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Oscillations emerging from noise-driven steady
state in networks with electrical synapses and
subthreshold resonance

Tatjana Tchumatchenko"* & Claudia Clopath?*

Oscillations play a critical role in cognitive phenomena and have been observed in many brain
regions. Experimental evidence indicates that classes of neurons exhibit properties that could
promote oscillations, such as subthreshold resonance and electrical gap junctions. Typically,
these two properties are studied separately but it is not clear which is the dominant
determinant of global network rhythms. Our aim is to provide an analytical understanding
of how these two effects destabilize the fluctuation-driven state, in which neurons fire
irregularly, and lead to an emergence of global synchronous oscillations. Here we show how
the oscillation frequency is shaped by single neuron resonance, electrical and chemical
synapses.The presence of both gap junctions and subthreshold resonance are necessary for
the emergence of oscillations. Our results are in agreement with several experimental
observations such as network responses to oscillatory inputs and offer a much-needed
conceptual link connecting a collection of disparate effects observed in networks.
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ognitive phenomena such as conscious perception and

attention are associated with cortical oscillatory activity in

the frequency range from lower than one to a few hundred
Hertz!™*. A number of theories have been proposed for the
generation of oscillatory rhythms that emphasize the importance
of a specific subtype of neurons and their synaptic connections.
Inhibitory interneurons are implicated in oscillatory cortical
activity in many brain regions. An important feature of inhibitory
interneurons is the presence of a subthreshold resonance that
selectively amplifies firing rate response to select frequencies
already present in isolated neurons®=. This alone could suffice
for the inhibitory interneurons to be the driving force behind
global network oscillations. In addition, those same inhibitory
interneurons are coupled by gap junctions in many cortical
regions where global network oscillations are reported!%~13, It is
therefore conceivable that gap-junction-induced synchrony and
subthreshold oscillations provide a substrate for global
oscillations in any regions where they co-occur. Although a
large number of theoretical studies have tackled the effects of
chemical synapses on synchrony and global oscillations, the role
of electrical synapses has received less attention and has been
mostly studied in networks with identical neurons in the low
noise limit and largely without considering the frequency
preferences of single neurons!3~!”. In physiological conditions
in vivo, neurons receive noisy input and fire irregularly a situation
where global oscillations could be difficult to achieve and the
synchronizing effect of gap junctions and single neurons could be
cancelled out. It is therefore important to understand how the
single neural properties interact with chemical and electrical
connectivity in the noisy fluctuation-driven regime, in which
neurons fire irregularly because they are driven by noisy inputs,
and how these networks can transition to global oscillations and
synchrony. The current lack of theoretical approaches so far is
largely due to the technical challenges of solving multiple coupled
Fokker Planck equations that are necessary for the inclusion of
gap junctions and single-neuron frequency preference. Therefore,
most of the computational studies consider either gap junctions
or resonant single neurons, never both simultaneously and largely
focus on numerical simulations'8-22,

To overcome these difficulties and address analytically the
interplay between the single neuron biophysics and the chemical
and electrical connectivity, we develop an adaptive threshold
model framework, where we consider neurons in the fluctuation-
driven regime, that is driven by largely fluctuating inputs, that
results in irregular firing, while neglecting their reset. Inhibitory
neurons have a subthreshold resonance, they are connected
electrically among themselves and chemically to excitatory
neurons. Excitatory neurons do not exhibit subthreshold
resonance and are chemically coupled. Within this framework
we compute the sub- and superthreshold resonant properties of
single neurons and use this framework to set up a self-consistent
mean-field description. Using the mean-field approach, we
compute the network dynamics in response to an incoming
oscillatory current. Notably, we show that the resonance
frequency of the network reflects directly the subthreshold
preference in individual neurons of a subset of neurons, while
chemical synapses act as a multiplicative gain that regulates the
amplitude of this response but not its shape.

We then derive the oscillatory instability condition for the
network to transition from irregular spiking to global self-
sustained oscillations. In the oscillatory state, the neurons fire
synchronously and therefore are no longer in the fluctuation-
driven regime. We demonstrated analytically two requirements
for the emergence of self-sustained global oscillations from the
fluctuation-driven state, (i) frequency preference in the inhibitory
neurons and (ii) inhibitory neurons connected with gap
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junctions, where the gap-junction-induced spikelet is larger than
the y-aminobutyric acid (GABAergic) inhibitory postsynaptic
current (IPSC), and leads to global excitatory coupling. It is
important to emphasize that in our model synchronous global
oscillations are characterized by one spike per neuron and cycle,
and emerge from the irregular fluctuation-driven network state.
The frequency of global oscillations is largely defined by single
neuron subthreshold oscillations. Notably, this is a fundamentally
different mechanism compared with previous studies that
describe the emergence of sparsely synchronized fast oscilla-
tions?®, or gap-junction-mediated synchronous oscillations in
networks without subthreshold frequency };reference24 or global
oscillations in network-coupled oscillators'.

