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a b s t r a c t

Oxidative post-translational modifications of proteins resulting from events that increase cellular oxidant
levels play important roles in physiological and pathophysiological processes. Evaluation of alterations to
protein redox states is increasingly common place because of methodological advances that have enabled
detection, quantification and identification of such changes in cells and tissues. This mini-review provides
a synopsis of biochemical methods that can be utilized to monitor the array of different oxidative and
electrophilic modifications that can occur to protein thiols and can be important in the regulatory or
maladaptive impact oxidants can have on biological systems. Several of the methods discussed are
valuable for monitoring the redox state of established redox sensing proteins such as Keap1.

& 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Reactive oxygen species (ROS) and reactive nitrogen species
(RNS) are catch-all terms encompassing a broad range of

molecular entities that have potential to chemically oxidize
biological molecules. Although in common use, we should be
mindful that the individual molecular species that comprise ROS
and RNS can be very different in their physicochemical properties
that underlie biological responses occurring when this diverse
array of species change their concentration. Thus, although we
often classify this broad array of molecules together, this may not
always be helpful when trying to understand the molecular events
that underlie biological responses to these distinct entities. Cells
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utilize a diverse collection of oxidase enzymes to catalyze reduc-
tion�oxidation (redox) reactions in which electrons are passed
from an electron donor source to molecular oxygen, so reducing it
to form the ROS species superoxide, which can dismutate to form
hydrogen peroxide (H2O2). Many contemporary studies focus on
ROS generated from NADPH oxidase enzymes [1,2], as these
enzymes have evolved to specifically generate superoxide that is
functionally important. Whereas oxidant production by other
oxidase enzymes involved in cell metabolism [3] can be secondary
by-products which may not impact on protein function. ROS are
also generated by uncoupled nitric oxide synthase (NOS) enzymes
[4,5] and macrophages that utilize it in host defense [6], as well as
by mitochondria when electrons become uncoupled from their
electron transport chain and combine with molecular oxygen to
generate superoxide [7,8].

An elevated level of oxidants within the cell (due to their
increased synthesis or decreased antioxidant capacity that limits
ROS scavenging) is often referred to as ‘oxidative stress’. To many
the term oxidative stress implicitly conveys the idea that ROS
simply exert a detrimental impact on biological function. However
oxidants are now known to have biological functions that are not
injurious, and can be considered crucial to maintenance of home-
ostasis or adaptive signaling events that can limit injury. These
biological responses triggered by changes in cellular oxidant
concentration are commonly referred to as ‘redox signaling’.
In terms of oxidants causing oxidative stress, this was once
considered to occur via uncontrolled oxidation of cellular biomo-
lecules. However, another important factor in the pathogenesis of
oxidant-mediated injury involves ROS dysregulating basal redox
signaling pathways crucial for homeostasis, thus interfering with
regulatory pathways important for the maintenance of health.

Cysteine residues are relatively uncommon in proteins com-
pared to other amino acid, comprising only about �2.3% of the
human proteome [9]. The thiol (also known as mercaptan or
sulfhydryl) –SH side chain of cysteine is susceptible to reaction
with ROS or RNS species, giving rise to a range of oxidative post-
translational oxidative modifications, as schematically presented
in Fig. 1, that in some cases can functionally regulate the protein.
At first glance this would perhaps be considered an unlikely
mechanism of regulation, as an elevation in cellular ROS might
be anticipated to non-selectively oxidize all manner of protein
thiols, potentially triggering uncoordinated functional changes
that manifest as dysfunction and development of disease. How-
ever, this concept ignores the fact that there is selectivity in the
oxidative modification of protein thiols induced by ROS. This is
because ROS, such as H2O2, are selective in the thiols they oxidize
as a result of oxidants preferentially reacting with deprotonated
(�S�), nucleophilic thiolates with a low acid dissociation constant
(pKa). Most cysteines thiols however have a pKa of 8–9, and so are
almost fully protonated at physiological pH, making them much
less reactive with oxidants and so not susceptible to oxidative
modification and regulation in this way. In addition to the protein
thiol pKa, which is lowered by proximity to proton accepting
amino acids (histidine, lysine, arginine) or an increase in cytosol
pH, susceptibility to oxidation may be controlled by their vicinity
to oxidase enzymes.

Although protein cysteine oxidation is often mechanistically
rationalized by the oxidant directly reacting with the thiol, this
may not always be the case. For example, although protein-
tyrosine phosphatase 1B (PTP1B) is susceptible to oxidation [10],
it has been questioned how this can happen in the cellular setting
[11]. This is because although the target thiol in PTP1B has a pKa of
�6.8 and is clearly susceptible to oxidation, it may be difficult to
reconcile this happening when peroxiredoxin (Prx) proteins with
very reactive low pKa thiols (�5.5) are present in high abundance.
One possibility is that PTP1B (or other targets) only become

oxidized after the Prx are oxidant-inactivated by hyper-oxidation
of their peroxidatic thiols [12]. In addition, it is conceivable that a
low pKa protein thiol such as those in Prx or thioredoxin (Trx) may
become oxidized and then react with the less reactive target
protein cysteine to ‘pass on’ the oxidation [3], as depicted in Fig. 2.

