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Merkel cell carcinoma (MCC) is an aggressive and lethal type of neuroendocrine skin cancer. Mutated Merkel cell
polyomavirus (MCV) is commonly found in MCC, and leads to upregulation of the survivin oncogene. However,
B20% of MCC tumors do not have detectable MCV, suggesting alternative etiologies for this tumor type. In this
study, our aim was to evaluate microRNA (miRNA) expression profiles and their associations with MCV status and
clinical outcomes in MCC. We showed that miRNA expression profiles were distinct between MCV-positive
(MCVþ ) and MCV-negative (MCV� ) MCCs and further validated that miR-203, miR-30a-3p, miR-769-5p, miR-34a,
miR-30a-5p, and miR-375 were significantly different. We also identified a subset of miRNAs associated with tumor
metastasis and MCC-specific survival. Functionally, overexpression of miR-203 was found to inhibit cell growth,
induce cell cycle arrest, and regulate survivin expression in MCV� MCC cells, but not in MCVþ MCC cells. Our
findings reveal a mechanism of survivin expression regulation in MCC cells, and provide insights into the role of
miRNAs in MCC tumorigenesis.
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INTRODUCTION
Merkel cell carcinoma (MCC) is an aggressive type of neu-
roendocrine skin cancer that affects elderly and immunosup-
pressed patients. MCC is rare, but its incidence has increased
from 0.15 to 0.6 per 100,000 people during 1986 to 2006, and
B1,500 new cases of MCC diagnosed each year in the United
States (Bichakjian et al., 2007; Schrama et al., 2012). Although
MCC is less common than malignant melanoma, its associated
mortality (33%) is approximately double that of melanoma
(15%), and B50% of patients with advanced disease can only
survive for 9 months or less (Tai, 2008).

The molecular events involved in MCC development have
been partly elucidated. Recently, a new human polyomavirus
called Merkel cell polyomavirus (MCV) was identified in MCC
tumors (Feng et al., 2008). This virus was detected in B80%

of MCC tumors, where it is clonally integrated into the tumor
DNA with tumor-specific T-antigen mutations (Feng et al.,
2008; Shuda et al., 2008). The viral T-antigens are also
consistently detected in MCC tumors, and they are required
for the maintenance of MCV-positive (MCVþ ) MCC cell
growth (Shuda et al., 2008, 2009; Houben et al., 2010). All
these features support the important role of MCV in MCC
development. However, B20% of MCC tumors do not have
detectable MCV (Feng et al., 2008; Sihto et al., 2009),
suggesting alternative unknown etiologies that could in turn
be related to the clinical presentation and natural course of
this tumor type.

To date, possible differences between MCVþ and MCV-
negative (MCV� ) MCCs are not well established. Several
studies reported an association between MCV status and
survival (Sihto et al., 2009; Bhatia et al., 2010; Laude et al.,
2010); however, no such association could be confirmed in
other studies (Handschel et al., 2010; Schrama et al., 2011).
Recently, Arora et al. (2012) demonstrated that MCV upre-
gulates survivin in MCCs and this oncogene is a therapeutic
target for MCC (Arora et al., 2012). Further investigations are
still needed to elucidate the molecular mechanisms of MCC
biology for a complete understanding of these tumors and to
improve clinical management of this disease.

Here, we investigated the role of microRNAs (miRNAs) in
MCC. These small RNAs function by guiding sequence-speci-
fic gene silencing, and have been shown to have important
regulatory roles in many biological processes (Visone and
Croce, 2009). miRNAs are deregulated in many cancer types
and specific miRNAs are known to have important roles in
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tumor development and progression (Iorio and Croce, 2012).
Furthermore, miRNAs have been shown to have diagnostic and
prognostic values in many cancer types (Calin et al., 2005;
Yanaihara et al., 2006; Caramuta et al., 2010). However, the
role of miRNAs in MCC has yet to be investigated.

In this study, we characterized the miRNA expression
profiles in human MCCs and associated their expressions with
MCV status and clinical outcome of the patients. In addition,
we determined functional consequences of miR-203 over-
expression in MCC cells.

