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Skin cutaneous melanoma (SKCM) is a skin cancer type characterized by a high degree of
immune cell infiltration. The potential function of lactate, a main metabolic product in the
tumor microenvironment (TME) of SKCM, remains unclear. In this study, we systemically
analyzed the predictive value of lactate-related genes (LRGs) for prognosis and response
to immune checkpoint inhibitors (ICls) in SKCM patients included from The Cancer
Genome Atlas (TCGA) database. Cluster 3, by consensus clustering for 61 LRGs,
manifested a worse clinical outcome, attributed to the overexpression of malignancy
marks. In addition, we created a prognostic prediction model for high- and low-risk
patients and verified its performance in a validation cohort, GSE65904. Between TME and
the risk model, we found a negative relation of the immunocyte infiltration levels with
patients’ risk scores. The low-risk cases had higher ICl expression and could benefit
better from ICls relative to the high-risk cases. Thus, the lactate-related prognosis risk
signature may comprehensively provide a basis for future investigations on
immunotherapeutic treatment for SKCM.

Keywords: skin cutaneous melanoma, prognostic signature, lactate, immunotherapy, TCGA, GEO

INTRODUCTION

Skin cutaneous melanoma (SKCM) is more aggressive than other skin cancer types owing to its
rapid progression, poor prognosis, and high mortality (1). Although the cases invasive melanoma
account for ~5% of all skin malignant tumors, it causes >75% of skin cancer-related deaths. The five-
year survival rates in localized or regional melanoma are 98% and 64%, respectively, however, these
rates reduce to 23% in the advanced stages (2), thereby illustrating that early intervention to prevent
the disease from metastasizing is essential for improving the clinical prognoses. In the early stages,
surgery is the most effective curative strategy, while for the metastatic cases, systemic treatment
plays a significant role in inhibiting further disease progression (3).

In recent years, immunotherapy has emerged as the most promising treatment modality against
several tumor types. Immunotherapy comprises therapeutic strategies that target various
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components and signal pathways of the immune system (4).
The specific mechanism of action is based on disrupting the
tolerogenic nature of human cancer and rebooting the antitumor
effects exerted on the tumor microenvironment (TME), resulting
in the activation of autologous immune responses (5). Recently,
immune checkpoint inhibitors (ICIs), including monoclonal
antibodies targeting CTLA-4 and PD-1, have proved to be the
greatest breakthrough in the field of tumor therapy. Although
collectively ICIs have a response rate of 30-40% (6), a majority of
patients lack satisfactory clinical efficacies owing to the complex
mechanisms underlying tumor immunity (7). Furthermore,
several reported genomic and immune biomarkers indicate
that the therapeutic effects are not targeted and there is an
inevitable bias whilst evaluating the treatment efficacies (8).
Thus, it is challenging but necessary to identify a better
predictor to evaluate the clinical outcomes accurately before
prescribing ICI treatment.

TME consists of various cell types and an extracellular matrix,
thereby supporting tumor behaviors, including their growth and
metastases through the provision of energy and nutrients (9).
Usually, the blood vessel network in TME is poorly developed or
malformed, and thus, exchanging of nutrients and metabolic
wastes is relatively impaired. This causes a breakdown of the
metabolic balance in the tumor tissues, characterized by
nutrition shortage and metabolite accumulation (10).
Consequently, the above-mentioned transfer of metabolic
mode in TME is a natural immune suppressor, along with the
inactivation of immune cells and a decrease in protective
inflammatory reactions (11). Additionally, accumulating
evidence shows that targeting the metabolic mode in TME is a
promising strategy to potentiate the effects of immunotherapy
and is therefore worth further investigation.

Excessive production of lactate is the result of elevated aerobic
glycolysis in the TME (12). Lactate is responsible for sustaining
the acidic environment by decreasing the pH, thereby inhibiting
the immune responses partly by inactivating the T cells as also
through negative regulation of the T-regulatory cells in the
anticancer immunity (13). Meanwhile, a recent study
demonstrates that neutralization of the low pH environment in
malignant melanoma aids better clinical efficacy of the anti-PD-1
immune strategy (14). In addition, lactate dehydrogenase is
being used in clinical settings for the independent prediction of
survival of melanoma patients; it is also recommended in the
AJCC guidelines (15). Collectively, this indicates that the
identification of lactate-related genes (LRGs) for predicting
the prognoses in SKCM patients may aid appropriate guidance
for therapeutic regimens.

In this study, we analyzed the complete gene expression
profiles related to LRGs in 471 patients from The Cancer
Genome Atlas (TCGA) database. Six genes were significantly
correlated to lactate metabolism as per the Cox regression model.
Next, we used the reconstructed model to assess clinical
outcomes and responses to immunotherapy among the SKCM
patients, and the results showed that this potential strategy may
be useful for survival prediction and could be utilized as a novel
immune-targeted therapy.