Here we demonstrate that the theoretical predictions we
derived are consistent with the recent physiological evidence from
cell-specific light stimulation in the barrel cortex?2. Adapting our
framework to the cell properties of the barrel cortex, we show that
the excitatory neurons amplify low frequencies at the network
level, whereas the inhibitory neurons alone can support a
resonance in the y-range, which is consistent with ref. 22. Our
analytical adaptive framework is not limited to the case of the
barrel cortex, but can be applied to any neuronal network in the
fluctuation-driven state with subthreshold resonance and gap
junctions.

Results

Subthreshold resonance leads to firing rate resonance. We
model inhibitory neurons via a leaky voltage dynamics coupled
with an adaptive variable. This model exhibits subthreshold
oscillations that depend on the relative time constants of the
voltage (ty) and of the adaptive variable (t,,), as shown in Fig. 1a
and mathematically derived in the Methods section. Next, we
show the effect of this subthreshold resonance on the firing rate
susceptibility to periodic inputs. Figure 1b demonstrates that the
Q-value (peak/width) of the resonance peak is highest in the
parameter regime where subthreshold resonance is most salient.
The preferred frequency for the rate response is very closely
related to the preferred subthreshold resonance frequency
(Fig. 1b,c). Albeit sizable differences between rate and subthres-
hold resonance can be observed in Fig. 1c close to the edge of
resonant parameter space. Importantly, this tight correspondence
between subthreshold and rate resonance we observe for the
threshold model framework is consistent with the previous
observation by Richardson et al.>! They found that fluctuation-
driven but not mean activity can unmask the subthreshold
oscillations in the spike firing patterns of leaky integrator
neurons. Finally, the predicted steady-state firing rate we
calculated analytically is consistent with numerical simulations,
Fig. 1d. The firing rate increases with the current drive and
decreases with the adaptive coupling o, consistent with previous
experimental and theoretical reports?!.

Response of a single neuron to an oscillatory current. To
address how networks respond to dynamical stimuli, the first step
is to understand how the firing rate of single neurons responds to
weak sinusoidal current drive of frequency f (refs 19,21). We
therefore derive the linear response functions Rj(w) of a neuron
receiving an oscillatory current (see Methods). Figure 2 demon-
strates the linear response functions for inhibitory and excitatory
neurons.

The salient feature of the inhibitory linear response is the
resonance emerging from the adaptive voltage coupling o.
Figure 2a shows that increases in « result in a higher resonance
peak and a modest shift to higher frequencies. Figure 1b,c also
demonstrate the firing rate frequency response and its sharpness
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Figure 1 | Subthreshold and firing rate resonances of single neurons and the ensuing firing activity. (a) Subthreshold phase-plane in single neurons;
subthreshold oscillations can be observed for complex eigenvalues of subthreshold transformation in equation (1). (b) Q-value of firing rate resonance in
single neurons in the 1y, 7,,-phase plane (dashed line in a); sharpest resonances (high Q) values are observed for parameter values corresponding to
subthreshold oscillations in a. (¢) Resonant frequencies for firing rate (grey) and subthreshold dynamics (black) at t,, =4.18 ms. (d) Firing rate of single
neurons as a function of input current; solid line (theory) and dots (simulations). Parameters as in Table 1.
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Figure 2 | Inhibitory and excitatory linear firing rate response. Normalized linear rate response amplitude R(2xf)/R(0) as a function of input frequency.
(a) Rate response exhibits a resonance in a population of inhibitory neurons with the threshold model at low-firing rate. The solid lines are the theory and
the dots are the simulations for different values of o. (b) Rate response in the excitatory neurons exhibits a low-pass behaviour. (¢) Comparison of the rate
responses for the theory and different neuron models, where inhibitory neurons fire at high rate (black line: theory, black dots: adaptive threshold neuron,

grey dots: aEIF model). Parameters as in Table 1.

in the frequency domain. Q-value that we use to quantify
sharpness is defined as Af/fz where Af is the full width at half
maximum and fz is the peak frequency. The excitatory neurons,
however, show amplification of lower frequencies only Fig. 2b
because, by assumption, they lack subthreshold adaption («=0).
Their firing rate response drops at higher frequencies due to the
membrane time constant of the leaky integrator.

To show the robustness of our findings across different spiking
models, we compare the threshold model with the adaptive
exponential integrate-and-fire (aEIF) model, which is shown to
reproduce different firing patterns®>. In Fig. 2c, we show that the
inhibitory response function in both models are very similar even
at high rates, firing rate around 35Hz in both models. A more
detailed response functions comparison across models can be
found in Figs 1 and 2 in the Supplementary Methods.