Table 1. Characterization of MCV status in MCC tumors using multiple approaches

PCR2 Immunohistochemistry3

Sample no.1 LT3 PS1 LT1 LT3a VP1

Amplicon(s) confirmed

by sequencing CM2B4 Ab3 MCV status4

MCCT_1a � � � � � NA � Weak Neg

MCCT_1b � � � � � NA � Weak Neg

MCCT_2a � � � � � NA � Weak Neg

MCCT_2b � � � � � NA � Weak Neg

MCCT_3a þ þ þ þ þ ND � Strong Pos

MCCT_3b þ þ þ þ þ ND Weak Strong Pos

MCCT_4a þ þ � þ � LT3a, PS1 � Moderate Pos

MCCT_4b þ þ � þ � LT3, PS1 Weak Moderate Pos

MCCT_5a þ þ þ þ þ ND Strong Strong Pos

MCCT_5b þ þ � þ � LT3, PS1 Moderate Moderate Pos

MCCT_6a þ þ þ þ þ ND � Strong Pos

MCCT_6b þ þ � þ � LT3a, PS1 Weak Strong Pos

MCCT_7a þ þ þ þ þ ND Weak Strong Pos

MCCT_7b þ þ � þ � LT3, PS1 � Moderate Pos

MCCT_8 þ þ þ þ þ ND Strong Moderate Pos

MCCT_9 þ þ þ þ þ ND Moderate Strong Pos

MCCT_10 þ þ � þ � LT3a, PS1 � Weak Pos

MCCT_11 þ þ � þ � LT3, PS1 Weak Moderate Pos

MCCT_12 � � � � � NA � � Neg

MCCT_13 � � � � � NA � Weak Neg

MCCT_14 þ þ � þ � LT3a � Moderate Pos

MCCT_15 þ � � þ � LT3a, LT3 Weak Moderate Pos

MCCT_16 � � � � � NA � � Neg

MCCT_17 � � � � � NA � Weak5 Neg

MCCT_18 � þ � þ � LT3a, PS1 � � Pos

MCCT_19 þ þ � þ � LT3a, PS1 Weak Moderate Pos

MCCT_20 þ þ � þ � LT3a, PS1 � Strong Pos

MCCT_21 � � � � � NA � Weak Neg

MCCT_22 þ þ � þ � LT3a, PS1 � Moderate Pos

MCCT_23 � � � � � NA � � Neg

MCCT_24 � � � � � NA � � Neg

MCCT_25 þ þ � þ � LT3, PS1 Moderate Strong Pos

MCCT_26 � � � � � NA � Weak Neg

Abbreviations: LT-Ag, large T-antigen; MCV, Merkel cell polyomavirus; NA, not available; ND, not determined; Neg, negative; Pos, positive; � , absent; þ ,
present.
1a and b refer to primary and recurrent tumors, respectively, of the same patient.
2PCR primers are available in Supplementary Table S1 online.
3Detection of MCV LT-Ag expression was performed using CM2B4 (sc-136172; Santa Cruz Biotechnology) and Ab3 (Rodig et al., 2012) antibodies. The
staining intensity was scored based on the nuclear immunoreactivity.
4MCV positivity was assessed by PCR amplification of the viral genomic DNA with or without moderate to strong expression of LT-Ag using Ab3 antibody.
5Moderate staining in perinuclear areas.
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RESULTS
Detection of MCV DNA and large T-antigen expression in MCCs

We evaluated MCV status in a series of 33 MCCs using PCR
and immunohistochemistry (IHC). For detection of MCV DNA,
we amplified viral sequences from tumor DNA using five
primer pairs covering different regions of the viral genome
(Supplementary Table S1 online). Among the 33 MCCs,
we found seven (21.2%) had amplified products for all five
primer pairs, 14 (42.4%) showed partial amplifications, and

12 (36.4%) were completely negative for all primer sets
(Supplementary Figure S1a online). The PCR products from
the cases with partial amplifications were further verified
by sequencing (Table 1 and Supplementary Figure S1b
online).

For detection of MCV large T-antigen (LT-Ag) expression,
we performed IHC using commercially available CM2B4
antibody and the newly raised Ab3 antibody (Rodig et al.,
2012). For CM2B4 antibody, 12 of the 33 samples were
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Figure 1. Clustering analysis of microRNA (miRNA) expression in 16 Merkel cell carcinomas (MCCs). (a) Samples were clustered based on the 244-filtered

miRNAs using unsupervised hierarchical clustering. (b) Clustering of the samples was performed using the differentially expressed miRNAs between Merkel cell

polyomavirus (MCV)þ and MCV� MCCs from significance analysis of microarray (SAM) analysis. The clustering analysis was based on the Spearman rank

correlation and complete linkage. Median-centered ratios for each miRNAs are represented. Red and green colors indicate relatively high and low expression,

respectively. Missing values are indicated in gray color. The scale bar represents the log 10-transformed fold-change values.
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stained positive in the nuclei of tumor cells; three of which
also showed cytoplasmic staining. For Ab3 antibody, the
overall staining intensity was higher than the CM2B4
antibody and that stained positively in 28 samples (9 strong,
10 moderate, and 9 weak) and the remaining five samples
were negative (Table 1 and Supplementary Figure S2 online).