Diverse arrays of oxidative modifications are crucial to redox
signaling events and are integral to all manner of cellular and
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S-thiolation
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S-nitrosation

S-sulfhydration

S-sulfenamidation

Inter-Protein Disulfide

Free Thiols
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Fig. 1. Summary of the oxidative modifications formed in protein thiols. Protein
thiols can form a variety of oxidative modifications, including reversible (intra-
protein disulfides, inter-protein disulfides, S-sulfenation, S-nitrosation, S-thiolation,
S-sulfhydration, S-sulfenamidation) and non-reversible hyper-oxidized (S-sulfina-
tion , S-sulfonation) redox states. Some redox states, such as S-sulfenation,
S-nitrosation or S-sulfhydration, can be intermediates that transition to disulfides.
Prolonged exposure to oxidants can result in irreversible modifications such as
S-sulfination or S-sulfonation.

Fig. 2. Alternate potential mechanisms leading to disulfide formation. A protein
thiol may be oxidized via another redox sensitive protein, in this example
thioredoxin (Trx), first becoming oxidized. Trx has a lower pKa than most other
proteins and so is more likely to be preferentially oxidized by H2O2 to form an
intra-molecular disulfide. The Trx disulfide is then attacked by a thiol of a second
protein with a higher pKa which is then reduced by a second thiol. Trx essentially
picks-up and passes on the oxidation state to the less reactive target protein thiol.
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physiological processes [3,13–15]. Establishing the importance of
protein redox regulation in these varied biological processes has
been increasingly possible because of advances in biochemical
analysis methods allowing alterations in protein thiol redox state
to be monitored. These methods have also increased our knowl-
edge of the number proteins regulated by post-translational
oxidative modifications. In this mini-review we discuss contem-
porary biochemical methods that allow redox-sensing proteins to
be studied in biological systems.

2. Monitoring reduced protein thiol status

Many methods exist for measuring the total reduced status of
thiols within biological samples. Many functionalized cysteine-
labeling reagents based on the selective thiol reactivity of mal-
eimide, iodoacetate or disulfide moieties are commercially avail-
able. Such reagents are commonly available coupled with several
different reporter functions or ‘handles’ (e.g. radiolabel, chromo-
phore, fluorophore or affinity tag) which enable a readout of
reduced thiols status [16]. With these thiol-labeling methods,
a generalized rationale is that the samples under oxidative stress
will have lower reduced thiol content than unstressed controls.
The Ellman assay is a classic example of such an assay, providing a
colorimetric readout of total reduced thiol content of a sample.
As depicted in Fig. 3A, it is based on the ability of thiols in a sample
to chemically reduce Ellman’s reagent 5,50-DiThiobis-2-NitroBen-
zoic acid (DTNB), which possesses a reactive disulfide bond
susceptible to reduction. In a stoichiometric reaction DTNB is
reduced by free thiols by an exchange reaction in which a mixed
disulfide and a yellow-colored 5-Thio-2-NitroBenzoic acid (TNB) is
formed [17]. The intensity of yellow color (measured spectro-
photometrically at 412 nm) increases proportionally with the

reduced thiol content. The Ellman assay can be used quantitatively
by employing external standards of cysteine or reduced glu-
tathione (GSH), normalizing to sample protein content which
allows direct comparison to results from other studies. The Ellman
reagent reacts with both reduced protein and low molecular
weight thiols, but trichloroacetic acid can be used to precipitate
proteins to allow the latter component, which is often regarded
principally as reduced GSH, to be measured independently. A
major issue with the Ellman assay is its limited ability to detect
subtle changes in thiol redox state, for example those alterations
with physiological redox signaling. Ellman’s, as with many of the
functionalized thiol-labeling reagents mentioned above, reacts
with all reduced thiols in the sample. However, as also explained
above, the proteins susceptible to oxidation are relatively select,
typically with a low pKa. Thus most protein thiols in the sample
are not anticipated to be susceptible to oxidation and so in the
absence of harsh oxidant conditions or chronic oxidative stress,
then the Ellman assay may not detect an alteration in thiol redox
state because the net change is subtle, despite key sensor proteins
becoming significantly oxidized. This issue is common to all the
methods where the reactive reporter molecule reacts with thiols
independently of their ionization state. One way of overcoming
this issue is to use a labeling reagent, such as biotin-iodoacetamide
(BIAM), which selectively reacts with undefined thiols, namely
those that are also susceptible to oxidation.