Network response - Link to experiments. Studying the network
response to external periodic drive in Fig. 3, we discovered that
stimulation of excitatory and inhibitory neurons yield qualita-
tively different results. If the oscillatory current is delivered to
excitatory neurons, the network only amplifies lower frequencies
(Fig. 3b). If the oscillatory current is delivered to inhibitory
neurons, the network shows a resonance peak that resembles the
rate resonance of single inhibitory neurons (Fig. 3c). This indi-
cates that the location and width of the inhibitory subthreshold

resonance rather than recurrent chemical synaptic connectivity is
a major determinant of network dynamics in response to external
stimuli. We note that the form of rate response functions does not
depend on the details of the spike generation mechanism such as
voltage reset and is preserved for the adaptive exponential and
leaky integrate-and-fire models (see Fig. 3c the black and grey
line, as well as Supplementary Fig. 1b). We therefore expect these
results to generalize to other classes of networks where sub-
populations of neurons exhibit differences in subthreshold fre-
quency preferences.

Next, we explore whether parameter regimes exist where
stimulation of the excitatory neurons could show signatures of
the inhibitory subthreshold resonance. To investigate this
hypothesis, we increased threefold the E to I connectivity strength
I'ie and shortened the voltage time constant of the excitatory
population 7y g to enable excitatory response function to cover
the y-frequency range. Supplementary Fig. 3 shows that these two
interventions are sufficient to induce 7y-band resonance on
excitatory stimulation. However, it is hard to find experimental
evidence supporting I'yg >>I'g;, I'gg such that we consider the
parameter set of similar recurrent connectivities in Fig. 3 to be a
more plausible case in cortical networks.

We find that results in Fig. 3 are consistent with the
experimental finding of Cardin et al?? in the barrel cortex
in vivo. These experiments show that inhibitory neurons rather
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Figure 3 | Network response amplitude in experiment and theory. (a) Spike-triggered effects in inhibitory neurons. Postsynaptic spikelet originating from
gap-junction coupling (top) and the GABAergic-mediated IPSC (bottom). (b) Simulated network response Re(2nf)/Re(0) (normalized) for excitatory and
(e) Ri(2xf)/R(0) inhibitory stimulation as a function of input frequency f. Parameters are in Table 1 (black: threshold model, grey: aEIF model). (d) Spike per
cycle as a function of stimulation frequency (black: threshold model, grey: aEIF model). (e) Experimentally measured network local field potential (LFP)
amplitude in response to light activation of inhibitory cells at 40 Hz (values adapted from Supplementary Fig. 9 in ref. 22) in two different network
connectivity conditions (after excitation- and subsequent inhibition blockade) relative to the intact network. (f) Simulated network response of aEIF
neurons at 40 Hz in the conditions similar to the experimental data (see Table 1). (g) Simulated network response of aEIF neurons at 40 Hz for different
settings of gap-junction strength, recurrent connectivity, mean and variance of the drive.

than excitatory neurons amplify y-range frequencies. The external
stimulation at varying stimulation frequencies in Cardin et al.??
corresponds to the network linear response we have studied in the
previous two sections. In Fig. 3b-d, we show that our model can
reproduce the high spike probability per cycle (around 0.9 for
40Hz) and recover the frequency response dynamics found in
neural networks under excitatory and inhibitory stimulation in
Cardin et al.??

This framework offers us the opportunity to investigate the
contribution of the single neuron properties and connectivity to
the network response dynamics. Cardin et al?? addressed this
question by blocking successively excitatory and inhibitory
connections. They showed that stimulating the inhibitory
neurons optogenetically at 40Hz lead to a large local field
potential (LFP) response, which decreased by ~70% when the
excitatory connections are blocked, and decreased to almost
baseline when all the chemical connections were blocked (see
Fig. 3e, figure redrawn with data from ref. 22). In Fig. 3f, we
mimic this experiment and reproduce quantitatively the
experimental results. However, in our model, blockade of
connectivity is a combination of removing recurrent excitatory
synapses and reducing external excitatory drive. Similarly,
blockage of GABAergic connections correspond to a removing
of inhibitory synapses in our model, increasing the network drive
and reducing the variance of the noise. This is due to the fact that
in the irregular activity of cortical neurons, the mean and the
variance of the firing rate co-vary?°.
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Notably, other models such as PING/ING models have been
tried to explain the findings of Cardin et al.?2. However, Tiesinga
and Sejnowski?’ have shown that these networks fail in
reproducing two major features of Cardin et al. results: (1)
stimulation of excitatory neurons leads to y-frequencies
amplification unlike in Cardin et al. and (2) asynchronous and
low-rate background activity is absent in PING/ING networks
but is the defining feature of cortical networks?>?3, OQur own
simulations of a PING/ING network where excitatory neurons
are externally stimulated (Supplementary Fig. 4) also confirm
Tiesinga et al. results and suggest that this model class is
inconsistent with results by Cardin et al.