Four MCCs without MCV LT-Ag immunoreactivity (using
both antibodies) were also negative for all amplifications of
viral DNA. Eight samples, which were negative for PCR
detection of MCV DNA, showed weak immunoreactivity in
the nucleus of cancer cells for Ab3 and negative for CM2B4.
Tumors classified as MCVþ exhibited positive amplification
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of the viral genomic DNA and were with or without moderate
to strong expression of MCV LT-Ag using Ab3 antibody.
Tumors classified as MCV� revealed no PCR amplification
of viral DNA and showed weak or no detectable levels of viral
LT-Ag using the Ab3 antibody.

Distinct miRNA expression pattern between MCCs with and
without MCV

We asked whether miRNA expression patterns were distinct
between MCVþ and MCV� MCCs. We first screened global
miRNA profiles in 6 MCVþ and 10 MCV� tumors using a
microarray approach. After data normalization and filtering, we
performed unsupervised clustering of the 244-filtered miRNAs
using Spearman rank correlation and complete linkage. The
analysis revealed three distinct clusters (Figure 1a), suggesting
distinct biological and/or clinical entities of this tumor type.
Interestingly, five of the six MCVþ MCCs were grouped
together (cluster 2), whereas the remaining MCVþ tumor was
found in cluster 3.

We then applied significance analysis of microarray (SAM) to
identify the most significant differentially expressed miRNAs
between MCVþ and MCV� MCCs. The analysis identified 36
overexpressed and 20 underexpressed miRNAs in MCVþ
tumors (false discovery rate, o30%; Supplementary Table S2
online). On the basis of this classifier, we performed clustering
analysis of the same cohort, which resulted in similar but
clearer separation between MCVþ and MCV� tumors
(Figure 1b). Notably, three out of four matched pairs of MCCs
with both primary and recurrent tumors were grouped together,
indicating similar miRNA expression profiles between the
primary and recurrent tumors.

To validate the microarray results, we evaluated the
expression levels of eight miRNAs in an extended series of
32 MCCs (12 MCV� and 20 MCVþ ) by quantitative real-
time reverse-transcription–PCR (qRT–PCR). These miRNAs
were selected because of their highest SAM scores and/or
their involvement in other tumor types. In concordance with
the microarray data, we validated significant overexpression of
miR-30a-3p, miR-30a-5p, miR-375, miR-34a, and miR-769-5p
and underexpression of miR-203 in MCVþ compared with
MCV� samples. However, miR-148a and miR-21 were not
significantly differentially expressed between MCCs with and
without MCV by qRT-PCR (Supplementary Figure S3 online).

miRNAs associated with tumor metastasis and disease-specific
survival in MCC

To identify the most significant miRNAs associated with tumor
metastasis, we compared miRNA profiles, based on the micro-
array data, between the primary tumors (n¼9) and metastases
(n¼5) using SAM analysis. We found only overexpressed
miRNAs in MCC metastases with false discovery rate o30%.
Ninety-two miRNAs were overexpressed in metastases com-
pared with primary tumors (Supplementary Table S3 online).
Notably, four miRNAs (miR-150, miR-630, miR-483-5p, and
miR-142-3p) had the highest score with a false discovery
rate¼0. These miRNAs, together with miR-146a (strongly
associated with tumor metastasis in other cancer types;
Bhaumik et al., 2008; Hurst et al., 2009; Kogo et al., 2011;

Hou et al., 2012), were selected for further validation in 17
primary MCCs and nine metastases by qRT-PCR. The results
validated overexpression of miR-150 in the metastases
compared with the primary tumors (P¼0.043; Supplementary
Figure S4 online). The other four miRNAs also showed
relatively higher expression levels in the metastases compared
with the primary tumors; however, the differences were not
statistically significant (Supplementary Figure S4 online).

To identify prognostic miRNAs associated with disease-
specific survival, we applied SAM survival analysis on the
microarray cohort (n¼12), which resulted in 26 overex-
pressed and 118 underexpressed miRNAs most correlated
with shorter disease-specific survival in MCC (false discovery
rate o12%; Supplementary Table S4 online).