When samples are prepared at low pH (typically 6 or lower),
most protein in the sample will be fully protonated as they have a
pKa of 8–9 [8]. Under such conditions most reduced protein thiols
will not label with BIAM as it selectively reacts with the thiolate
state. However, low pKa thiols will remain at least partially
deprotonated under these conditions. As oxidants also selectively
target these very same low pKa reactive thiols, this low pH BIAM-
labeling allows oxidant-sensitive thiols to be selectively studied.
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Fig. 3. Detection of the reduced (free) thiol content. (A) The Ellman assay is based on the susceptibility of a double bond in Ellman’s reagent 5,50-dithiobis-2-nitrobenzoic
acid (DTNB) to be chemically reduced by a free thiol group. The reaction products are a mixed disulfide and a yellow-colored 5-Thio-2-NitroBenzoic acid (TNB). The amount
of TNB generated correlates with the reduced thiol content and can be measured spectrophotometrically. (B) Monobromobimane (mBrB) reacts with the thiols resulting in a
fluorescent thiol-mBrB adduct formation which can be measured.
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Another way of overcoming the inability of many global cysteine-
labeling strategies to detect subtle changes in redox state is by
focussing in on a single species of thiol-containing molecule. This
can be achieved for low molecular weight thiols (e.g. cysteine,
homocysteine, homocystine, GSH) by combining their labeling
with pre- or post-chromatographic separation, typically high-
performance liquid chromatography (HPLC). Samples can also be
analyzed after chemical reduction to convert oxidized thiols
present (e.g. cystine, homocystine, glutathione disulfide, S-
thiolated proteins) to their reduced state, so enabling quantitation
of reduced, oxidized and total low molecular weight thiol content.
Thiol labeling regents utilized in such approaches include the
fluorometric probes monobromotrimethylammoniobimane (qBBr)
or monobromobimane (mBrB) [17–19]. mBrB itself has little
intrinsic fluorescence (Fig. 3B), but after conjugatively reacting
with thiols becomes fluorescent (excitation 380 nm; emission
478–480 nm) [19,20]. Thiol derivatives of mBrB are more stable
and more fluorescent than the qBBr. Overall, bromobimanes are
more sensitive than DTNB and have not only been used for
detection of small thiols, but also for modified proteins by
combining with SDS polyacrylamide gel electrophoresis (PAGE)
[17]. Other classes of fluorometric tags include benzofurazans
7-fluorobenzo-2-oxa-1,3-diazole-4-sulfonate (SBD-F) or 4-(amino-
sulfonyl)-7-fluoro-2,1,3-benzoxadiazole (ABD-F) which also
become fluorescent after reaction with thiols. These compounds
also enable analysis of multiple low molecular weight thiols when
combined with HPLC [17].

A generic tag-based approach for monitoring reversible protein
thiol oxidation is schematically presented in Fig. 4. This involves
blocking the sample free thiols with an alkylating reagent (step 1),
followed by the reduction of the often unknown redox state (step
2), with subsequent labeling of the newly formed (nascent) thiols

(step 3) and their detection (step 4). This generalized approach is
exploited by the so-called biotin-switch method, discussed below
in the section on protein S-nitrosation. The blocking alkylation
step is commonly performed with maleimide, N-ethylmaleimide
(NEM), iodoacetamide, iodoacetate or methyl methane thiosulfo-
nate (MMTS). The reduction step can be done with a reducing
agent such as dithiothreitol (DTT) which is capable of reversing all
of the oxidative modifications shown in Fig. 1, apart from the
sulfinic or sulfonic states. Ascorbate and arsenite can be used to
selectively reduce S-nitrosated or S-sulfonated proteins respec-
tively. The nascent thiols generated by the reduction step can then
be labeled with a thiol reactive reagents such as biotin-maleimide
(as in the biotin switch method) [21,22], or polyethylene glycol-
maleimide (PEG-switch method).

3. Monitoring intra-protein disulfides

Intra-protein disulfides are those formed between vicinal
cysteine residues in a protein. The two thiols can be close enough
to form a disulfide either by being adjacent in the primary
sequence, or if not, as a result of their proximal orientation in
the folded protein structure [23]. Intra-protein disulfides can
induce faster migration on non-reducing SDS-PAGE in some
proteins, but an additional validation study to corroborate the
faster gel migration truly indicates a disulfide may be required. In
addition, band shifts can be small and also are not guaranteed in
many proteins of interest. However, as explained below, there are
other methods which enable detection and quantitation of inter-
protein disulfide formation.

The generic reductive switch-labeling method outlined above in
Fig. 4 has been used to monitor intra-protein disulfide formation,

Step1. Blocking free thiols with alkylating agent Step2. Reduction of the redox state

Step3. Labeling of the nascent thiols

Labelling 
agent 

Labeled protein thiolNascent protein thiol

Alk-modified protein Alk-modified protein

Step4. Separation and identification of 
the labeled nascent thiols

Labeled protein thiol

Alk-modified protein

SDS-PAGE
HPLC
MS/MS
Immunoblotting

Protein free thiol Alk-modified protein

Alkylating 
agent (alk)

-alk

Protein disulfide (intact)Protein disulfide

Alk-modified protein

Reducing 
agent 
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Protein disulfide (intact)