Predictions for network’s response to an oscillatory drive. The
response of a network subject to external stimuli is influenced by
a number of effects such as external drive and recurrent chemical
and electrical coupling. To consider each effect separately we turn
to Fig. 3g. In Fig. 3g, we show the separate contribution of the
mean drive, variance drive, recurrent connectivity and gap
junctions on the network response to an oscillatory current at
40 Hz. We find that the inhibitory subthreshold resonance rather
than recurrent chemical synaptic connectivity is a major deter-
minant of network dynamics in response to external stimuli. We
find the largest drop in response amplitude when excitatory
external drive’s mean or variance is reduced. On the other hand,
reductions in recurrent conductivities by and large introduce only
modest effects. This could be tested experimentally by opto-
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genetically silencing the thalamic neurons providing inputs to the
cortical neurons. This manipulation should show a drastic low-
ering of LFP y-power. However, silencing the local cortical
excitatory neurons should only show a subtle drop in y-power. In
summary, our findings support the hypothesis that intrinsic
biophysics of excitatory cells is the primary cause for the reduc-
tion of excitatory neurons ability to respond primarily to low-
frequency stimulation rather than synaptic recurrent connectivity,
or even the recruitment of a distinct subgroup of low-threshold
spikin% neurons that selectively enhance lower-frequency oscil-
lations®®, Therefore, our study offers a complementary
explanation for the observed experimental findings and
supplements previous multi-compartment large-scale
simulations by offering a compact analytical treatment that
combines both electrical, chemical and single-neuron
subthreshold contributions.

Predictions for self-sustained network oscillations. In this sec-
tion, we characterize the emergence of self-sustained global
oscillations occurring when the asynchronous irregular network
state becomes unstable with respect to spontaneous oscillatory
perturbations. We consider the stability conditions outlined in
refs 23,29 and apply them to our network. Starting with an
infinitesimal time-dependent perturbation in input current, we
obtain changes firing rate via R{(w) (equation (3)) and propagate
these changes sequentially back to the current level via Siw)
(equation (4)). The stability of this transformation is given in
equation (6) and its two population analogon can be found in
equation (47) in the Supplementary Methods. It is important to
emphasize that these stability conditions can predict where this
oscillatory transition boundary should occur in parameter space
and what oscillatory frequency emerges at this transition.

We also address the stability of the irregular steady state in
numerical simulations and contrast these predictions with the
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above theory. Figure 4a,b illustrates the global network coherence
(Cor, as defined in section ‘Quantification of global network
coherence’) for a network as a function of gap-junction strength
7. and normalized current drive ey 1/ Vinr. The dotted line shows
the theoretical boundary, matching the very onset of global
coherence computed numerically. We find good correspondence
between the theoretically predicted stability boundary and
numerical simulations, both for the threshold based model in
Fig. 4a and the corresponding leaky and integrate-and-fire (EIF)
models with reset (Supplementary Figs 1 and 2). As individual
single-neuron response functions and network firing rates are not
affected by the presence of voltage reset (see Supplementary
Fig. 1b-d), we expect the oscillatory boundary derived here for
the reset-free model to correspond to that of leaky integrate-and-
fire and models with reset. Indeed, we find that the transition
boundary to the global oscillatory state remains unchanged for
the ad%ptive integrate-and-fire model as well as for the aEIF
model*’, which is known to reproduce different neuronal firing
patterns31’32.

Figure 4b shows the corresponding spike rasters in the
asynchronous irregular and in the oscillatory state. Note that in
the oscillatory state, the neurons fire synchronously and therefore
are not in the fluctuation-driven regime anymore. Increasing the
excitatory drive pex p/Ving however does not lead to self-
sustained oscillations (Fig. 4a, bottom), as shown numerically
and theoretically. This is due to the assumption that excitatory
neurons do not have a subthreshold resonance (x=0). In
summary, we observe that inhibitory current is a potent drive of
global self-sustained oscillations, while excitatory drive is less
effective. In Fig. 4c, we show that the frequency of these global
self-sustained oscillations corresponds closely to the subthreshold
resonance as well as the rate preference (Fig. 1) of inhibitory
neurons. The grey region in Fig. 4c delimits the frequency range
of emerging self-sustained oscillations. Importantly, we show
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Figure 4 | Global self-sustained oscillations and their frequency. (a) Phase transition to a global self-sustained oscillatory state as a function of gap-
junction strength and current input to inhibitory neurons (top) and to excitatory neurons (bottom). Dashed white line indicates the phase transition
between irregular and oscillatory state. Grey scale indicates the log network coherence computed numerically (see Methods, parameters in Table 1).
Current input to excitatory neurons is less effective in eliciting global oscillations. (b) Spike rasters of the inhibitory neurons in the oscillatory (top,
parameter choice indicated by # in @) and in the asynchronous irregular regime (bottom, parameter choice indicated by * in a). (¢) Membrane constant as a
function of oscillation frequency: for self-sustained global oscillation (grey area), firing rate resonance (dark grey) and subthreshold resonance (black). In all

three conditions, oscillatory frequencies are closely related.
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mathematically that the self-sustained oscillations can occur only
if (1) the net effect of the GABAergic synaptic current and gap-
junction-mediated spikelet is positive (I';; > 0) and (2) at least one
subpopulation of the neurons expresses subthreshold oscillations
(see Methods). We would like to emphasize that these require-
ments hold for a network transitioning from the fluctuation-
driven regime. Of course, oscillations can occur through different
mechanisms, such as through couplinlg5 of mean-driven neurons
that effectively act as oscillators131533 or through synaptic
delays®>%°,