Functional consequences of miR-203 overexpression in MCC cells

Given that miR-203 has an important role in multiple tumor
types (Bo et al., 2011; Li et al., 2011; Noguchi et al., 2012; Jin
et al., 2013) and its expression was significantly lower in
MCVþ than MCV� MCC tumors, we asked whether miR-
203 has a role in MCC. We ectopically expressed miR-203
using a miRNA mimic in MCC cell lines and investigated its
effect on cell growth, cell cycle, and apoptosis. Using WST-1
and trypan blue exclusion assays, we observed that the cell
growth was significantly decreased in the miR-203 mimic-
treated cells compared with its negative control for all three
MCV� MCC cell lines (Figure 2a and b). However, we did
not observe any significant effect on cell apoptosis upon
overexpression of miR-203, as evaluated by caspase-3 activity
(Figure 2c). We next sought to determine whether miR-203
regulates cell cycle progression in MCC cells. Indeed, we
found that all three MCV� MCC cells transfected with miR-
203 mimic had significantly higher fraction of cells in the G1
phase, whereas the cells in the G2 phase were significantly
lower than negative control (Figure 2d). Interestingly, over-
expression of miR-203 in MCVþ WaGa cells had no
significant effect on cell proliferation or cell cycle progression
(Supplementary Figure S5 online).

miR-203 suppresses survivin expression only in MCV� MCC cells

miR-203 was recently shown to target survivin (also known as
BIRC5) in prostate (Saini et al., 2011b), laryngeal (Bian et al.,
2012), and hepatocellular (Wei et al., 2013) cancer cells.
Interestingly, survivin expression was recently found higher in
MCVþ compared with MCV� MCCs (Arora et al., 2012).
This prompted us to investigate whether miR-203 also
regulates survivin expression in MCCs. We overexpressed
miR-203 in MCC cell lines and assessed its effect on survivin
expression at mRNA and protein levels, as determined by
qRT-PCR and western blot analysis, respectively. We found
that survivin expression was significantly decreased at mRNA
and protein levels upon overexpression of miR-203 in MCV�
MCC cells, but not in MCVþ MCC cells (Figure 3a).

MCV T-antigens regulate survivin expression in MCVþ but not
in MCV� MCC cells

MCV LT-Ag has been shown to regulate survivin expression in
MCVþ MCC cells (Arora et al., 2012). Given that we
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observed differences in miR-203-mediated survivin expression
regulation in MCVþ and MCV� MCC cells, we asked
whether MCV LT-Ag also differentially regulates survivin
expression between MCC cells with and without the viral
factor. We silenced MCV T-Ags using short hairpin RNA
(shRNA) constructs targeting the common T-Ag exon 1
sequence in MCVþ WaGa cells and overexpressed wild-
type (LT206) or truncated (LT339) MCV LT-Ag in MCV�
MCC14/2 cells, and assessed their effects on survivin
expressions at both mRNA and protein levels. As shown in
Figure 3b, survivin expression was significantly decreased
upon silencing of MCV T-Ags. However, we did not observe
any significant increase of survivin expression in MCV�
MCC14/2 cells expressing either wild-type or truncated MCV

LT-Ag (Figure 3c). The results are reproducible in two other
MCV� MCC cell lines (MCC13 and MCC26) (data not
shown).

DISCUSSION
In this study, we used a genomic approach to characterize
miRNA expression profiles of human MCCs. Our results reveal
a set of miRNAs associated with MCV status, tumor metastasis,
and disease-specific survival in MCC patients.

miRNA expressions in MCC tumors with and without MCV

We show that MCVþ and MCV� tumors are distinct based
on miRNA expression profiles. The finding is consistent with
the recent study showing distinct mRNA expression profiles
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between MCCs with and without MCV (Harms et al., 2013).
Our clustering analysis grouped the MCC tumors into three
distinct subgroups, suggesting biological or clinical hetero-
geneity of this tumor type. Notably, we found that the MCV�
tumors were grouped into two separate clusters, whereas
majority of the MCVþ tumors were grouped together,
suggesting distinct molecular mechanisms underlying the
pathogenesis of MCV� MCCs. Concordantly, Harms et al.
(2013) also showed that MCV� MCCs are more hetero-
geneous than MCVþ tumors based on mRNA expression
profiling (Harms et al., 2013).

miR-203 functions as a tumor suppressor in MCC cells

Using SAM analysis, we found a subset of differentially
expressed miRNAs between MCVþ and MCV� MCCs.
Among them, miR-203 was found significantly lower in
MCVþ tumors, which was further validated in a larger cohort
of MCCs by qRT-PCR. miR-203 is commonly downregulated
in human cancers (Chiang et al., 2011; Saini et al., 2011b;
Boll et al., 2013; Jin et al., 2013); however, its increased
expression has also been observed in breast cancer (Ru et al.,
2011), pancreatic cancer (Ikenaga et al., 2010), and ovarian
cancer (Iorio et al., 2007). Functionally, miR-203 has been
shown to suppress targets involved in oncogenic processes
and pathways in different cancer types (Bo et al., 2011; Li
et al., 2011; Saini et al., 2011a; Boll et al., 2013). In this study,
we also demonstrate that miR-203 overexpression inhibits cell
growth and induces cell cycle arrest in MCV� MCC cells,
suggesting its tumor suppression function in non-viral-
associated MCC.

