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Ovarian cancer (OC) is diagnosed in ∼22,000 women in the US each year and kills

14,000 of them. Often, patients are not diagnosed until the later stages of disease,

when treatment options are limited, highlighting the urgent need for new and improved

therapies for precise cancer control. An individual’s immune function and interaction with

tumor cells can be prognostic of the response to cancer treatment. Current emerging

therapies for OC include immunotherapies, which use antibodies or drive T cell-mediated

cancer recognition and elimination. In OC, these have been limited by adverse side

effects and tumor characteristics including inter- and intra-tumoral heterogeneity, lack

of targetable antigens, loss of tumor human leukocyte antigen expression, high levels

of immunosuppressive factors, and insufficient immune cell trafficking. Natural killer (NK)

cells may be ideal as primary or collateral effectors to these nascent immunotherapies.

NK cells exhibit multiple functions that combat immune escape and tumor relapse: they

kill targets and elicit inflammation through antigen-independent pathways and detect

loss of HLA as a signal for activation. NK cells are efficient mediators of tumor immune

surveillance and control, suppressed by the tumor microenvironment and rescued by

immune checkpoint blockade. NK cells are regulated by a variety of activating and

inhibitory receptors and already known to be central effectors across an array of existing

therapies. In this article, we highlight interactions between NK cells and OC and their

potential to change the immunosuppressive tumor microenvironment and participate in

durable immune control of OC.

Keywords: natural killer cell, immunotherapy, ovarian cancer immunology, oncoimmunology, tumor

microenvironment, high grade serous ovarian cancer

OVARIAN CANCER

Ovarian cancer (OC) is the leading cause of death from gynecologic malignancies with a 5-year
survival of <50% (1). The majority of cases are diagnosed at advanced stages (III and IV), when
treatment becomes especially challenging, earning OC its “silent killer” moniker. Beyond stage
III, OC disseminates into the peritoneum, and patients present with bloating from a buildup of
ascitic fluid in the abdomen (2). Current standard of care includes de-bulking surgery followed by
a combination of platinum- and taxane-based chemotherapy. Despite these aggressive treatments,
recurrence occurs in 60–70% of patients within 2–5 years; most will eventually succumb to OC (3).
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Epithelial OC represents the majority of malignant ovarian
tumors and arises from the epithelium of the ovary and
fallopian tube. OC tumors are broadly divided into two subtypes:
type I and II; these classifications carry both prognostic and
predictive value (4). These subtypes are differentially responsive
to the available treatments, and whether they may inform
the development and application of more precise treatment,
including immunotherapy, is the subject of active investigation.
Type I OC includes low-grade serous, endometrioid, clear cell,
and mucinous carcinomas that together account for ∼30%
of ovarian tumors (4, 5). This subset is typically genetically
stable and slow-growing. By contrast, type II OC is genetically
unstable, more aggressive and accounts for the majority of OC
mortality (4, 5). This subtype exclusively includes high-grade
serous carcinomas, represents 70% of all ovarian tumors, and will
be the focus of this review (6–8).

NK CELLS

NK cells are lymphocytes that reside in the peripheral blood
and are highly efficient anti-tumor effectors (9–11). They
comprise 5–10% of circulating lymphocytes and kill target cells
without previous sensitization. NK cells differentiate from the
common lymphoid progenitor in the bone marrow, are most
closely related to T cells, and have similar abilities to expel
perforin and granzymes for direct target cell killing (12, 13).
In addition, they signal for target cell apoptosis through Fas
and TRAIL pathways and secrete pro-inflammatory cytokines
including IFN-γ and TNF (12). NK cells can be characterized
into an array of categories based on the presence and density
of surface markers expressed with some studies reporting up
to 30,000 in one individual (14). At a superficial level they
can be categorized into two main populations based on CD16
and CD56–expression; with CD56bright/CD16– functioning
to primarily produce cytokines in the circulating blood, and
CD56dim/CD16+ performing cytotoxicity in the tissues (12).

Rather than direct detection of antigens through a germline-
rearranged receptor (the domain of T and B cells), NK cells
recognize putative targets based on their expression of stress-
induced ligands, upregulated on the cell surface consequent to
DNA damage and heat shock, and in response to stimulation
by environmental factors, including cytokines and chemokines
(15–17). To avoid unwanted auto-aggression, NK cells are also
sensitive to inhibition by “self ” human leukocyte antigen (HLA)
class I molecules; it is the net outcome of incoming activating
and inhibitory signals that determines the NK cell response to
a putative target (12). A complete summary of the receptors
and cytokines produced by NK cells is beyond the scope of this
review and can be found elsewhere (18–20). Here, we limit our
discussion to those identified as relevant in OC, summarized
in Table 1.