Alk-modified protein
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Nascent protein thiol

-alk -alk

-labeled
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Fig. 4. Overview of a generic tag-based reductive switch-labeling method for monitoring reversible protein thiol oxidation. This approach requires several steps. During Step
1 free thiols are blocked with an alkylating reagent (typically maleimide, N-ethylmaleimide, iodoacetamide, iodoacetate or methyl methane thiosulfonate). During Step 2 the
reversibly oxidized thiol is reduced with the reducing agent (dithiothreitol, ascorbate or arsenite depending on the oxidation states under investigation), followed by the
labeling of the nascent thiols with labeling agent (typically biotin-maleimide). Step 4 involves separation (SDS-PAGE, HPLC) and identification of the labeled protein nascent
thiols (typically by immunoblotting or MS analysis).
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but this requires prior knowledge that the protein oxidizes to this
state. Thus, Trx redox state has been monitored using this
approach, utilizing 40-acetamido-40-maleimidylstilbene-2,20-disul-
fonic acid (AMS) as the labeling agent (step 3). AMS is an NEM
variant that reacts with thiols to increase the protein mass by
�0.5 kDa (as shown in Fig. 5). Thus when labeled samples are
analyzed by Western immunoblotting, Trx that was originally
oxidized in the sample, becomes AMS-modified and so runs

slightly higher above a lower band representing the reduced
protein [24,25].

Phenylarsine oxide (PAO) selectively adducts reduced vicinal
thiols to form a stable dithioarsine ring (as shown on Fig. 6A),
but not when they form an intra-disulfide. Thus solid phase PAO
can be used together with western immunoblotting analysis of
candidate proteins to assess their intra-protein disulfide status or
with mass spectrometry (MS) approaches for unbiased proteomics
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Fig. 5. Monitoring intra-protein disulfides by AMS addition. 40-acetamido-40-maleimidylstilbene-2,20-disulfonic acid (AMS) reacts with reduced protein thiols resulting in
protein-AMS adducts which increases the mass by �0.5 kDa. This additional molecular weight leads to a molecular shift on SDS-PAGE, generating an additional upper band
on a gel. In contrast, if a protein thiol is oxidized it will not react with AMS and so no shift will be observed.
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cysteines, but this cannot be formed when the protein is oxidized to form an intra-protein. Thus, loss of PAO-labeling or PAO-dependent protein capture indicates intra-
protein disulfide protein.
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screening to identify novel targets [16,26]. Dibromobimane (dBrB)
reacts with vicinal thiols to generate a fluorescent adduct that
cannot form if an intra-protein is present (Fig. 6B). This provides a
basis for monitoring this oxidation state in vitro with pure proteins,
or if combined with chromatographic separation could perhaps be
useful in analysis of complex biological samples [26,27].

4. Monitoring inter-protein disulfides

An inter-protein disulfide refers to a bond between cysteine thiols
on two protein subunits, generating either homo- or heterodimers.
As inter-protein disulfide bond substantively increases the protein
molecular weight, this can readily be monitored using non-reducing
Western immunoblotting analysis of candidates of interest. If the
band shift is normalized when the samples are separately analyzed
with a reducing agent, typically DTT or 2-mercapthoethanol (2-ME)
present, this provides reasonable confidence the migration difference
is indeed disulfide bond-mediated [28]. Of course this approach is a
candidate based-approach and requires the antibody used detects
both redox states of the protein, which in our experience can be an
issue with some having significant selectivity for one state over
the other.

Diagonal electrophoresis is a sequential non-reducing followed
by reducing gel analysis procedure that can allow the unbiased (i.e.
non-candidate based) identification of proteins that form inter-
protein disulfides [16,26,29]. This method, which is described in
detail elsewhere [16,29,30], involves running a non-reducing SDS-
PAGE to separate all proteins, including those with disulfide bonds.
After electrophoresis, the entire lane containing the separated
proteins is excised and placed horizontally on a second SDS-PAGE
gel and separated again, but under reducing conditions by adding
SDS sample buffer with DTT or 2-ME. When the gel is stained for
total protein, the dominant feature is a diagonal line caused by most
proteins running at the same molecular weight during both runs.
However, those proteins with inter-disulfides migrate faster in the
second reducing separation as the disulfide is chemically reduced,
meaning they run at a lighter mass and so off of the diagonal.
Consequently, these proteins appear as spots that run off of the
diagonal, and they can be excised and identified using MS analysis.
Newly identified disulfide-forming proteins can subsequently be
validated by assessing oxidant-induced, reducing agent reversible,
gel shifts on non-reducing immunoblot as described above. This
approach allowed us to identify the RIα subunit of protein kinase A
[30,31] as an inter-proteins disulfide forming protein, leading to the
same finding for protein kinase G Iα [32]. The importance of a
disulfide mediating a biological response of interest can be inves-
tigated expressing ‘redox-dead’ mutants in which the redox
cysteine is replaces by a serine (the most conservative mutation)
to prevent the disulfide forming. This mutagenesis approach with
protein kinase G Iα prevented the oxidant-induced activation of the
kinase that occurs in wild-type when the disulfide forms [32].
Indeed knockin mice in which the redox-dead variant replaced
wild-type kinase have high blood pressure and altered blood
pressure responses to nitroglycerin or during sepsis [33–35].