MATERIALS AND METHODS

Data Collection

The transcriptomic profiles of 472 individuals were obtained
from TCGA database (https://portal.gdc.cancer.gov), which
consisted of data for one healthy skin and 471 SKCM tissues.
We then extracted the data for 556 normal skin tissue samples
from the Genotype-Tissue Expression Project (GTEx, https://
gtexportal.org/home/) web portal to account for the small
number of the controls from TCGA database. The gene
expression data from TCGA and GTEx were merged and
normalized using the “limma” package in R to control for
batch effects (16). The abundances of genes were normalized
using their fragments per kilobase million (FPKM) values.
Furthermore, the GSE54467 (n=79) dataset (17) was extracted
from the Gene Expression Omnibus database (GEO, http://www.
ncbinlm.nih.gov/geo/) and used as an external confirmation
cohort to validate the robustness of the gene signature. Patients
with entire clinical data as well as those with a survival duration
longer than 0 days were included in current research.

Differential Expression and Functional
Enrichment Analyses for LRGs

A total of 184 LRGs were obtained from the Molecular Signatures
Database (INCREASED SERUM LACTATE, M35671, http://
www.gsea-msigdb.org/gsea/index.jsp) (18). The “limma” package
was used to identify the differentially expressed LRGs between
SKCM and healthy skin samples with thresholds of [log2 fold
change (FC)| = 1 and standard false discovery rate (FDR) < 0.05.
The protein-protein interaction (PPI) network of differentially
expressed LRGs was predicted using the STRING webtool (https://
string-db.org/) (19). The hub sub-modules in the PPI network
were selected using the MCODE plug-in in Cytoscape (20). The
Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed using the
“cluster Profiler” package in R (21).

Consensus Clustering

According to the expression profiles of differentially expressed
LRGs in SKCM tissues, consensus clustering was performed using
the “ConsensusClusterPlus” package in R by setting the number of
groups to 9, the sample resampling to 80%, and the number of
iterations to 1000 (22). The optimal cluster number was calculated
using the consensus matrix and cumulative distribution function
(CDF). The differences in the overall survival (OS) between
different clusters were estimated using the Kaplan-Meier
method. Comparisons of the distribution of categorical data
among the clusters were done using the chi-squared test.

Construction and Validation of Prognostic
LRG Signature

Univariate Cox analysis was employed to identify the
differentially expressed LRGs having significant (P < 0.05)
prognostic prediction value. The selected factors were
integrated into the least absolute shrinkage and selection
operator (LASSO) Cox regression algorithm and the risk of
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overfitting was minimized. Lastly, a multivariate Cox regression
model was generated for selecting the genes and an LRG-based
prognostic model was subsequently established. The risk score
for each patient was calculated using the following formula: Risk
Score = X, Coef (i) x x(i), where Coef(i) and x(i) were the
regression coefficients in the multivariate Cox regression
model and expression of each gene, respectively. The patients
were classified either into the high-risk (> median number) or
the low-risk (< median number) groups according to the median
risk score. The survival curve, receiver operating characteristic
(ROC) curve, risk score distribution, and heatmap were analyzed
and the predictive effectiveness of the clinical signature was thus
evaluated. External data from GSE54467 were used to assess the
performance of the model in determining clinical outcomes.

For the analysis of the correlation of risk score value based on
the signature with clinical parameters in TCGA-SKCM cohort,
the chi-square tests were performed. The independence of
both the clinical features and the LRG signature was assessed
through univariate and multivariate Cox regression analyses. To
evaluate the applicability of this signature, stratified Cox survival
analysis was performed for subgroups having differential
clinical characteristics.

Development of a Nomogram

Nomograms have been widely adopted as auxiliary tools to
predict the individual probability of a clinical event in medical
fields (23). Nomogram was built by including all independent
prognostic factors (24). In this study, the independent prognostic
factors were used to construct the nomogram for assessing the 1-,
3-, and 5-year OS in SKCM. Calibration, ROC, and decision
curves were used to verify the ability of the nomogram for
predicting the prognoses.

Functional Biological Analysis of DEGs in
the LRG Signature

The differentially expressed genes (DEGs) between the low- and
high-risk groups in TCGA-SKCM were analyzed using the
“limma” package in R. Genes with |[log2FC| > 1 and
FDR < 0.05 were identified as significant DEGs and included
in the subsequent analysis. GO annotation and KEGG analyses
of these DEGs between the two subgroups were performed.
Additionally, a gene set enrichment analysis (GSEA) was
performed to elucidate the significant functional phenotypes
that were significantly different between the risk groups. The
GSEA function in Java software was executed and the Hallmark
gene set “h.all.v7.4.symbols.gmt” was used (18). The phenotypes
with nominal P < 0.05 and FDR value < 0.25 were considered
statistically significant.