NK cell responsiveness varies within and between individuals,
via a process called “education,” “licensing,” or “arming.”
The killer immunoglobulin-like receptors (KIR) interact with
conserved epitopes on HLA (41). KIR and HLA genes are
both highly polymorphic and polygenic and their loci segregate

independently (42). Thus, the availability of binding pairs differs
between people, with consequences on NK cell reactive potential
(42). NK cells expressing KIR that can bind to “self ” HLA
(licensed) are highly responsive to targets lacking “self ” HLA—
a process termed “missing self ” recognition. NK cells that do
not express self-HLA specific receptors are “unlicensed” and
require potent stimulation for reactivity. Unlicensed NK cells
are especially protective against HLA-expressing tumors because
they are refractory to the inhibitory signals sent by HLA (43, 44).
Thus, education potentiates a spectrum of NK cell reactivity,
establishing, at the repertoire level, an array of functions to target
HLA-sufficient and HLA-deficient target cells (19, 20).

NK cells are capable of memory or adaptive functions,
whereby previous sensitization leads to expansion and retention
of a population of NK cells that respond more rapidly and
robustly to secondary challenges with the same virus or hapten
(45, 46). These “adaptive” NK cells have undergone epigenetic
alterations leading to a distinct phenotype and enhanced
function (47–49). While additional research is required to fully
characterize this cell population, unbound inhibitory receptors,
NKp44, NKp46, NKG2C, and CD57 receptors are consistently
overexpressed (47–50). Noteworthy, these same adaptive features
can be achieved by cytokine cocktail stimulation in the absence
of a specific antigen; cytokine-induced adaptive cells exhibit
increased expression of activating receptors including NKp30,
NKG2D, NKp44, NKp46, and TRAIL (51). Thus, while amemory
response may be generated toward a specific pathogen, it may
be the environment or steric changes in the HLA-peptide
complex that drive NK cell adaptive functions (45). For cancer
immunotherapy, this is noteworthy as it opens the possibility
to train highly effective NK cells without strict requirements for
antigen restriction.

THE TUMOR MICROENVIRONMENT AND
IMMUNOSUPPRESSION IN OVARIAN
CANCER

The tumor microenvironment (TME) includes the tumor,
stroma, and local immune cells. The TME is dynamic and
can promote or suppress tumor invasion and metastasis. The
immune composition in the TME is now known to be an
important predictor of response to therapy in a variety of
solid tumor types, including OC. Several factors, processes,
and cellular subsets contribute to the development of the
TME including innate and adaptive immune cells, intercellular
signaling, and tumor intrinsic factors such as gene mutational
burden (Figure 1) (52).

Good prognosis for OC and its treatment are correlated with
immune cell infiltration in the TME, and the majority of studies
focused on infiltrating T cells (53) (Figure 2). These so-called
“hot” tumors represent two scenarios: (1) immune inflamed
tumors, where T cells can directly contact malignant cells; and
(2) immune excluded tumors, where T cells are restricted to
the stroma surrounding malignant cells, with limited access for
ligation and killing. In contrast, “cold” or “non-inflamed” tumors
lack T cell infiltration. Reproducibly, patients whose OC tumors
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TABLE 1 | NK cell receptors and their relevance to ovarian cancer.

Receptor Ligand OC relevance References

CYTOKINE RECEPTORS

IL-2R IL-2 NK cells isolated from OC patient ascitic fluid demonstrated reduced

proliferation in response to interleukin-2 (IL-2)

(21)

IL-10R IL-10 In OC patient ascitic fluid increased IL-10 expression relates to

advanced stages (III/IV)

(22)

IL-12R IL-12 Human PBMCs, isolated from OC patients, stimulated by IL-12

demonstrate enhanced activation and proliferation of functional NK cells

(23)

IL-15R IL-15 Increased levels in OC patient ascitic fluid were associated with

increased NK cell cytotoxicity

(24)

IL-21R IL-21 Mice treated with IL-21 demonstrated delayed tumor appearance and

reduced OC tumor size

(25, 26)

TGF-βR TGF-β Increased TGF-β expression in OC tumors has been associated with

progression and metastasis

(27–30)

ACTIVATING RECEPTORS

2B4 (CD244) CD48 Downregulation of 2B4 and hyporesponsiveness of 2B4+ NK cells to

MHC class I -negative targets in OC patient ascitic fluid

(31–34)

CD16 (FcRγIII) Fc portion of antibodies Decreased expression has been identified in NK cells isolated from OC

patient ascitic fluid

(21)

CD69 Undefined Increased expression has been identified in NK cells isolated from OC

patient ascitic fluid

(24)

DNAM1 (CD226) CD155, CD112 Decreased DNAM1 expression and hypo-responsiveness of DNAM1+