5. Monitoring protein S-nitrosation

Protein S-nitrosation, also known as S-nitrosylation, refers to
formation of a nitroso (SNO) protein thiol and is mediated by
various nitrosating variants of nitric oxide [22]. S-nitrosation is
enzymatically reversible by S-nitroso-glutathione reductase [36],
thioredoxin [37], thioredoxin-interacting protein [38], carbonyl
reductase [39] or xanthine oxidoreductase [40]. S-nitrosation is
widely considered a widespread post-translational modification of

broad importance that regulates protein function in a way akin to
phosphorylation [21,41–43]. However, one can question whether
nitrosothiols are generically stable enough for such a role and
suggest that most will likely react with thiols they encounter to
form more stable disulfides. Thus, protein S-nitrosation may
primarily be a short-lived, intermediate redox state leading to
disulfide formation. Historically, monitoring S-nitrosation involved
the reductive release of NO-related products with monitoring
using chemiluminescence, colorimetry or fluorescence methods
(reviewed in [22,43]). These methods have limited sensitivity and
their specificity for S-nitrosated thiols can be questioned.

Pan-specific polyclonal antibodies that can be used to detect
[44,45], or immunoprecipitate [46], S-nitrosated proteins have
been reported. However, there have been concerns about whether
such antibodies truly detect S-nitrosation. Firstly, there is the
question of whether a nitrosated protein would be stable enough
to survive immunoblotting or immunoprecipitation procedures, or
indeed whether any S-nitrosated antigen used for immunization
would persist after it is introduced into the host. Given the
prevalence and relative ease and accessibility of immunoblotting
and immunoprecipitation in biomedical research studies, it is
notable that these antibodies are rarely utilized. Indeed, if the
antibody methods were robust then it would seem that other
methods for monitoring S-nitrosation, such as the biotin-switch,
would not have been needed or so commonly utilized. The biotin-
switch method was pioneered by Jaffrey and Snyder in 2001 [47],
and further developed by others [22]. The basic principal is
outlined in Fig. 4, utilizing ascorbate to selectively reduce the
nitrosothiol to cysteine which is then labeled with a thiol-reactive
biotinylation reagent. The original protocol included divalent
cation chelators to limit metal-mediated reduction of oxidized
thiols, but subsequently some protocols have added a source of
Cuþ ions [48]. Cuþ is likely the principal direct mediator or
nitrosothiol reduction, with the resulting oxidized Cuþ þ being
regenerated to the reduced form by ascorbate. However, what
thiol oxidation states in addition to nitrosothiol can be reduced by
Cuþ is open to question. One of the disadvantages of this biotin-
switch method, which is a generic issue with many proteomic
approaches, is that it preferentially detects high abundance
proteins. A protein microarray-based has also developed that
allowed unbiased, high-throughput identification of S-nitrosated
proteins [49], as well as a resin-assisted capture method for
analysis of the nitrosothiol proteome (known as SNO RAC)
[50,51]. Recently, a method called ‘NitroDIGE’ was developed for
detecting S-nitrosated proteins [9]. This variant of the modified
biotin switch method labels nascent thiols with a thiol-reactive
‘CyDye’ compound that enhances detection by adding fluorescent
handle which enhances sensitivity. This assay can be multiplexed
as variants of the CyDye that have unique fluorescent properties
can be used to label different samples, which can then be analyzed
by difference gel electrophoresis (DIGE). DIGE analysis typically
involves mixing samples (that have been separately labeled with
different fluorophores) together before electrophoretic separation,
most often with two-dimensional sequential isoelectric focussing
followed by SDS-PAGE analysis [16,52]. Combining the samples
overcomes issues with related fluorescent analysis methods where
samples can be compared after running them separately on
different gels and looking for alterations in fluorescent spot
patterns, with a loss of labeling indicating oxidation. With DIGE,
as the samples are together, a specific protein species present in
each sample will run precisely on top of each other as a single spot
and overcome issues with using separate gels for each sample.
Using ratiometric analysis and looking for loss of one fluorescent
signal relative to another allows identification of a protein in a
sample which is more thiol-oxidized. This protein can then be
excised and identified using MS.
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6. Monitoring protein S-sulfenation

Protein S-sulfenation refers to oxidation of a thiol to the
sulfenic acid (–SOH, see Fig. 1) state, and can be induced by
molecular oxygen or hydrogen peroxide and related species.
S-sulfenation is generally considered a labile modification that
like S-nitrosation will rapidly react with other thiols on contact to
form more stable intermediates. Sulfenic acids can be monitored
or at least observed in structural datasets using X-ray crystal-
lography or nuclear magnetic resonance, or alternately by MS [53].
The Ellman assay described above for monitoring reduced thiols
can be used indirectly to monitor sulfenates in vitro. This is
achieved by monitoring consumption of an added thiol, which
serves as a reporter because it reacts with the sulfenic acid to form
a disulfide [54].

