1989; McGregor and
Nelson, 2019). A variety of computational models of PD exist
mostly focusing on the basal ganglia circuit (Humphries et al.,
2018). For example, Frank (2005) designed a neural network
model of the basal ganglia during learning and execution of a
cognitive—weather prediction task. This model showed that the
basal ganglia modulates the execution of actions that are being
considered in the frontal cortex, including working memory
updating, through phasic changes in dopamine, and that
reduced dynamic range of dopamine can explain both PD and
dopamine-overdose through a single underlying dysfunction.
Dovzhenok and Rubchinsky (2012) and Caligiore et al. (2019)
explored PD motor symptoms using a model of basal ganglia-
thalamo-cortical loops. Dovzhenok and Rubchinsky (2012)
utilized a simple model of a single neuron representing
each area, whereas Caligiore et al. (2019) represented the
areas with neural populations and introduced multiple
interventions representing different dopaminergic dysfunctions.
In another experiment, Kumaravelu et al. (2016) used a
similar cortex-basal ganglia-thalamus network in the 6-OHDA
lesioned rat model of PD to simulate different modes of deep
brain stimulation.

1https://www.humanbrainproject.eu/en/brain-simulation/ (accessed January 18,

2021).

1.2. Neurorobotic Models
Embodiment of computational neural models in a robot allows
for direct sensory-action closed-loop interactions with a real
environment as well as with environmental noise, improving
the generalizability of experiments to real world scenarios.
This can be advantageous for both understanding human
cognition (e.g., Chaminade and Cheng, 2009; Di Nuovo et al.,
2013) and neurological or psychiatric disorders, particularly
because the latter are often characterized by behavior and
interaction (e.g., Smith and Gasser, 2005; Asada et al., 2009).
For example, nearly all psychiatric and many neurological
disorders diagnoses are made clinically, without reliable imaging
or biomarker tests (WHO, 1993), thus robotic models are
natural candidates to study them by embodying the symptoms
as a starting point, in comparison to purely computational
models that rely on neuropathological knowledge to construct.
One suitable candidate for neurorobotics studies is PD
because many of the symptoms seen relate to environmental
interactions (Poewe et al., 2017). Robot models can both inform
biological data and be hypothesis-generating. Robotics allows for
precise implementation of theoretical models and consequential
controlled manipulation that is not possible in animal models
because of ethical reasons or limited methodology. Robot models
increase the replicability of experiments and avoid the issues of
subject fatigue allowing for both more and quicker experiments,
as well as avoiding the effects of fatigue on performance.
Therefore, robot models use resources efficiently and minimize
animal studies.

1.2.1. Neurorobotic Models Using Virtual Simulation
Computational models have been implemented into virtual
robot simulations, thus bypassing the actual construction of
the robot but compromising by having an equally simulated
environment. These have included more simplified machines
such as simulating a 2D robot leg using a neural system with a
hierarchical central pattern generator to model leg weakness as a
symptom of stroke to explore rehabilitation strategies (Ichimura
and Yamazaki, 2019). Another study simulated a two-link robot
arm using a basal ganglia neuron model to examine the relation
of neuron potential strength and gradient with symptoms in
PD through varying dopamine (Connolly et al., 2000). This
model found that heterogeneity of striatal neuron potentials
may be responsible for replicated dyskinetic symptoms, such as
bradykinesia, rigidity, and tremor.

More complex robots have been also used in this context but
with different approaches. Pio-Lopez et al. (2016) investigated
the concept of active inference—a mechanism of minimizing
variation in perceptual prediction—using a 7-degrees of freedom
arm of a PR2 robot. They manipulated visual and proprioceptive
noise to investigate prediction errors; one finding suggested that
the failure of sensory attenuation would subvert movements,
similarly to bradykinesia in PD. Another experiment simulated
bipolar-affective disorder (BPAD) and Alzheimer’s disease in
a NAO robot, to investigate the role of emotion, specifically
pleasure, and arousal, in memory (Allan et al., 2015). Researchers
used Naïve Bayes Data Mining to train the robot then simulated
a RoboCupmatch penalty kick using theWebots simulator. They
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found that emotional deregulation after a certain stress threshold
in the BPADmodel whereas the Alzheimer’s diseasemodel, which
only memorized events of high emotional value, maintained a
relatively high level of emotion throughout the experiment.