Discussion

We presented a comprehensive network study of the effects
arising from a combination of subthreshold resonance, electrical
and chemical synaptic coupling. In our analysis we focused on the
fluctuation-driven network state expressed in many cortical
regions?®?834 Our results demonstrate that in a situation
where neuronal networks are subject to external oscillatory
stimuli, the subthreshold frequency preference of a subpopulation
defines the global network frequency preference, while electrical
and chemical connectivity provide multiplicative gain factors.
When an external stimulus of varying frequency impinges on a
subpopulation, not only the response amplitude of the stimulated
population but also the complete network is closely related to the
subthreshold frequency preference of the stimulated population.
We found that the electrical synapses are effective at
synchronizing the neuronal network if the spike triggered
coupling, composed of the GABAergic current and the gap-
junction-mediated current, is net positive and a subthreshold
resonance is present in at least one subpopulation. The absence of
a subthreshold resonance (o =0) stabilizes the irregular steady
state and precludes the generation of a sustained global
oscillation, regardless of electrical or chemical coupling.
Notably, we find that subthreshold resonant frequency closely
corresponds not only to the firing rate preference in independent
neurons but also determines the frequencies of the global network
oscillations emerging at the instability boundary of the irregular
steady state.

Electrical synapses as well as subthreshold oscillations have
been previously recognized as key ingredients in the generation of
global rhythms!10, Yet, typically, these two properties are studied
separately in model settings. Here we briefly recapitulate previous
results on the role of electrical synapses as well as subthreshold
frequency preference and highlight their relation to our results
and model. We start by considering the studies with a focus on
neurons with subthreshold frequency preference and those
describing the irregular steady state of neural networks. The
irregular asynchronous steady state of cortical networks and its
oscillatory instability has first been quantified by Brunel and
Hakim?>%’, and Brunel and Wang® in a series of landmark
papers. Using the Fokker-Planck formalism, they have shown that
sparse synchronized fast oscillations can emerge from instabilities
of an irregular network dynamics through a Hopf-bifurcation.
The emergent oscillation frequency is then inversely proportional
to the synaptic delays, which results in a fast rhythm >200 Hz.
This could be lowered by considering synaptic dynamics. Here we
considered the same oscillatory instability condition in
equation (6) to derive the stability boundary of the irregular
steady state, but developed an alternative framework, the adaptive
threshold framework, rather than the Fokker-Planck treatment, to
explicitly calculate the necessary transfer functions. One of the
transfer functions, rate response function, has been calculated in
the presence of subthreshold oscillations for the integrate-and-fire
model driven by white noise by Richardson et al.?! A key result of
this study is that fluctuation-driven but not mean activity can
unmask the subthreshold oscillations in the spike firing patterns
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of leaky integrator neurons. However, this study considered only
isolated neurons rather than an interconnected network and
limited its noise statistics to the white noise case. Both of these
assumptions could significantly affect the response characteristics
as it has been shown for leaky integrate-and-fire neurons>C.
However, extending the Fokker-Planck framework in the
presence of coloured noise and subthreshold resonance is
analytically hard and has so far not been attempted to the best
of our knowledge. Recent studies have started addressing
networks of neurons with a subthreshold frequency preference
and rate adaptation; however, the analytical treatment has so far
relied on time scale separation between t,, and 7y, low noise
activity and numerical simulations'8. Yet, our study shows that
the regime where 7,, and 7y interact is particularly interesting,
because it is here that rate and subthreshold resonances are the
most pronounced. Despite these differences, we can confirm the
observation by Augustin et al.'® that in the absence of adaptive
variable w even excitation-dominated networks lack resonances at
any frequency.