Generally, most of the techniques utilizing the reaction of the
sulfenic acid with chemical probes are based on the electrophilic
character of the sulfur atom and its weak nucleophilic properties
[55]. 4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole has been used to
monitor sulfenation in vitro [56,57]. 5,5-Dimethyl-1,3-cyclohexa-
nedione (dimedone) stably derivatizes protein sulfenates (Fig. 7),
which can be monitored colorimetrically or with MS in vitro with
purified proteins [58,59]. However, antibodies that pan-specifically
detect protein sulfenates derivatized by dimedone have been
developed. This allowed protein sulfenation in cells and tissues
to be monitored more easily [55,60,61]. Functionalized biotiny-
lated or fluorescent derivatives of dimedone have also been
synthesized, and have allowed protein sulfenation in cells to be
studied, allowing target proteins to be captured and identified
[58,59]. Another dimedone synthetic derivative, DYn-2, appears
more efficient in labeling protein sulfenic acids in live cells. DYn-2,
which is functionalized with a small azide, allows conjugated
protein sulfenates to be captured via a Staudinger ligation click-
chemistry reaction [62].

A modified biotin-switch method (see Fig. 4) can be used for
the detection, purification and identification of protein sulfenic
acids [21,57]. This method relies on the selective reduction of
sulfenates by arsenite, with post-labeling of the nascent generated
thiols with a biotinylated alkylating reagent. One potential issue
with this, as with the ascorbate-dependent detection of S-
nitrosated proteins, is that the analysis is carried out under SDS
denaturing conditions which may result in loss of many protein
sulfenates due to their destablization during protein unfolding.

7. Monitoring protein S-sulfhydration

The disulfide bonding of H2S to a protein has been referred to
as sulfhydration [63], although sulfuration is perhaps more appro-
priate terminology [64]. Due to the low (–2) oxidation state of H2S
it is perhaps unlikely to directly react with proteins to form the
disulfide. Consequently, intermediate polysulfides (and/or sulfane

sulfur) have been suggested as species with oxidant properties
mediating S-sulfhydration [65]. Polysulfides may be formed from
H2S via autoxidation of HS� in the presence of molecular oxygen
at neutral or slightly alkaline pH. S-sulfhydration could occur via
the interaction of the sulfenic acid with HS� or H2S to form a
persulfide bond or via a sulfenamide intermediate (reviewed in
[66]). Protein S-sulfhydration may follow after H2S first forms
persulfide or polysulfides, which could then undergo thiol-
disulfide exchange. Perhaps the first study demonstrating protein
S-sulfhydration in vivo utilized a cystathionine γ-lyase-deficient
mouse model and a modified biotin switch assay [67]. A variant of
the switch method shown in Fig. 4 was used to monitor S-
sulfhydrated proteins, this included blocking free (unmodified)
thiol groups with MMTS, with removal of unincorporated MMTS
using acetone, followed by labeling of sulfhydrated (–S–SH) thiols
with biotin-HPDP [67]. In the original study biotinylated proteins
were captured using solid-phase avidin, eluted by SDS-PAGE and
immunoblotted using biotin-conjugated antibody or targets iden-
tified using mass-spectrometry [67]. Quantification of S-
sulfhydration can be achieved by comparing blots of the biotin-
switch samples to the blots of total lysates (not subjected to the
biotin-switch). The question however remains as how MMTS
while alkylating free protein thiols does not also modify –S–SH
group via thiol disulfide exchange. Recently Snyder’s group
reported a modification of this method with maleimide which
alkylates free thiol groups of proteins but does not affect nitro-
sated or other oxidized thiols. This approach allowed simultaneous
measure of sulfhydration and nitrosylation of NF-κB in the same
sample [68].

8. Monitoring protein S-thiolation

Protein S-thiolation is an umbrella term for disulfides between a
protein and small thiol-containing molecules such as glutathione
or cysteine, generating S-glutathiolated or S-cysteinylated proteins
respectively. Radiolabeled glutathione or other small thiols are
sensitive tools for the quantitative detection of protein S-thiolation.
Tritiated GSH with quantitation of incorporation into protein by
liquid scintillation counting [69], or providing 35S-cysteine in the
presence of a protein synthesis inhibitor to label the GSH pool
followed by autography of samples resolved by SDS-PAGE [70],
enabled monitoring of S-thiolation.