Immune Infiltration Analysis

To uncover the relationship between the risk score and tumor-
infiltrating immune cells, seven algorithms including TIMER
(25), CIBERSORT (26), CIBERSORT-ABS, quanTIseq (27),
MCP-counter (28), xCELL (29), and EPIC (30) were executed
to calculate the immune infiltration values among the samples in
TCGA-SKCM cohort. We used a heatmap to show the tumor

immune cell infiltration computed using different algorithms for
each patient. The Spearman correlation analysis was performed,
and the correlation coefficients were presented on a lollipop plot.

Subsequently, single sample GSEA (ssGSEA) was used to
quantitate the differences in the infiltration levels of
immunocytes between the low- and high-risk subgroups using
the “GSVA” package in R (31). The differences among the 16
immune cell types and 13 immune-related pathways were
compared between the two subgroups. ESTIMATE was the
algorithm that predicted the tumor purity, and the tumor
microenvironment scores (including immune score, stromal
score, and ESTIMATE score) for each SKCM sample from the
gene expression data using the “ESTIMATE” package in R (32).
Violin plots were plotted to demonstrate the differences in scores
between the two groups.

Expression of Immune

Checkpoint Inhibitors and
Immunotherapeutic Responses

To investigate the underlying effects of this signature on the
responses to immunotherapy, 47 ICIs were retrieved from
published literature, and the expressions of these ICIs between
the two groups were analyzed (33). The correlation of the
prognostic signature with the expression of two ICIs, including
programmed cell death protein 1 (PD-1) and cytotoxic T
lymphocyte-associated antigen 4 (CTLA4), was also
determined. The immunophenoscore (IPS) algorithms were
leveraged to evaluate immunotherapeutic responses as
described previously (34).

Tissue Samples

A total of 15 SKCM tissues and 15 normal skin tissues were
obtained from patients received surgery at the Third Affiliated
Hospital of Sun Yat-Sen University (Guangzhou, China). None
of these patients had received pre-surgery chemotherapy or other
treatment. All collected samples were stored in a —80°C
refrigerator until further quantitative real-time PCR (qRT-
PCR) analysis. The written informed consent was acquired
from all subjects, and the present research was approved by
the hospital ethical committee.

Quantitative Real-Time Polymerase Chain
Reaction (QRT-PCR)

Total RNA was extracted using the TRIzol reagent (Invitrogen,
Grand Island, NY, USA) and reverse transcribed into cDNA
using the PrimeScript RT reagent Kit (TaKaRa, Japan) following
the manufacturer’s protocols. qRT-PCR was performed with
SYBR Green I Master Kit (Roche) on the LightCycler® 480
System (Roche). The relative mRNA levels were normalized
against that of GAPDH using the 27%*°' method. The
sequences of the primers used in qRT-PCR are listed in Table S1.

Statistical Analysis

All statistical analyses were performed on R unless indicated
otherwise, following the methods described above. P < 0.05 was
considered statistically significant.
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RESULTS

Identification of Differentially Expressed
LRGs and Functional Enrichment Analysis
The flow chart of the study design is shown in Figure 1. First, we
analyzed the DEGs between 471 tumor and 557 normal tissues
from TCGA and GTEx databases. A total of 7507 DEGs were
selected according to the criteria of [log2FC| > 1 and FDR < 0.05.
Among them, 3789 DEGs were significantly upregulated in
SKCM tissues as compared to the normal skin tissues, while
the remaining 3718 were markedly downregulated (Figure 2A).

In addition, 184 LRGs were obtained from the Molecular
Signatures Database. We then acquired 61 differentially
expressed LRGs by taking the intersection of DEGs and LRGs
sets, which may be involved in the progress of increased serum
lactate (Figure 2B). A PPI network was constructed for these 61
differentially expressed LRGs (Figure 2C). The most significant
module was then identified using the MCODE algorithm
(Supplementary Figure 1). The functions of these 61
differentially expressed LRGs were predicted, and the results of
the GO annotation indicated these were markedly augmented in
energy metabolism-related processes, including the

GTEx database TCGA database
v |
Normal (n=556) Normal (n=1) SKCM (n=471)
| |
|
Y
7507 DEGs
LRGs (n = 184) |——ntersect
PPI Y
GO/KEGG ) < Differentially Expressed LRGs (n=61)
Consensus clustering

\ 4

Prognostic Genes(n = 16)

LASSO Cox

Multivariate Cox
y

A
Validation
GSES54467 Prognostic Siangture

Y

Strat1.ﬁed Clinical GO/KEGG Immunotherapy

Survival Feature Nomogram TME

. . GSEA Response
Analysis Analysis

FIGURE 1 | The flow chart of the study design.

Frontiers in Oncology | www.frontiersin.org

February 2022 | Volume 12 | Article 818868


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Xie et al.

Lactate and Immunotherapy in SKCM

110
100
90
80+
704
60 -
50

-log10(pvalue)

40
30
20

(D) GO and KEGG analyses of differentially expressed LRGs.

mitochondrial respiratory chain complex assembly. The
differential genes were mostly correlated with pathways of
thermogenesis, oxidative phosphorylation, and non-alcoholic
fatty liver disease, as evidenced by the KEGG enrichment
analysis (Figure 2D).