In some cases, computational neural models have been
proposed to investigate disorders implicitly. For example, by
modeling synaptic plasticity such as the wheeled robot of
Aguilera et al. (2015). They evolved the model using a genetic
algorithm, and controlled it by a network of Kuramoto
oscillators with homeostatic plasticity to develop behavioral
task preferences mediated by sensorimotor patterns. Similarly,
Caligiore et al. (2014) used a simulated iCub robot with a
transfer expert reinforcement learning (TERL) neural network to
investigate sensorimotor learning during childhood development
and how simulated “damage” to the network may have
implications for autistic spectrum disorder (ASD).

2. NEUROROBOTICS MODELS OF
NEUROLOGICAL DISORDERS

Here we discuss and summarize the existing neurorobotic
models of prevalent neurological disorders and the experiments
conducted with them (see Table 1 for a summary).

2.1. Parkinson’s Disease (PD) and
Huntington’s Disease (HD)
Yiping et al. (2010) presented a model imitating PD and
HD, another basal ganglia disorder resulting in hyperkinetic
movements. The authors simulated dopaminergic neuron death
in a two-channel behavior selection model of the basal
ganglia, constructed with leaky-integrator artificial neurons, and
optimized with a genetic algorithm. This was embedded into
the control architecture of a Lego robot. The robot would
alternate between wander, avoid, and play behaviors in an
open space. The PD robot did not perform any behavior
in almost half of the experiment and its behavior sequence
separated into short fragments, compared to normal control.
The HD robot, instead, had the tendency to execute any of
the behaviors even if the respective importance value was
small, therefore simulating the behavior patterns of the two
diseases in a real-world environment demonstrating the viability
of the modeling platform. However, ultimately, the model
is an abstraction by substituting behavior selection for the
symptoms of hypo/hyperkinesia; this limitation can be overcome
by linking the neural controller to musculoskeletal architecture
and incorporating further brain regions such as the motor cortex
in order to mimic the physical disease symptoms.

2.2. Unilateral Spatial Neglect
Unilateral spatial neglect is a disorder of processing and
perceiving stimuli, caused not by a loss of sensation but stroke
or tumor, on one side of the visual field often contralateral
to the damaged cerebral hemisphere, typically the posterior
parietal cortex. It is a heterogeneous condition due to the
variety of associated lesion locations and may required type-
specific rehabilitation as a result. To explore this hypothesis,

Conti et al. (2016) embedded an artificial neural network that
controlled the spatial attention of an iCub robot. They replicated
a human experiment by having the robot perform a spatial
exploration task of exploring cubes in four different orientations
using proprioceptive stimuli, followed by rehabilitation sessions.
They used stochastic gradient descent with momentum to
train the neural network, then “pruned” neural links to
simulate lesions, and re-applied the training to simulate
rehabilitation. Furthermore, they modeled specialization of the
right hemisphere by incorporating a plasticity mechanism into
some trials of the experiment. Their findings were in line with
those in human studies, validating the use of a robot model with
environmental interaction in this disorder, but additionally they
were able to hypothesize novel plasticity mechanisms of the right
hemisphere in spatial specialization. Their model too included
a degree of abstraction by simplifying the neural controller
to hemispheres rather than specific cortical regions therefore
limiting anatomical correlation with humans. Nevertheless, the
latter also confers an advantage by allowing study of an isolated
function whereas in a complex brain other functions would be
affected too by the lesion thus making it difficult to investigate
in other models. Future work could also implement additional
stimuli such as vision and touch.

2.3. Obsessive-Compulsive Disorder (OCD)
Obsessive-compulsive disorder is characterized by repetitive
intrusive thoughts resulting in the need to perform certain
actions repeatedly. Lewis et al. (2019) conceptualized OCD as
a decision-making disorder and designed a robot based on a
cybernetic and signal attenuation model within a motivation-
based robot controller with an internal signal deficit (faulty
interoception). The Elisa-3, an Arduino-based robot, performed
a free-roam task requiring decisions to satisfy its needs—energy,
integrity, and integument—by utilizing resources using three
behaviors—groom (with a damage penalty), feed, and avoid. To
simulate OCD, the perceived target values for integument were
increased, resulting in increased grooming with many robots
“dying” as a result of energy falling to zero whilst grooming and
an average worse level of well-being. Interestingly, mildly raised
target values improved average well-being.