Next, we discuss how our results complement previous studies
addressing the effect of gap junctions on network dynamics. Ever
since gap junctions were first observed in higher brain regions,
theorists began to address the similarities and differences between
chemical and electrical synaptic communication. Mostly, these
studies considered a low-noise regime where all neurons fire
regularly and can be described by phase-coupled oscillators!3~1°,
Counterintuitively, these studies have shown that direct voltage
coupling through gap junctions does not necessarily lead to
network-wide synchronization but, depending on parameters,
could also be a desynchronizing force. However, although the
regular firing regime assumed in these studies can occur in the
periphery, this is not a typical situation for the cortex where
coefficient of variation (CV) and Fano values are close to 1 and
fluctuations occur rather than the mean drive spiking?®3’. This is
a situation where global network oscillations could be difficult to
achieve and the synchronizing effect of gap junctions could be
cancelled. One of the few studies addressing the stability of the
irregular spiking regime in the presence of gap junctions is by
Ostojic et al?* Studying an inhibitory leaky integrate-and-fire
network coupled by gap junctions, Ostojic et al found that
network with gap junctions can indeed synchronize in the
presence of noise and heterogeneities, and the period of
oscillation is determined by the intrinsic firing rate of the
neurons. This is in contrast to inhibitory chemically coupled
networks where the oscillatory period is determined by the time
course of the inhibitory currents following a spike. Importantly,
the authors did not consider the subthreshold frequency
preference of inhibitory neurons and neglected the synaptic
time constants by assuming a white noise drive. Both of these
phenomena can significantly alter the transfer rate function R;(w)
and thereby affect the stability and oscillatory properties of
networks?®,

Here we proposed an analytical framework to incorporate these
phenomena in a network of neurons connected by electrical and
chemical synapses, where inhibitory neurons express subthres-
hold resonance. We show that in the fluctuation-driven regime,
inhibitory subthreshold resonance is the substrate for firing
resonance of single neurons as well as global oscillations. From a
fluctuation-driven regime, self-sustained oscillations only emerge
if the inhibitory neurons have subthreshold resonance and are
connected by gap junctions, leading to a net spike-induced
depolarizating current. Our model therefore indicates that
excitatory neurons that typically lack subthreshold resonance
are not essential for global rhythm generation but rather amplify
self-sustained oscillations. Our theory predicts that this resonance
is amplified by chemical connectivity in the network and
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Table 1 | Parameter sets for excitatory and inhibitory neurons.

Neuron type Vin,i O1,i T i Bi Tvi Twi HEN
Excitatory 10 mV 12mV 10ms 0 - 40 - 0.5Vine
Fig. 3f,g —50% - 30Vth£
Inhibitory 4mV 10 mV 10ms -2 4.5 10 20 2Vin,
Figs 2c and 3 30mV —4 Vine
Fig. 3f.g —50% —30Vin,
Network Ve I'n g | Y Tee N Ne/N, Taim
Figs 2 and 3 0.5 15mV —10mV 15mV 15mV 500 0.8/ 103 s
Fig. 4 5000 0.2 5s

gap-junction-mediated subthreshold current, but the resonance
peak location is not affected by the connectivity. Our framework
nicely accounts for experimental evidences?> showing
amplification of 7-frequencies by periodic stimulation of
the inhibitory neurons and of low frequencies by stimulation
of excitatory neurons. Thus, our study provides a very-much-
needed mechanistic understanding of experimental evidence
showing the special role of subthreshold resonance for defining
the preferred global oscillation frequency of noise-driven
networks as well as in defining the response profile of networks
to external stimulation.

Methods

We consider a network of N= Ng + N; neurons, where Nj is the number of
inhibitory and N is the number of excitatory neurons. Each neuron is modelled by
an integrate-and-fire model without reset and an additional adaptation variable,
and simulated for a time Ty;,, with a resolution of dt=0.01 ms. The code used to
simulate the model will be posted on ModelDB (https://senselab.med.yale.edu/
modeldb).

Dynamics of a single neuron. We consider a single neuron that exhibits a sub-
threshold frequency preference and describe the voltage at cell j by the following
two dimensional differential equations,

v Vi(t) = = V(t) + owi(t) + X;(t) (1)

Twiwi(t) = —w;(t) + BV (8), )

where 7y,; and 1,,; are the time constant of the voltage and the adaptation variable
respectively, X(t) is the current, o; and f8; are coupling constants. je {E, I} where E
and [ represents the excitatory and inhibitory neurons, respectively. The para-
meters for both populations are summarized in Table 1. We note that this simple
leaky integrator dynamics with one adaptation variable w is a linearized repre-
sentation of a physiologically more accurate conductance-based Hodgkin-
Huxley?!. A spike is emitted by the neuron j, whenever Vi(t) crosses the voltage
threshold Vy, ; from below>°~#2, This reset-free spike implementation is compatible
to the classical integrate-and-fire model for low rates and finite time constants*!,
and has been shown to capture essential features of spike correlations and response
dynamics of cortical neurons in the noise-driven regime3*43. The subthreshold
voltage dynamics in equation (1) is inspired by four recent publications®* 4144, Tt
can be viewed as a minimal model that due to the adaptation variable w; can exhibit
subthreshold resonance. Although there are a number of cellular mechanisms other
than adaptation that can contribute to a subthreshold frequency preference>49, for
reasons of mathematical tractability we opted for the above implementation. The
subthreshold resonance emerges in equation (1) if the eigenvalues of the two-
dimensional transformation are complex, see Fig. 1a. The subthreshold frequency is
determined by the imaginary part of the eigenvalues and grows when the
membrane time constant 7y decreases, see Fig. 1lc.