Determination of SKCM Clusters Using
Consensus Clustering

To understand the integral role of lactate in SKCM, the SKCM
samples were divided into diverse clusters (K = 2 to 9) according to
the differential expressions of the 184 LRGs through an
unsupervised consensus clustering method. The optimal division
(K = 3) was the optimal number of clusters according to the
consensus matrix (Figure 3A), consensus CDF curves
(Figure 3B), and relative change in the area under the CDF
curves (Figure 3C). The boundary of the consensus matrix was
kept relatively strict, and the sample distribution reached maximal
stability at K =3. A significant difference was observed in the
prognoses\ of the SKCM patients, wherein those belonging to
cluster 2 suffered poorer outcomes relative to clusters 1 and 3
(Figure 3D). In addition, PCA showed that it was feasible to divide
the samples into discrete distribution patterns (Figure 3E). The chi-

mitochondrial respiratory chain complex assembly

Regulated
A Up-regulated
v Down-regulated

7446 61 123

Non-alcoholic fatty liver disease

Oxidative phosphorylation

Thermogenesis

NADH dehydrogenase (quinone) activity
NADH dehydrogenase (ubiquinone) activity
NADH dehydrogenase activity
mitochondrial protein complex
mitochondrial matrix

mitochondrial inner membrane

mitochondrial ATP synthesis coupled electron
transport

cellular respiration

0 510 15 20 25 30
-Logy (p-adjust)

FIGURE 2 | Identification of differentially expressed LRGs in TCGA cohort and functional enrichment analysis. (A) Volcano plot showing the DEGs between 471
SKCM and 557 non-tumor healthy samples. (B) Venn diagram showing the intersection of DEGs and LRGs. (C) The PPI network of differentially expressed LRGs.

square analysis demonstrated statistically significant differences in
the T stage (P = 0.048) and Ulceration Status (P = 0.030) between
the SKCM patients and normal controls (Figure 3F).

Construction and Evaluation of the LRG
Signature for SKCM

Univariate Cox regression analysis showed that 16 out of the 61
differentially expressed LRGs were significantly associated with OS
(P < 0.05) in TCGA-SKCM cohort (Figure 4A). To narrow down
the range of candidate genes and eliminate the risk of overfitting, a
LASSO Cox regression was performed, and the penalty parameter
was selected based on the minimum criterion. A total of 10 genes
were retained for further analysis (Figure 4B, C) and six target
genes (ISCU, MTO1, SLC25A3, HPDL, NDUFA13, and NARS2)
were eventually used to construct the LRG prognostic signature
based on the multivariate Cox proportional hazards model. The
forest map indicated that ISCU and MTOI were the protective
factors with the hazard ratio (HR) < 1, while SLC25A3, HPDL,
NDUFA13, and NARS2 were risk factors having a hazard ratio
(HR) > 1 (Figure 4D). To better understand the role of these six
LRGs, we obtained their expressions from the GEPIA database
and found markedly low levels of ISCU and MTO1 in SKCM
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compared with normal samples, while those of SLC25A3, HPDL,
NDUFA13, and NARS2 were substantially high (Supplementary
Figure 2). The results were confirmed by qRT-PCR detection for
ISCU, SLC25A3, HPDL, and NARS2, whereas no significant
differences were present in the expression of MTO1 and
NDUFA13 (Figure 4E). The Kaplan Meier survival analysis
confirmed the enhanced expression of SLC25A3, HPDL,
NDUFA13, and NARS2 which could contribute to the poor
outcome of SKCM patients; moreover, high levels of ISCU and
MTO1 were significantly associated with better survival in patients
(Figure 4F), consistent with our previous analysis. For both
TCGA and GSE54467 cohorts, the risk score for the LRG
signature was calculated as follows: Risk Score = (-0.406 *

ISCUexpression) + (_0415 * MTOlexpression) + (0397 *
SLC25A3expression) + (0.113 * HPDLeypression) + (0.198 *
NDUFA13expression) + (0-129 * NARSZexpression)-

SKCM cases were divided into low- and high-risk subgroups
based on the median risk score. The Kaplan-Meier survival
analysis demonstrated that the high-risk subgroup had a
shorter OS than that of the low-risk group in TCGA-SCKM
(Figure 5A) and GSE54467 cohorts (Figure 5D). ROC curves
were employed to assess the predictive performance of the LRG
signature, and the area under the curve (AUC) for TCGA-SKCM
was 0.702 (Figure 5B). Similarly, the AUC was 0.621 for the
GSE54467 cohort (Figure 5E). The distribution of the risk score
and survival status in TCGA-SKCM are shown in Figure 5C.
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FIGURE 4 | Construction of the LRG prognostic signature in TCGA cohort. (A)
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regression analysis. (B, C) LASSO Cox regression analysis of 16 prognosis-related differentially expressed LRGs. (D) Forest plot of the six target genes that
compose the LRG signature. (E) The expression levels of six target genes by gRT-PCR. (F) The Kaplan Meier analysis of the six target genes *P < 0.05; **P < 0.01;