A commonly used non-radioactive approach is to use biotiny-
lated glutathione ethyl ester (BioGEE), a reduced form of glu-
tathione which is cell-permeant due to the acetyl group [70].
Once in the cell, esterases remove the acetyl group and the
biotinylated GSH can participate in redox reactions including
protein S-glutathiolation. Proteins carrying biotinylated glutathione
can be detected, identified, quantified and purified following
avidin-capture and MS analysis [70]. Glutathione N,N-biotinyl
glutathione disulfide (biotin–GSSG–biotin) which S-glutathiolates

O

O

Dimedone

Protein-dimedone adduct

Protein  sulfenic acid
O

O

S

Fig. 7. Identification of S-sulfonated proteins with dimedone. Dimedone (5,5-dimethyl-1,3-cyclohexanedione) forms a stable protein-dimedone adduct which can be
identified either colorimetrically or with MS or using antibody-based approach.
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proteins via thiol-disulfide exchange has also be used to study
protein S-glutathiolation in cells and organs [71]. Similarly, protein
S-homocysteinylation has been monitored using homocysteine
labeling with a fluorescent or biotin tag [72]. Such approaches,
however, do not readily permit direct detection of endogenous
S-thiolated proteins, for example in stored tissue samples. In this
case, antibodies to S-glutathiolated or S-homocysteinylated proteins
can be utilized [71]. Candidate protein S-glutathiolation can be
monitored by its immunoprecipitation, followed by immunoblot-
ting with a pan-specific anti-glutathione antibody, as reported for
detection of this modification in NOS [4].

The generic biotin-switch methods, as outlined in Fig. 4, can be
adapted for selective monitoring of protein S-glutathiolation. This
can be achieved on tissue sections or in homogenates by using the
disulfide oxidoreductase glutaredoxin to reduce the target pro-
teins back to the free thiol state, with subsequent labeling with a
thiol-reactive functionalized (e.g. biotin, fluorophore, etc.) reagent
[73,74].

9. Monitoring ‘hyperoxidation’ of protein thiols

As shown in Fig. 1, once a sulfenic acid forms it can react with
additional oxidant molecules to stepwise transition into more
stable sulfinic (PSO2H) and then sulfonic (PSO3H) acid states.
These are generally considered biologically irreversible modifica-
tions, perhaps proving evidence of damage associated with acute
hyper-exposure to oxidants or chronic oxidative stress. However,
the sulfination of the peroxidatic thiol in 2-Cys peroxiredoxins was
shown to be reversible in cells [12], and mediated by sulfiredoxin
through an ATP-dependent reaction [75]. PSO2H formation also
occurs in glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
[76], PTP1B [10] and DJ-1 [77]. PSO2H and PSO3H have been
indexed by monitoring band shifts on isoelectric focussing gels
[78]. Antibodies that detect sulfinic or sulfonic acid formation in
peroxiredoxin [12,79], DJ-1 [80,81], or GAPDH [61] have been
reported.

10. Monitoring lipid modifications of protein thiols

Protein thiols can undergo modification by a variety of lipid
electrophiles, such as hydroxynonenal, malondialdehyde, acrolein,
15 d prostaglandin J2 (15 D-PGJ2) or nitroalkenes via Schiff base or
Michael addition reactions [82]. A general strategy involves label-
ing a lipid electrophile of interest, applying it exogenously to
model systems to enable monitoring, purification and identifica-
tion of target proteins. For example biotinylated or fluorescent
BODIPY analogues of 15 D-PGJ2 or PGA2 have been utilized [83,84].
Biotinylated arachidonic acid can be added to cell or tissue models,
after which it is metabolized endogenously to generate different
products. Some of these products of arachidonic acid metabolism
can be electrophiles that may adduct to proteins; thus how
different stimuli modulate protein-electrophile adduction to
potentially exert a functional impact can be studied [83–85].
As a label is incorporated to protein targets, this also enables
subcellular localization of the modifications to be monitored using
microscopy [83]. Using such approaches, 15 D-PGJ2 was shown to
covalently adduct to the Kelch like ECH-associated protein 1
(Keap1) in a concentration- and time-dependent manner. This
modification results in activation of the nuclear factor (erythroid-
derived 2)-like 2 (Nrf-2) pathways to enhance antioxidant synth-
esis [84]. Sulforaphane is another electrophile that covalently
modifies Keap1, so triggering elevated antioxidant synthesis. The
targets of sulforaphane have been studied by synthesizing ‘click

chemistry’ analogues that enable target proteins to be monitored
and identified [86,87].

Commercially available antibodies have been used extensively
to monitor hydroxynonenal or malondialdehyde modification or
protein with immunoblotting or cyto-imaging methods [29].
Nitroalkene modification has been monitored with a switch-type
method (Fig. 4), in which the lipid adduct is reductively released
from target proteins by 2-ME with monitoring by MS [88]. Protein
S-palmitoylation can be similarly monitored by its enzymatic
reversal using a thioesterase [89], or chemically with hydroxyla-
mine [90]. Some modifications of proteins by lipid electrophiles
result in introduction of a carbonyl moiety [82]. Protein carbonyla-
tion can be monitored via reactionwith 2,4-dinitrophenylhydrazine,
which can be measured colorimetrically with a spectrophotometer
[91,92], by HPLC [93], or using immunoblotting with an antibody
generated to this carbonyl-labeling derivatisation reagent [92,94].