To show the robustness of our results across spiking models, we compare the
threshold model with the aEIF model>, where the voltage V; at cell j and the
adaptation variable w; are described by the following two-dimensional differential
equations ty;Vj(t) = — Vj(t) + Ar exp((V; — Vip) /Ar) + ow;(t) + X;(t) and
TwWi(t) = —wi(t) + B;V;(t), where Ap=1/2mV taken from ref. 25. The
threshold condition is if Vj(t) > Vi, then Vi(t) =0, VL€ [t;, tj+ Tref, Trer=5ms,
wj(t) = w;(t) + const, const =30 mV. We find that all our model predictions can
also be observed in the aEIF model and features such as firing rate response,
response dynamics and network stability regimes are preserved across models, see
Figs 2c and 3, and Supplementary Figs 1 and 2.

Single-neuron response to dynamical stimuli. To address how interconnected
networks respond to dynamical stimuli, the first step is to understand how the

firing rate of a single neuron responds to weak sinusoidal current drive of fre-

quency f (refs 19,21). We therefore derive the linear response function Ry(w) for a

neuron j € [E, I]

A2y (Vi — Vog) + io/2ra3, ;) (1 + ity jo)
47[0%/-1((1 + I‘L'VJ(,O)(I + i’EM,_jU)) — 71/3])

Ry(w) = 3)

2
where @ =27f, V,; is the mean voltage of the neuron j, A = exp < - M),

207,
v, is the variance of V; (derived in equations (15-21) in the Supplementary
Methods). All other parameters as in equation (1) and their values for excitatory
and inhibitory neurons are summarized in Table 1. We choose the parameter set
for both neurons to match the adaptation and membrane time constants, rate
resonance peak and the reliably encoded frequency range that are observed
experimentally in cortical neurons®!%43, The reverse characteristic transfer
function of a single neuron j is the current response function Sj(w) that governs
how the average input current of single neuron responds to weak sinusoidal rate
drive of frequency f.

S() = v — (1 +iwty;) (1 +iot,))
! % — (1 +iwty)(1 +ioty,;)

Detailed derivation of Rj(w) and Sj(w), as well as their generalization for
electrically connected neurons, can be found in the Supplementary Methods. It it is
important to emphasize that the linear response function describes the rate response
at the applied stimulus frequency w. Even though this linear response is derived
mathematically for small inputs, it is also valid for larger input stimuli. Intuitively, we
know that strong stimuli at frequency w excite responses at @ and higher-order
harmonics at nw. As the amplitude grows, the amplitude of nw components grows
too. However, as we are interested in the response at w, the higher-order harmonics,
nw, are negligible relative to the linear response component at w.

4)

Gap junctions. Inhibitory interneurons are often connected by both gap junctions
and chemical GABAergic synapses'!. Between the spikes, the gap-junction-
mediated coupling, y., is proportional to the difference of voltages between the
neurons, see equation (5). Consider two inhibitory neurons chemically and
electrically coupled. When a spike arrives at a GABAergic synapse, a brief
inhibitory current pulse (IPSC) is triggered in the postsynaptic neuron (see Fig. 3a,
bottom) for a schematic depiction. This is the well-known spike transmission at
chemical synapses, which we model here via an exponential IPSC I'10(t —t;)

exp( — t/1y) at the time of spike ¢. On the other hand, the same spike is also
transmitted through the gap junction resulting in a so-called ‘spikelet’ or electrical
postsynaptic potential. The spikelet depends on the shape of the presynaptic spike:
spikes characterized by a brief depolarization and large hyperpolarization tend to
evoke predominantly inhibitory spikelets, while spikes with a prolonged
depolarization lead to a primarily excitatory spikelets. A number of studies have
investigated the spikelet shape and reported a great diversity*’*3. For example,
parvalbumin-positive interneurons in the somatosensory cortex in L2/3, the gap
junction evoked spikelets are purely excitatory?’, while in the amygdala the spikelet
of parvalbumin-positive interneurons can have a late hyperpolarizing transient*’.
In this paper, we assume that the spikelet contribution is excitatory, although our
framework in not limited to that. Mathematically, we model the spikelet as an
exponential at the time of spike ¢; with the same time constant as the IPSC. We can
therefore sum the contribution of the GABAergic IPSC and the spikelet, leading to
a net exponential postsynaptic potential I'y0(t — ) exp( — t/71). This single
exponential approximation serves to keep the analytical complexity at bay while
considering the dominant finite time scale of synaptic interactions.