Identification of the prognosis-related differentially expressed LRGs by univariate Cox

The high-risk group was associated with higher mortality as
compared to the low-risk group. Moreover, SLC25A3, HPDL,
NDUFA13, and NARS2 were markedly upregulated, while ISCU
and MTOI were substantially downregulated (Figure 5C). The
results in the GSE54467 cohort were in line with the above-
described findings (Figure 5F).

Relationship Between the Risk Score

and Clinical Features

In addition, the correlation of the signature with the clinical
features (age, gender, T stage, M stage, N stage, AJCC stage,
Breslow depth, Clark level, ulceration status, and tumor location)
was tested in TCGA cohort. It was found that the risk scores for
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the low-risk and the high-risk groups were significantly different
for the T stage (Figure 6A), Breslow depth (Figure 6B), Clark
level (Figure 6C), ulceration status (Figure 6D), and tumor
location (Figure 6E). We also observed that the SKCM patients
in the high-risk group had higher risk factors for disease
progression, including advanced T stage, >5mm Breslow depth,
IV-V Clark level, with ulceration, and distant metastases. In
addition, the signature-based risk score was positively correlated
with tumor progression. We then compared the differences in
risk scores among the different clusters and found that cluster 2
presented a higher risk score than other clusters, which further
verified our results (Supplementary Figure 3A). However, there
were no significant differences in age, gender, M stage, N stage,
and AJCC stage (Supplementary Figures 3B-F).

We reasonably speculated that the prognostic signature could
serve as an independent prognostic factor for patients with SKCM.
Therefore, univariate and multivariate Cox regression analyses
were performed to confirm this hypothesis. The signature-based
risk score was found to be significantly related to OS in univariate
Cox analysis (HR = 2.017, P < 0.001) (Figure 6F). Moreover,
multivariate Cox analysis showed that the risk score remained an
independent factor (HR = 2.048, P < 0.001) (Figure 6G). Likewise,
the T stage, N stage, and AJCC stage were also independent
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FIGURE 5 | The prognostic value of the LRG signature for SKCM patients. The survival analysis in TCGA cohort (A) and GSE54467 cohort (D). ROC curves
indicated the predictive efficiency of the prognostic signature in TCGA cohort (B) and GSE54467 cohort (E). The risk score distribution, survival status, and heatmap
for the expressions of the six genes in TCGA cohort (C) and GSE54467 cohort (F).

prognostic factors. Hence, the signature was an independent risk
factor that influenced the survival of patients with SKCM.
Further, for validating the stability and applicability of the LRG
signature, we performed a stratified survival analysis for the
subgroups. In all the subgroups except for the breslow depth > 5
subgroup, the Kaplan-Meier survival curve showed that samples
from the high-risk group had poorer clinical outcomes as compared
to those belonging to the low-risk group (Supplementary Figure 4).

Construction of the Clinical Nomogram

Furthermore, we employed four independent prognostic features
of OS, including the signature-based risk score, T stage, N stage,
and AJCC stage to construct the nomogram to quantitatively
estimate the 1-, 3-, and 5- year survival probabilities of SKCM
patients in TCGA cohort (Figure 7A). In the nomogram score
system, each variable was allocated a point, and then the sum of
the points was calculated as the total score, and the predicted risk
corresponding to the total score was the probability of survival
(35). The accuracy and sensitivity of the predictions were
confirmed using the calibration plot for the nomogram. To
intuitively illustrate the performance of the nomogram,
calibration curves were plotted which showed that the
predicted results were consistent with the reality, thereby
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suggesting a highly accurate and sensitive prediction for SKCM
(Figure 7B). The ROC curve analysis showed that the
nomogram provided adequate discrimination for the two risk
groups with an AUC of 0.743, thereby outperforming other
independent clinical prognostic features (T stage, AUC =0.621;
N stage, AUC = 0.580; AJCC stage, AUC = 0.572) (Figure 7C).
The decision curves suggested that the nomogram had the
highest overall net benefit within the threshold probabilities
relative to any other clinical feature (Figure 7D).