Survivin is one of the direct targets of miR-203 in several
cancer types (Bian et al., 2012; Jin et al., 2013; Wei et al.,
2013). We speculated that survivin may also be regulated by
miR-203 in MCC, because of its higher expression level in
MCVþ than MCV� MCCs and its inverse expression
association with miR-203. In line with our speculation,
we demonstrate that miR-203 regulates survivin expres-
sion only in MCV� MCC cells. However, in MCVþ MCC
cells, survivin expression is regulated by MCV LT-Ag
oncoprotein. Recently, YM155, a survivin inhibitor, has
been shown to inhibit both MCVþ and MCV� MCC cell
growth in vitro (Arora et al., 2012). Taken together, we
propose that survivin is commonly deregulated in MCCs,
and it is regulated by MCV LT-Ag in MCVþ MCCs or miR-
203 in MCV� MCCs.

miRNAs associated with tumor metastasis

We identify a subset of miRNAs associated with tumor
metastasis in MCC. Among the miRNAs associated with tumor
metastasis, increased expression of miR-150 in MCC metas-
tases is validated by qRT-PCR. This miRNA is highly expressed
in hematopoietic cells, and has important roles in hematopoi-
esis and immune response (Xiao et al., 2007; Zhou et al.,
2007; Bezman et al., 2011; Zheng et al., 2012). We noted that
seven of the nine tumor metastases included for qRT-PCR
analysis are lymph node metastases from MCC primary
tumors. The observed higher expression of miR-150 in
the MCC metastases is plausibly due to the high percentage

of lymphocytes present in the lymph nodes. Further
investigations are warranted to evaluate whether miR-150
expression is differentially expressed between the lymph
node and organ metastases, as well as its functional role in
MCC cells.

Among the survival-associated miRNAs, several of them
have been associated with tumor progression and survival in
other cancer types. For examples, higher expression of miR-93
has been associated with poor survival in serous ovarian
cancer (Nam et al., 2008), and lower expression of miR-146a
is associated with poor prognosis in gastric cancer (Kogo et al.,
2011) and natural killer/T cell lymphoma (Paik et al., 2011).
miR-146a is known to function as a tumor suppressor in
myeloid malignancies (Zhao et al., 2011) and a modulator of
the T lymphocyte–mediated immune response (Huffaker et al.,
2012). Given that high numbers of intratumoral T lymphocytes
in MCC tumors are associated with favorable survival (Iyer
et al., 2011; Paulson et al., 2011; Sihto et al., 2012), it is
tempting to speculate that miR-146a modulates the immune
response of the T cells specific for MCV LT-Ag in MCC.
Further validation of these prognostic miRNAs in a larger
cohort of MCC patients remains to be determined.

Prevalence of MCV infection in MCC tumors

In consistence with previous studies (Feng et al., 2008; Becker
et al., 2009; Sastre-Garau et al., 2009; Sihto et al., 2009; Arora
et al., 2012; Harms et al., 2013), we found the majority of
MCC tumors to be MCVþ . However, a subset of MCC tumors
were MCV� , which is not in agreement with the recent
findings by Rodig et al. (2012), who detected MCV LT-Ag
expression in almost all MCC tumors using the Ab3 mAb. We
used the same antibody concentration (0.6mg ml� 1) and
scoring criteria for evaluating MCV LT-Ag expression in our
cohort. However, partly different interpretations of MCV
positivity based on Ab3 immunoreactivity were applied. In
the study of Rodig et al. (2012), weak immunoreactivity
(scored as 1þ ) of Ab3 was interpreted as MCVþ . In our
study, we could not detect MCV viral genome in those cases
with weak immunoreactivity (1þ ), and therefore scored these
cases as MCV� . In Rodig’s study, all cases with weak
immunoreactivity had very low MCV copy number (o1
copy per cell) that is similar to those cases with lack of
immunoreactivity for Ab3, raising a question for the inclusion
of 1þ signal as MCVþ . Furthermore, previous studies
have consistently reported a subset of MCC tumors are
MCV� using different approaches (Feng et al., 2008;
Becker et al., 2009; Sastre-Garau et al., 2009; Sihto et al.,
2009; Arora et al., 2012; Harms et al., 2013). Taken together,
we find that the presently available data suggest that a subset
of MCCs is MCV� .