Dynamics of the network. Interested in the temporal spike dynamics of a network
with electrically and chemically coupled inhibitory neurons and only chemically

coupled excitatory neurons, we model the input current Xj(t) to a neuron in the

irregular steady state as a sum of chemical and electrical coupling. The topology of
the network is all-to-all with the connectivity matrix I';. The all-to-all connectivity
is not critical and we observed equivalent results with sparse connectivity, as long
as the product between the connectivity probability and the connectivity strength
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remains the same. Note that the inhibitory spike-mediated coupling I'yy =

g gap + I consists of a spikelet-mediated excitatory contribution (I'g,g,,) and the
contribution of GABAergic chemical synapses (I'y). We represent each spike
triggered electrical and chemical synaptic potential by an exponential of the form
[;;0(t) exp(— t/t1) such that the external fluctuations 7ex(t) are of the Ornstein
Uhlenbeck type with time constant 7; (ref. 50). We neglect synaptic delays and
assume that both chemical and electrical spike interactions are instantaneous. We
operate in the irregular steady state where the mean recurrent current drive is
proportional to the firing rate®*. For the sake of tractability, we assume that the
fluctuations in the external input o; dominate over network-generated noise and
are sufficient to describe the firing rate of the network (see Fig. 1d for a comparison
between theory and numerical simulations). Explicitly, we model the input current
Xj(t) to a neuron in the irregular steady state as

Xj(t) = 7c<V1-k(t)>k.einh + rjl‘wl(t) + rjETVE<t) F Hexy + UI’7ext(t)~ (5)

Here, { V() ) k. cinn is the average voltage of the inhibitory population, vg(t) is
the firing rate of the excitatory population, vi() is the firing rate of the inhibitory
population, fiey is the constant external drive and o pie,(t) the fluctuating external
input. . is the subthreshold coupling contributed by gap junctions. The strength of
excitatory and inhibitory spike triggered interactions for the population j are I';g
and T'j;, respectively. The parameters are given in Table 1.

Steady-state firing rate. First, we study the firing rate as a function of current
drive in a single, isolated neuron, driven by a mean current Xo = plext + O1l]exe Where
Next 18 an Ornstein Uhlenbeck fluctuation with correlation time 7; and unit var-
iance. The firing rate v; is given in the Supplementary Methods and is shown on
Fig. 1d. The theoretically derived firing rate v; as a function of fex/ Vi, is in good
agreement with numerical simulations. In a mixed irregular, asynchronous net-
work with both excitation and inhibition, the steady-state firing rate of inhibitory
neurons vy and excitatory neurons vg are derived in the Supplementary Methods
and shown in the Supplementary Fig. 1c,d, again matching numerical simulations.

Condition for self-sustained oscillations. To assess the stability of the asyn-
chronous irregular network state with respect to oscillatory perturbations, we
consider the stability conditions outlined in refs 23,29. Starting with an
infinitesimal time-dependent perturbation dr(w) exp(iwty) in current applied at
time ty, we obtain changes in firing rate and resulting changes in current induced
by as change in firing rate. For a network consisting of only inhibitory neurons, the
stability condition reads

TRy (w)Si(0) =1, (6)
where I'y; is the recurrent connectivity strength, and Ry and §; are response
functions given in equation (3) and equation (4), respectively. For the general two-
dimensional network with an excitatory and inhibitory subpopulations, the stability
condition takes a matrix form and is provided in the Supplementary Methods.
Studying equation (6) and its real part, we find that for all I';; <0 no real @
solution can be obtained implying that the irregular regime is stable for inhibitory
interactions. Another condition for the stability of the irregular steady state is
obtained if subthreshold resonance is lacking (o =0). In this case we find

2(Vi — Vi
(i(ux/2n+ M) =1
A/ TyTIOy

Solving for @ we obtain only imaginary solutions implying that the oscillatory
instabilities can not emerge and the irregular steady state is stable for any I';; under
these conditions. Although this condition is derived for the threshold neuron
model, we show in the Supplementary Fig. 2 that it also holds for the adaptive leaky
and aEIF neurons with reset.

vty (1 +ioty)
20y (1 -7, +ioty)?

7)

Quantification of global network coherence. In simulations, we assess the global
network coherence using the rate-normalized correlation p. For each excitatory (E)
and inhibitory (I) population, we compute the correlation according to

pre = ((s{5(t) - s{5(¢)) /vie — viE)/vie- Here, (- denotes the ensemble average,
v are the rates of excitatory and inhibitory neurons, respectively. s are the
compound spike trains of the respective populations. To compute the spike cor-
relation (s ;(t)s{ z(t)), we convolve each spike with a Gaussian kernel with

0 =3 ms, leading to 7 (¢). If the network is in an asynchronous, irregular state,
then we expect p = 0. In contrast, if the network is in an oscillatory state with each
spike aligned across the population then lim,_,o p = c0. We therefore use p;x as
an index of population synchrony. In a mixed excitation-inhibition network we use
the average Cor = (pg+ p;)/2 as a measure of network coherence 51 for example in
Fig. 4a. Note that in practice in the asynchronous irregular regime p will fluctuate
around zero, with the amplitude of fluctuations decreasing for growing network
size N.
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