11. Monitoring redox states within cellular compartments

Several of the methods described above potentially enable the
redox state changes in a discreet cellular compartment (nuclei,
mitochondria, endoplasmic reticulum, cytosol, etc.) to be moni-
tored. Although this can be achieved by integrating subcellular
fractionation where compatible with one of the redox analytical
methods described above, a major problem is the redox state of
the target proteins are readily altered, especially during lengthy
sample preparations. Some of the protocols outlined are amenable
to being combined with imaging methods, allowing redox state
alteration in labeling to be monitored at defined subcellular
locations. For example, antibodies to specific oxidation states
commonly used for immunoblot analysis can also be valuable for
immunocytochemistry. Cells can also be studied using a modified
biotin-switch method (see Fig. 4) adapted for in situ analysis
of fixed samples, again allowing the localization of the oxidized
proteins to be determined. Subcellular localization of S-nitrosated
[95], or disulfide-containing proteins [96] has been achieved using
this strategy.

Mitochondria selective thiol redox probes that combine a
lipophilic triphenylphosphonium (TPP) motif with a thiol-
reactive labeling moiety have been developed. The membrane
potential of the mitochondrial causes the cationic, lipophilic TPP-
labeled probe to selectively accumulate within these organelles
where it differentially labels proteins thiols depending on their
redox state [97]. The TPP motif has also been used to deliver other
mitochondria-targeted cargoes, such as the antioxidants MitoVit E
or MitoQ. Proteins thiols labeled with TPP derivatives can be
assessed after electrophoresis using MS or antibodies developed
to this targeting motif, which has allowed alteration in the
mitochondrial respiratory chain complexes to be monitored
[97,98]. MitoB is a mitochondria-targeted ratiometric MS probe
that allows levels of oxidants such as H2O2 to be measured [99].

During the last decade genetically encoded redox sensor probes
that potentially allow quantitative, real-time, subcellular imaging
of ROS production have been developed [100,101]. Such sensor
probes typically comprise a fluorescent protein fused to a redox-
sensitive protein domain that is reversibly oxidatively post-
translationally modified depending on the cellular redox state.
The redox state of the sensor alters the conformation of the
probe protein to alter the efficiency of direct fluorescence or
fluorescence resonance energy transfer which is quantified by
various fluorescence-monitoring methods [100]. HyPer is a geneti-
cally encoded fluorescent probe for measuring H2O2, with enhanced
HyPer 2 and HyPer 3 variant available [100,102,103]. HyPer is a
yellow fluorescent protein (cpYFP) integrated into the conformation-
changing region of the Escherichia coli transcription oxido-reductase
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regulatory domain (OxyR-RD), enabling it to sense H2O2. H2O2

induces an intraprotein disulfide within the HyPer probe, causing a
profound conformational change that markedly alters the fluores-
cence emission peak at 516 nm [100]. A genetically encoded redox
probe for monitoring the redox state of glutathione has also been
designed by fusing a roGFP2 to human glutaredoxin-1 (roGFP2-Grx1)
[104]. RexYF, a genetically encoded redox probe for the NAD(H) redox
state changes, was developed by introducing YFP into the T-REX
redox sensor from Thermus aquaticus [105]. RexYFP, which is also
equipped with a pH sensor to reduce pH-dependent artefacts,
enables changes in the NAD(þ)/NADH ratio in different cellular
compartments to be monitored.

12. Present and future challenges

Methods and technologies for monitoring redox state in biolo-
gical systems continue to emerge, driven by the intense contem-
porary research activity in this area. However, many of the
methods are not suitable for monitoring ROS levels in cells or in
tissues in vivo and so can provide only limited insight. Further-
more, many of the methods are also limited by only providing a
snapshot of the redox state. Real-Time Imaging in vivo is already
available to some extent, as discussed above, but we envisage
these methods to evolve significantly in the near future. With the
increasing prevalence of genetically engineered murine models,
it is likely that such genetically encoded redox sensors will
perhaps become widely utilized. For example a ‘HyPer zebrafish’
that enables in vivo monitoring of H2O2 has already been devel-
oped [102,106] as well as a Thy-mito-Grx1-roGFP2 transgenic
mouse with a roGFP2 redox sensor expressed in neuronal mito-
chondria [107].

A remaining issue with methods for measuring specific ROS
species, especially those allowing in vivo analysis, is that many of
them are not absolutely quantitative. Quantitation is often relative
to control, but the absolute concentration or amount of an oxidant
produced basally or following an intervention of interest is
important information that cannot readily or reliably be deter-
mined. Another issue that plagues redox analytical methods is that
a steady state, net readout of the redox state of a target protein or
concentration of an oxidant is provided. This misses important
information about the turnover or redox cycling rates of redox
active components. Monitoring of redox flux through a defined
pathway of interest could again perhaps be achieved using optical
sensors, but the temporal resolution of fluorescent probes cur-
rently limits this.
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