In summary, we report miRNA signatures related to MCV
infection and clinical outcomes in human MCC. Our findings
support that MCVþ and MCV� tumors involved in different
genetic pathways, and suggest that MCV� tumors are
more heterogeneous than the MCVþ tumors. In addition,
we demonstrate the functional role of miR-203 in MCV�
MCC cells, suggesting its role in the pathogenesis of non-viral-
associated MCC.
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MATERIALS AND METHODS
Clinical samples and cell lines

Thirty-three formalin-fixed paraffin-embedded (FFPE) tumor tissues

obtained from 26 MCC patients were collected at Karolinska

University Hospital or Stockholm South General Hospital (Stockholm,

Sweden) from 1986 to 2003. Of these, seven patients had matched

pairs of primary and recurrent tumors. The MCC diagnosis was

confirmed by histology and IHC at the time of diagnosis. Representa-

tive sections from all specimens were histopathologically re-evaluated

to confirm high tumor content (480% tumor cells). The study

was approved by the Ethics Committee of Karolinska Institutet

and conducted according to the Declaration of Helsinki Principles.

The use of archival materials was approved by the Karolinska

University Hospital Biobank Unit without written informed consent

(BbK-00557). All clinical and histopathological information of

the patients are detailed in Supplementary Table S5 online and

summarized in Table 2.

Five MCC cell lines were included in this study. Two MCVþ cell

lines, MKL-1 and WaGa, were kindly provided by Dr Nancy L. Krett

(Northwestern University, Chicago, IL) and Dr Jürgen C. Becker

(Medical University of Graz, Graz, Austria), respectively. Three

MCV� cell lines, MCC13, MCC14/2, and MCC26, were purchased

from CellBank Australia (Westmead, NSW, Australia). All cells were

grown in RPMI 1640 medium, supplemented with 10% (MKL-1,

WaGa) or 15% (MCC13, MCC14/2, MCC26) fetal bovine serum, and

cultured at 371C with 5% CO2.

DNA and total RNA extraction

For clinical samples, a 10-mm FFPE section from each specimen was

subjected to genomic DNA extraction using QIAamp DNA FFPE

Tissue kit (Qiagen, Hildane, Germany). Another 10-mm FFPE

section was subjected to total RNA extraction using TRIzol reagent

(Invitrogen, Carlsbad, CA) following a previously described method

(Ma et al., 2009). For MCC cell lines, genomic DNA was extracted

using Qiagen DNeasy Blood and Tissue kit, and total RNA was

extracted using mirVana miRNA isolation kit (Applied Biosystems/

Ambion, Austin, TX). Plasmid was purified using Qiagen Plasmid

Mini Kit. The concentrations of DNA and RNA were measured with a

NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies,

Wilmington, DE).

MCV DNA detection by PCR and sequencing

The presence of MCV DNA in tumor samples was detected by PCR

using previously published primer sets (Feng et al., 2008; Duncavage

et al., 2009; Jung et al., 2011); (Supplementary Table S1 online). PCR

was performed using 100 ng genomic DNA from tumor samples and

cell lines, or 10 ng plasmid DNA. The MKL-1 cell line (Shuda et al.,

2008) and the pMCV-R17a (Addgene, Cambridge, MA) plasmid DNA

were used as positive controls. The MCC13 cell line (Shuda et al.,

2008) and no DNA template were used as negative controls.

All PCR amplifications were repeated two times at different time

using different DNA preparations. The PCR products from the tumor

samples that did not have amplicons for all five primer sets were

purified by QIAquick Gel Extraction kit (Qiagen) or ExoSAP-IT

(USB Corporation/Affymetrix, Cleveland, OH), and sequenced at

the KIGene core facility.

miRNA microarray experimentation and analyses

miRNA expression profiling was performed using Agilent’s human

miRNA microarray (miRBase release 10.1; Agilent, Santa Clara, CA),

as described previously (Caramuta et al., 2010). In brief, 200 ng of

total RNA was labeled with Cy3 and then hybridized onto the arrays

for 20 hours at 55 1C. Slides were scanned using Agilent microarray

scanner (Agilent, Santa Clara, CA). The images were processed with

Feature Extraction Software 10.7.3.1 (Agilent). Intensity values were

normalized and median centered using Cluster 3.0. Only normalized

miRNAs with o20% missing values across the samples were used

for clustering and statistical analyses. Hierarchical clustering was

performed based on complete linkage with the Spearman rank

Table 2. Summary of the clinical features of 26 MCC
patients in this study

Characteristic (no. of informative) No. of cases

No. of tumors 33

Gender (n¼ 26)

Male 11

Female 15

Age at diagnosis (n¼26) (years)

Median¼77 (range 20–91)

p77 14

477 12

Lesion type (n¼ 33)

Primary 18

Local recurrence 6

Metastasis 9

Primary tumor size (n¼ 24) (cm)