The authors also further developed the model by
implementing “stress”—both internal, related to its needs,
and external, due to confinement (Lewis and Cañamero,
2019). Also, rather than changing the target values to simulate
OCD, this model would express OCD behaviors resulting
from high “stress.” They found a positive feedback loop which
maintained high stress levels after the robot was confined, due
to a consequential increase in internally generated stress because
of not meeting its needs. Additionally, they tried different type
of intervention to mimic response prevention therapy with
opposite stress response depending on the type of intervention.
Similar to Conti et al. (2016)’s model previously, the ability
to monitor internal parameters through a robot model led
to their findings above. These models are abstract without
an artificial neural network but allow investigation of OCD,
where the pathophysiology has not been ascertained; future
work can incorporate an artificial neural network and simulate
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pharmacological treatments to investigate the underlying
neural correlates.

2.4. Schizophrenia
Schizophrenia is a psychiatric disorder characterized by
symptoms of hallucination, delusion, and disorganized thought.
Yamashita and Tani (2012) created a model using a SONY QRIO
humanoid robot controlled by a hierarchical continuous time
recurrent neural network with a multiple time scale recurrent
neural network component. For more models of Schizophrenia,
please check the survey paper of Lanillos et al. (2020). The robot
performed a manipulation task following rules associated with
object position using proprioception and vision, which generated
forward predictions of the two stimuli, learned through a
back-propagation through time algorithm. Schizophrenia
was simulated through degrees of functional disconnection
in the hierarchical network by adding random noise. Mild
disconnection led to a spontaneous intermittent increase of
aberrant prediction errors which affected the goal-orientation of
the robot, whereas severe disconnection resulted in cataplectic
and stereotypical behaviors, similarly to what is seen in patients.
Translationally, they hypothesized that prediction error signals
may be indistinguishable in a patient with mild schizophrenia
from those generated from real stimuli and resulting in a
prodromal delusional mood, demonstrating an advantage of
neurorobotics modeling.

This model manages to explore a non-anatomically localized
network-wide neural process in a real-world environment,
difficult to achieve using other models; further work could
take advantage of internal monitoring to aim to concurrently
simulate other schizophrenia symptoms such as delusions
and hallucinations to assess whether a similar mechanism
is responsible. Other models also use neural networks but
focus on specific symptoms, like deficit in the recognition
(Cohen and Billard, 2016).

2.5. Autism Spectrum Disorder (ASD)
ASD encompasses a range of neurodevelopment disorders
affecting mostly social interaction and presenting restricted,
repetitive patterns of behavior. Focusing on behavioral
inflexibility, Idei et al. (2017, 2018) used a NAO robot to
investigate the effects of sensory precision on adaptive behavior.
They implemented a stochastic-continuous time recurrent
neural network with parametric bias, which is a more complex
architecture compared to the first approaches (Cohen, 1994)
. For more models of ASD, please check the survey paper of
Lanillos et al. (2020). The robot participated in an adaptive
interaction ball-playing task using vision and proprioception
with a human experimenter. It learned four different behaviors
using the back-propagation through time algorithm. The level
of sensory precision was increased or decreased by changing
estimated sensory variance and prediction error signal level was
analyzed. Both changes resulted in similar inflexible behavior
patterns, such as repetition and freezing seen in patients with
ASD, but due to different processes at the network level.
Translationally, their findings suggest that externally-observed
behavioral classification of psychiatric disorders may be limited
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for understanding etiology, supporting the use of neurorobotics
models. This study also modeled a network-wide neural
process; as a developmental disorder it would be important
to simulate and assess the impact of this error mechanism on
cognitive development.

2.6. Other Robot Models With Implications
for Neurological Disorders
Robotic experiments not directly modeling a specific pathology
can nevertheless inform pathophysiology. For example, neural
networks have been used in cognitive neurorobotics to
understand human cognitive functions, such as memory
(Shibata Alnajjar et al., 2013) or language (Marocco et al., 2010),
and therefore implications for cognitive dysfunction may
be inferred.