Identification of the Prognostic
Signature-Related Biological

Processes and Pathways

To further detect the biological behaviors that were influenced by
the prognostic LRG signature, we identified the DEGs between the
low- and high-risk groups to perform the functional enrichment
analyses. In total, 252 DEGs were screened for the subsequent
analysis based on the criteria of [log2FC| > 1 and FDR < 0.05. The
results suggested that the top three enriched GO terms for biological
processes (BP) were humoral immune response mediated by
circulating immunoglobulin, complement activation-classical
pathway, and complement activation (Figure 8A). The cellular
components (CC) significantly associated with these DEGs included
the immunoglobulin complex, immunoglobulin complex-
circulation, and lateral side of cytomembrane (Figure 8B). The
molecular function (MF) analysis showed that the DEGs were
related substantially with antigen binding, immunoglobulin
receptor binding, and peptide antigen binding (Figure 8C).
Collectively, the GO annotation suggested that the enrichment of
the DEGs was mostly related to the immune-associated processes,
which was validated by the KEGG analysis (Figure 8D). Besides, we
also performed GSEA to compare the different hallmark pathways
between the low- and high-risk groups. Most enriched hallmark
pathways in the low-risk group were involved in immune
regulation, including the complement activation, inflammatory
responses, IL2-STAT5 signaling, TNFA signaling via NFKB, IL6-
JAK-STAT3 signaling, and TGF-beta signaling pathways
(Figure 8E). These findings suggested that the LRG-based
prognostic signature was closely related to immunity and the low-
risk group had enhanced immune response phenotypes.

Immune Infiltration Characteristics of TME
Following the aforementioned results, we postulated that the
impact of LRG signature on the outcomes for a patient with
SKCM may be associated with the immune microenvironment.
Therefore, we assessed the differences in the immune cell
components in SKCM tissues between low- and high-risk
groups. The heatmap for various immunocyte components
based on TIMER, CIBERSORT, CIBERSORT-ABS, quanTIseq,
MCP-counter, xCELL and EPIC algorithms, is shown in
Supplementary Figure 5A. In addition, Spearman correlation
analysis was performed, and the correlation coefficients were
visualized using a lollipop plot (Supplementary Figure 5B). In
total, 93 microenvironment components that were examined
were found to be diverse between the two groups. Among these,
79 components were negatively correlated with the signature-

based risk score, while the remaining 14 were positively
correlated. The detailed correlation between the risk score and
six immune cell types was computed based on the TIMER
database. With an increase in the risk score, there was a
marked decrease in the proportion of immunocytes (B cells,
CD4+ and CD8+ T cells, dendritic cells, macrophages, and
neutrophils) in SKCM patients (Figures 9A-F).

Subsequently, we estimated the tumor purity and the tumor
microenvironment scores using the ESTIMATE algorithm, and the
results are shown as a heatmap (Figure 10A). The enrichment
scores of various immune cell types and immune-related pathways
between the two groups were compared. We observed that the
abundances of the immune cells except for the iDCs and mast cells
(Figure 10B), as well as all the immune-related pathways
(Figure 10C), were markedly elevated in the low-risk group.
These results suggested that the two subgroups exhibited distinct
immune infiltration profiles. The distributions were then estimated
using the ESTIMATE algorithm between the low- and high-risk
groups. The immune, stromal, and ESTIMATE scores of the low-
risk group were found to be significantly higher relative to the high-
risk group (Figures 10D-F), while the levels of the tumor purity
showed a reverse trend (Figure 10G). Survival analysis showed that
the patients having a higher immune score, higher ESTIMATE
score, and lower tumor purity exhibited better prognoses. However,
the differences in the stromal scores were not statistically significant
(Supplementary Figure 6). The above results demonstrated that
there was a significant correlation of the signature-based risk score
with the tumor immune microenvironment. In addition, the
differences in the different immune cell types could account for
the observed immune-associated biological phenotypes and
pathways related to the LRG signature.

Differential Expression of ICls and
Assessment of Immunotherapy Response
The responses to ICI tumor immunotherapy have made
important progress in recent years for several cancer types,
including SKCM. To further investigate whether the LRG
signature was associated with the ICI-related biomarkers, we
compared the levels of expression of 47 genes between the two
groups and found that 43 ICI-related genes were significantly
differentially expressed and all of them were upregulated in the
low-risk group relative to the high-risk group, except for CD276
and TNFRSF14 (Figure 11A). PD-1 and CTLA-4 are widely
studied ICIs. As expected, the levels of expression of these two
genes were negatively correlated with the risk score
(Figure 11B, C). The IPS scoring scheme was used to simulate
the potential immunotherapeutic responses in patients of the
low- and high-risk groups. The relative probabilities of
responding to CTLA4positive/PD'1negtive> CTLA4negtive/PD'
Lpositives aNd CTLA4posicive/ PD-1posisive treatment in the low-risk
group were found to be markedly higher relative to the high-risk
group (Figure 11D). The differences between the two groups for
CTLA4 cgtive/PD-1cgtive treatment were not statistically
significant. Herein, these data demonstrated that the patients
with low-risk scores may respond better to the immunotherapy,
thereby achieving more satisfactory clinical outcomes.
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DISCUSSION

In our study, we aimed to identify an expression pattern of LRGs,
their prognostic value, their impact on the TME, and

immunotherapeutic responses in SKCM. First, we identified 61
differentially expressed LRGs by comparing the gene expressions
between the SCKM and normal tissues. GO and KEGG
enrichment analyses were performed based on these
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differentially expressed LRGs and the results showed that they
were mainly involved in the processes related to energy
metabolism. A previous study validates this typical
characteristic of tumors, the abnormal energy metabolism,
which is substantially different from normal tissues (36). Most
tumor cells are highly dependent on aerobic glycolysis, and the
remodeling of cellular energy metabolism pathways provides
cancer cells with important metabolites, thereby potentiating
large-scale biosynthesis, abnormal proliferation, and supporting
tumorigenesis. Thus, the inhibition of this metabolic network
may serve as a promising therapeutic strategy to selectively kill
tumor cells (37).