Median¼2.4 (range 0.7–15)

p2.4 12

42.4 12

Primary tumor location (n¼26)

Head and neck 15

Arm 5

Other (thigh, gluteal region, groin) 6

Survival (n¼ 25) (months)

o12 8

12–60 9

460 8

Outcome (n¼ 25)

Alive 3

Died of other causes 8

DOD 14

MCV status1 (n¼ 33)

Positive 21

Negative 12

Abbreviations: DOD, died of disease; LT-Ag, large T-antigen; MCV, Merkel
cell polyomavirus.
1Detection of MCV genomic DNA combined with LT-Ag immunoreactiv-
ity.
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correlation using Cluster 3.0 and visualized with Treeview version 1.60

(de Hoon et al., 2004). SAM (http://www-stat.stanford.edu/Btibs/SAM/)

was used to determine the association of miRNAs with MCV status,

tumor metastasis, and disease-specific survival. Microarray data are

available at NCBI Gene Expression Omnibus (GEO accession number

GSE43699).

qRT-PCR

Expression of mature miRNAs and mRNA was quantified by qRT-PCR

using the Applied Biosystems 7900HT or StepOne Plus Real-time PCR

systems. For mature miRNAs, cDNA was synthesized from 50 ng (for

FFPE samples) or 100 ng (for cell lines) total RNAs using TaqMan

MicroRNA Reverse Transcription Kit (Applied Biosystems). Prede-

signed TaqMan MicroRNA Assays for miR-30a-3p (ID 000416), miR-

30a-5p (ID000417), miR-34a (ID000426), miR-148a (ID000470),

miR-769-5p (ID001998), miR-21 (ID000397), miR-375 (ID000564),

miR-203 (ID00507), miR-483-5p (ID002338), miR-150 (ID000473),

miR-142-3p (ID000464), miR-146a (ID000468), and miR-630

(ID001563) were purchased from Applied Biosystems. RNU6B

(ID001093) was used for normalization of miRNA expression. For

mRNA quantification, cDNA was synthesized from 100 ng total RNAs

using High Capacity cDNA Reverse Transcription kit (Applied

Biosystems). qRT-PCR was performed for BIRC5 (Hs04194329_s1;

Applied Biosystems) and normalized against 18S ribosomal

RNA (Hs99999901_s1; Applied Biosystems). All reactions were

performed in triplicate and relative expression levels were reported

as 2�DCT.

Construction of expression and shRNA vectors

Wild-type (LT206, plasmid 28190) and truncated (LT339, plasmid

28193) MCV LT-Ag expression vectors (Shuda et al., 2008) were

purchased from Addgene. As a negative control, we used an empty

vector, which was constructed by deleting the insert from the LT339

plasmid by digestion with XbaI and NheI (New England Biolabs,

Ipswich, MA).

We cloned three shRNA vectors targeting the common exon 1 of

MCV T-antigens between BglII and KpnI sites of plasmid pcDNA3-

U6M2 (Taft et al., 2011). The targeting sequences of the shRNAs are

described in Supplementary Figure S6 online. All constructs were

confirmed by sequencing at KIGene core facility.

Transfection

For small RNA transfection, MCC13, MCC14/2, and MCC26 cells

were transfected with 10 nM of miR-203 mimic (Applied Biosystem) or

miRNA mimic Negative Control no. 1 (Applied Biosystem) using

Lipofectamine RNAiMAX Reagent (Invitrogen) following the reverse

transfection method as described in the manufacturer’s protocol.

WaGa cells were transfected with 10 pmol per 1� 106 cells of

miR-203 mimic or negative control using Lipofectamine RNAiMAX

Reagent (Invitrogen). MKL-1 cells were transfected with 20 pmol per

1� 106 cells of miR-203 mimic or negative control by Nucleofector

Kit V (Amaxa/Lonza, Basel, Switzerland) using program A-24. For

MCV LT-Ag expression vector transfection, MCC14/2 cells were

transfected with LT206, LT339, or empty vector (2mg per well in a

6-well plate) using Lipofectamine 2000 Reagent (Invitrogen). For

shRNA vector transfection, 2mg shRNA vector (pcDNA3-U6M2,

shTA1, shTA2, and shTA3) were transfected into 1� 106 WaGa cells

by Nucleofector Kit V and program D-24.

Western blot analysis
At 48 or 72 hours after transfection, cells were collected and lysed for

immunoblot analysis as described previously (Xie et al., 2012).