An early basal ganglia model by Prescott et al. (2006)
using the Khepera I robot in an behavioral task of collecting
and consuming food modulated by motivations, such as
hunger, showed that behavioral disintegration can occur when
confronted with multiple high salience alternatives, with
implications for the symptomatology, specifically bradykinesia,

in PD. Using a similar task, Lewis and Cañamero (2016)
used a NAO robot to investigate the interaction between
pleasure, perception, and motivation and found that high
pleasure improved viability and flexibility in adaptive behavior,
with implications for obsessive-compulsive disorder (OCD).
Krichmar (2013) used a CarlRoomba robot with a neural

network that modeled neurotransmitters in an open-field test to

demonstrate that high serotonin increased anxiety whereas high
dopamine led to increased curiosity and risk-taking, which is

seen in gambling addiction following long term dopaminergic
treatment in PD. Conversely, low dopamine led to a more
withdrawn behavior, like in PD. In a more complex model,
Lones et al. (2016) used a Koala II robot with a hormone-driven
epigenetic mechanism that controlled cognitive development and
a novel neural network with learning capabilities to interact
with environments of different levels of sensorimotor experience.
They showed that the sensory-deprived robot performed worse
at adaptation and learning, with potential implications for
developmental disorders and rehabilitation. Lastly, neurorobotic
models have also been used to investigate mental simulations,
such as Seepanomwan et al. (2015) who used an iCub robot with

FIGURE 1 | Neurorobotics model workflow of neurological disorders. The EMBODIMENT of the COMPUTATIONAL MODEL in a robot allows the investigation of the

link between brain-body-environment with resultant modification of internal parameters via online learning. Additionally, real-time operation allows co-monitoring of

internal parameters and external behavior. The model can be designed to simulate pathophysiology or be backwards designed through monitoring the behavior of the

robot to mimic symptoms. Monitoring behavior and internal parameters result in hypothesis generation, translation to clinical research, and minimization of animal use.

The model is robust, unfatiguable and easily modifiable, which allows for replicable and scalable experiments that efficiently use resources.
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a biologically-plausible decision-making mechanism to do a
mental rotation task, which may be used to investigate lesions to
different parts of the cortex.

3. DISCUSSION

The models above demonstrate the utility of robotics in
investigating neurological disorders, particularly the ability to
monitor both internal parameters and external behavior with
the environment. They can generate insights and translational
outputs by: manipulating internal parameters; simulating
more abstract systemic functions, such as prediction; and
monitoring internal states in conjunction with external behavior
(Figure 1). Some experiments also demonstrate how these
models can be used to guide therapeutics and rehabilitation.
Further experiments can be designed, tailored to utilize these
advantages by modeling scenarios and measuring parameters
beyond the scope of other models. For example, investigating
the relationships between neural plasticity, environmental
interaction, movement, and cognition in neurological disorders
such as PD (Humphries et al., 2019). However, the heterogeneity
of robot designs and underlying artificial neural networks
employed above highlights a weakness of this modeling platform
due to lack of overlap between separate models. Therefore,
there is a need to standardize robotic modeling of disorders
to improve generalizability of experiments to humans and the
interaction between disordered and normal function. Lewis
et al. (2019) provide a 12-step 3-stage design framework for
creating robot models of neurological disorders and The
Neurorobotics Platform of the Human Brain Project aims to

simplify the workflow and reduce the level of the required

programming skills by allowing researchers to design and run
basic experiments in neurorobotics using simulated robots
and simulated environments linked to computational neural
models that are abstraction of the brain structure and function
(Falotico et al., 2017). Some of those simplified models may be
suitable for specific analyses but might represent limitations as
neural controllers. Nevertheless, increased dialogue between the
fields of neurorobotics and computational modeling is required
to improve the biological-plausibility of the neural controllers of
robots. In conclusion, few neurological disorders have yet been
modeled using the neurorobotics approach, each with varying
methodologies, however they demonstrate that neurorobotics is
a valid modeling platform for a spectrum of different pathologies
with unique advantages and potential for translational output.
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