To further elucidate the relationship between the
aforementioned LRGs and survival of patients with SKCM, we
determined three subtypes of SKCM, cluster 1, cluster 2, and
cluster3, by a consensus clustering method based on the
expression profiles of 184 LRGs. The diverse subtypes
significantly affected the OS and showed significant differences
in clinicopathological features. Specifically, the cases in cluster 2
had poorer prognoses, higher T stage, and with ulceration
relative to clusters 1 and 3. Herein, we speculated that lactate
metabolism was implicated in the disease progression and
clinical outcomes of patients with SKCM.

Next, to evaluate the predictive effect of the LRGs, we
constructed a six-LRG prognostic signature by combining Cox
regression and Lasso Cox regression analyses. Among the six

LRGs, SLC25A3, HPDL, NDUFA13, and NARS2 were risk-
associated genes with poorer clinical outcomes, while ISCU
and MTOI1 were protective factors associated with longer
survival duration. Further, we divided the cases into high- and
low-risk groups based on the median risk score. As expected, the
results of survival analysis were consistent, and the high-risk
group presented a significantly worse OS than the low-risk
group. Similar results were obtained for the stratified survival
analyses among various subgroups. We also observed that SKCM
patients belonging to the high-risk group were associated with
certain risk factors, for disease progression, including advanced
T stage, >5mm Breslow depth, IV-V Clark level, with ulceration,
and distant metastases. Univariate and multivariate Cox
regression analyses indicated that the signature was an
independent risk factor for survival in SKCM.

Some of these six genes comprising the LRG signature have
been reported concerning oncogenesis and tumor development.
SLC25A3 is a mitochondrial phosphate carrier protein that plays
a pivotal role in the aerobic synthesis of the adenosine
triphosphate (ATP) (38). Accumulating evidence indicates that
homozygous mutations in SLC25A3 are correlated with
generalized disorders in mitochondrial-energy metabolism and
multisystemic clinical presentation; its high expression is
associated negatively with the survival of patients with
osteosarcoma (39, 40). 4-hydroxyphenylpyruvate dioxygenase-
like protein, HPDL, is a mitochondrial intermembrane space-
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localized protein that functions as 4-hydroxyphenylpyruvate
dioxygenase. It positively regulates mitochondrial bioenergetic
processes and ATP generation (41). Meanwhile, HPDL supports
tumorigenesis in pancreatic ductal adenocarcinoma in a
glutamine metabolism-dependent manner (42). NDUFA13 is a
newly identified accessory subunit of mitochondria complex I

with a unique molecular structure and a localization that is very
close to the subunits of complex I responsible for low
electrochemical potential (43). Additionally, it is related to
cellular apoptosis in breast cancer (44), the recurrence of
prostate cancer (45), and development of squamous cell
carcinoma (46). NARS2 is a mitochondrial aminoacyl-tRNA
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synthetase gene, which encodes a member of the class II family of
aminoacyl-tRNA synthetases (47). Mutations in this gene are
reported to cause genetic disorders related to neurodegeneration,
presenting various clinical features, including refractory seizures,
rapid brain atrophy (48), Leigh syndrome, or/and Alpers’
syndrome (49). Its conjoined expression with GAB2 is a risk
factor of non- Hodgkin B-cell lymphoma (50). The iron-sulfur
cluster assembly protein, ISCU, is engaged in the transportation
of iron-sulfur clusters in mitochondrial complex I enzymes, and
also functions in mitochondrial respiration for the energy
generation (51). Downregulation of ISCU ultimately disrupts
mitochondrial energy metabolism, increases the production of
mitochondrial reactive oxygen species (ROS), and enhances cell
death through the inhibition of complex I. Chen et al.
demonstrate that highly upregulated miR-210 can attenuate
mitochondrial respiration, thereby resulting in the production
of ROS and lactate generation by targeting ISCU, ultimately

facilitating the survival of colon cancer cells under a hypoxic
microenvironment (52). MTO1 is a mitochondrial tRNA-
modifying enzyme that is reported to be a pathogenic factor
for mitochondrial disorders (53). However, its expression profile
and regulatory mechanisms in cancer have not yet been reported.