Survivin antibody (1:1,000; no. 2808; Cell Signaling Technology,

Danvers, MA) was used to determine survivin expression, CM2B4

(1:200, sc-136172; Santa Cruz Biotechnology, Santa Cruz, CA) was

used to determine MCV LT-Ag expression, glyceraldehyde-3-

phosphate dehydrogenase (1:10,000, sc-47724; Santa Cruz

Biotechnology) or b-tubulin (1:1,000; no. 2128; Cell Signaling

Technology) was used for normalization. Signals were detected by

LAS-1000 Image Analyzer (Fujifilm, Tokyo, Japan), and protein

expressions were quantified using Image Gauge version 4.0 (Fujifilm).

Immunohistochemistry

CM2B4 and Ab3 (kindly provided by Dr James A. DeCaprio, Dana-

Farber Cancer Institute, Boston, MA) antibodies were used for IHC to

determine MCV LT-Ag expression in clinical samples. Four-mm tissue

sections were deparaffinized, rehydrated, and blocked for endogen-

ous peroxidase with 3% hydrogen peroxide. Antigen retrieval was

performed at B991C in citrate buffer (pH 6.0; for CM2B4) or Tris-

EDTA buffer (pH 9.0; for Ab3). The antibodies (CM2B4, 1:100; Ab3,

0.6mg ml� 1) were diluted with Dako REAL antibody diluent

(Dako Denmark A/S, Glostrup, Denmark), applied on the tissues,

and incubated overnight at 4 1C. Anti-mouse/rabbit horseradish

peroxidase–conjugated antibody was applied on tissues for 40 min-

utes at room temperature before developing with Dako REAL

EnVision Detection System (Dako), and counterstained with Mayer’s

hematoxylin. The immunoreactivity was examined under a light

microscope, and scored based on nuclear immunoreactivity by a

pathologist (A Höög).

Cell growth analysis

For WST-1 assay, 8.0� 103 cells per well (MCC13 and MCC14/2),

4.0� 103 cells per well (MCC26), or 4.0� 104 cells per well (WaGa) in

100ml culture medium were seeded into 96-well plate. At different time

points (0, 24, 48, 72, or 96 hours after transfection), 10ml of WST-1

reagent was added and incubated for 3 hours at 37 1C. Absorbance was

determined at 450 nm (measurement) and 650 nm (reference) using a

VERSAmax microplate reader (Molecular Devices, Sunnyvale, CA).

Each experimental group consisted of eight replicates for each time

point. All experiments were performed at least three times indepen-

dently. Cell growth rate was evaluated by subtracting the background

absorbance individually and normalized to 0-hour time point.

For trypan blue exclusion assays, cells were collected at 48 or

72 hours after transfection, stained with 0.4% trypan blue stain

(Invitrogen), and analyzed using a TC10 automated cell counter

(Bio-Rad, Hercules, CA). The total live cells in miR-203 mimic–

transfected cells were normalized to the miRNA mimic–negative

control.

Cell apoptosis assay

Apoptosis assay was performed using caspase-3 colorimetric assay kit

(BioVision, Mountain View, CA), as described previously (Xie et al.,

2012). In brief, 5� 105 cells were transfected and harvested after

48 hours of transfection, and lyzed in 50ml of chilled cell lysis buffer

for 10 minutes. A total of 50ml protein lysate (4 mg ml� 1) was mixed

with 50ml of 2�Reaction Buffer and 5ml of 4 mM caspase-3 substrate,

and incubated for 2 hours at 37 1C. Detection of the caspase-3
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cleavage products was measured at 405 nm using a VERSAmax

microplate reader (Molecular Devices). Relative caspase-3 activity

was determined by the absorbance values of the samples compared

with the respective negative controls. All experiments were replicated

three times independently.

Cell cycle analysis

At 48 or 72 hours after transfection, 1� 106 cells were washed with

phosphate-buffered saline and fixed in cold 50% ethanol for 1 hour.

After washing with phosphate-buffered saline and treating with RNase

A (0.2 mg ml� 1) for 1 hour at 37 1C, the cells were stained with

propidium iodide (0.04 mg ml� 1). Cell cycle analysis was performed

using flow cytometry (Cytomics FC 500; Beckman Coulter, Brea, CA)

and FlowJo software version 7.6.2 (Tree Star, Ashland, OR). All

experiments were performed independently in triplicate.

Statistical analyses

Statistica 7.0 (StatSoft, Tulsa, OK) or Microsoft Office Excel 2007 was

used for statistical calculations, unless otherwise stated. The compar-

ison between miRNA expressions in different groups was conducted

using unpaired Student’s t-test. Paired Student’s t-test was performed

to analyze transfection experiments. Patients who are alive or died of

MCC-unrelated reasons were considered as censored. All the analyses

were two-tailed and P-values o0.05 were regarded as significant.
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