Furthermore, we developed the nomogram to quantitatively
estimate the 1-, 3-, and 5- year survival probabilities for patients
with SKCM by integrating four independent prognostic features,
including the risk score. We verified the biological functions
related to the prognostic LRG signature through the functional
enrichment analysis of 252 DRGs. The results of GO and KEGG
enrichment analyses showed that the biological functions were
mostly implicated in immune-relevant processes and pathways.
Based on the enrichment analysis of the hallmark pathways in
diverse risk groups by GSEA, we found that most immune-
related signaling pathways were markedly upregulated in the
low-risk group, in line with our expectations. Therefore, we
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speculated that lactate metabolism was closely associated with
immune-related processes and signaling pathways, thereby
indicating its importance in the progression of SKCM.

As metastatic melanoma is characterized by lymphoid
infiltration, it is typically regarded as an immunogenic tumor
(54). Therefore, immunotherapy is a prospective therapeutic
strategy for metastatic melanoma in addition to surgery,
chemotherapy, and target therapy. However, a successful
mechanism of action underlying responses to immunological
strategy involves several factors, both intrinsic and extrinsic to
the cancer cells (55). One of the crucial factors is certainly the
TME. Accumulating evidence demonstrates that the biologically
significant interaction between tumor tissues and the
surrounding microenvironment extensively influences all the
phases of the tumorigenic processes (56). Specifically, TME
comprises stromal cells, immunocytes, and malignant cells,
that collectively interplay with tumor cells and impose many
challenges for the initiation, progression, and sensitivity/
resistance against the immunotherapy (57). Additionally, a
recent study shows that TME supporting tumor growth partly
relies on its antitumor immune surveillance and this effect is in
part sustained by the abnormal metabolism of tumor cells and
cancer-associated fibroblasts in the microenvironment (58, 59).

Given these reasons, the activity of intracellular metabolic
pathways of immune cells in TME has drawn widespread
attention from researchers. Owing to their special metabolic
mode, cancer cells tend to utilize glucose and produce excessive
lactate even in an environment with a sufficient oxygen supply and
release a large amount of lactate into the extracellular
microenvironment, thereby causing acidosis, angiogenesis, and
immunosuppression simultaneously (58). Consequently, this kind
of metabolism modulation breaks the balance of the immune state in
the tumor, resulting in an enhanced immunosuppressive effect by
promoting the CD4+ CD25+ regulatory T (Treg) cell metabolic
profiles and maintaining the acidity of the TME (60). However,
excessive lactate attenuates the proliferation of immunocytes,
including CD8+ T, natural killer (NK), and dendritic cells (61-
63). Moreover, lactate potentiates the anti-inflammatory effects
based on activation of the transformation of macrophages, thereby
promoting angiogenesis, tissue remodeling, and finally accelerating
tumor growth and invasion (63). Taken together, these results
demonstrate that lactate in TME plays a key role in the disease
progression and mediating the immunotherapeutic responses.

To date, immunotherapeutic strategies have concentrated on
using monoclonal antibodies to activate cell-mediated immunity,
also called ICIs (64). Although antibodies against CTLA4 and PD-1,
used alone or in combination, both can exert a certain curative effect
on the unresectable or metastatic melanoma, the clinical benefits
remain unsatisfactory owing to the relatively low ORRs and the
phenomenon of drug-resistance (65). Thus, the factors that
influence clinical effects and drug resistance of immune strategies
should be identified. A previous study demonstrates that the PD-L1
status in the tumor is a biomarker that reflects the response or
resistance to ICIs, which was consistent with our conclusion (66).
Furthermore, some comprehensive studies have revealed a
mechanistically meaningful role of targeting TME, evidenced by
the positive association of the ‘T-cell-inflamed tumor

microenvironment’ with the effectiveness of diverse immune
treatment (67-69).

In our study, we observed that the patients at low-risk tended to
present better outcomes and immunotherapeutic responses due to
their immune status owing to the TME as compared to the high-
risk cases, therefore, in line with the same conclusion as the
aforementioned scientific findings. Nevertheless, the main
limitation to this study was the lack of experimental data to
evaluate the specific mechanism underlying the biological
behaviors. Additionally, large-scale multicenter trials are essential
to validate the above findings for further clinical application.

In conclusion, we assessed the prognostic significance, effects
on the TME, and response to ICIs of LGRs in SKCM. Three
subgroups (clusters 1/2/3) identified by consensus clustering
based on the expression patterns of LRGs, exhibited dissimilar
clinical features. Risk stratification based on the lactate-related
prognostic signature was negatively related to clinical prognoses
and levels of infiltrating immunocytes in patients. Additionally,
the model showed that the low-risk-score patients were likely to
benefit more from ICI treatment. Collectively, our findings may
be helpful to elucidate the lactate’s role in the TME of SKCM. To
sum up, the reconstructed prognostic signature may be applied
clinically to survival improvement as well as offer a creative target
for curing SKCM patients in the future.
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