NK cells to MHC class I – negative targets in NK cells isolated from OC

patient ascitic fluid

(24, 31–33, 35)

NKG2D NKG2D ligands – various, including

MIC-A/B, ULBP1-6

NKG2D was downregulated on NK cells isolated from OC patient ascitic

fluid

(24, 35, 36)

NKp30 (CD337) Various, including B7-H6, CMV pp65

tegument protein, BAG6, heparan

sulfate

Decreased NKp30 expression on NK cells isolated from OC patient

ascitic fluid

(35, 37)

NKp44 (CD336) Various, including proliferating cell

nuclear antigen (PCNA),

platelet-derived growth factor (PDGF),

mixed-lineage leukemia-5 (MLL-5),

viral hemagglutinins

Decreased NKp44 expression on NK cells isolated from OC patient

ascitic fluid

(24, 33, 38)

NKp46 (CD335) Various, including complement factor

P, heparin sulfate, viral hemagglutinins

Decreased NKp46 expression on NK cells isolated from OC patient

ascitic fluid

(24, 35)

TRAIL TRAIL-R TRAIL-R downregulated on OC cells isolated from OC patient tumors (39)

INHIBITORY RECEPTORS

KIR2DL1 (CD158a) MHC-C2 group ligands Decreased expression on NK cells isolated from OC patient ascitic fluid (33)

KIR2DL2 (CD158b) MHC-C1 group ligands (major); some

binding to MHC-C2 group ligands

Decreased expression on NK cells isolated from OC patient ascitic fluid (33)

KIR2DL3 (CD158b) MHC-C2 group ligands Decreased expression on NK cells isolated from OC patient ascitic fluid (33)

KIR3DL1 (CD158e) MHC-B alleles with the Bw4 motif Decreased expression on NK cells isolated from OC patient ascitic fluid (33)

PD-1 PD-L1 PD-1 overexpression on NK cells isolated from OC patient ascitic fluid (40)

are infiltrated by T cells respond better to therapy and have better
prognosis (54, 55): 55% of patients with T cell infiltration reached
a 5-year survival of 38% compared to just 4.5% in patients
without T cell infiltration (54).

Tumor transcriptome analysis has revealed correlations of
OC sub-classifications with T cell infiltration, neoantigen burden
and patient prognosis, termed C1, C2, C4, and C5 (8). Among
them, the C2 “immunoreactive” subtype is well-infiltrated
and associated with the best prognosis (8). Intermediate T
cell infiltration and prognoses are associated with the C1
“mesenchymal” and C4 “differentiated” subtypes, and the C5

“proliferative” has the lowest T cell infiltration and conveys the
poorest prognosis (8). Despite the mutational burden found in
many OC—a feature that can predict priming and infiltration
of lymphocytes—they remain immunologically “cold,” and
infiltrating T cells are not universally reactive against tumor
antigens (56, 57). This highlights an urgent need to better
understand how other cellular and acellular players contribute to
tumor growth and treatment success.

An additional barrier to immunotherapy and effective anti-
cancer reactivity is the immunosuppressive nature of the TME,
which advances with OC progression (58). Dendritic cells
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FIGURE 1 | Current immunotherapies frequently result in the persistence of a resistant cell population. This immune evasion of OC tumor cells can be facilitated by

tumor heterogeneity, insufficient neoantigen burden, lack of tumor-specific antigens, high levels of immunosuppressive factors, loss of HLA, and/or insufficient immune

cell trafficking. NK cells exhibit multiple functions that combat immune escape and tumor relapse: they kill targets and elicit inflammation through both antigen-specific

and antigen-independent pathways and detect loss of HLA as a signal for activation. As efficient mediators of tumor immune surveillance and control, NK cells may be

able to kill the cells many current immunotherapies leave behind.

FIGURE 2 | The cold, warm or hot tumor microenvironment is a continuum. Cold tumors are characterized by the lack of cytotoxic T cells and are typically associated

with an immune suppressive environment. Conversely, hot tumors are well infiltrated by cytotoxic T cells and are associated with an immune stimulating environment

and better prognosis than the prior. However, the characterization of tumors is not dichotomous, but rather exists as a sliding scale of cytotoxic T cell infiltration with

“warm” tumors representing a situation where although T cells exist, they are excluded and therefore ineffective at producing an efficient anti-tumor response.

(DCs) are required for the activation of anti-tumor T cells but
also have the ability to release immunosuppressive cytokines.
In OC, DCs are dysfunctional and immature due to high
levels of VEGF and IL-10 in the TME (59–61). These DCs
are not only unable to activate cytotoxic T cells, but also
function to induce regulatory T cell (Treg) differentiation, further
promoting immune suppression (62). Moreover, patient ascitic
fluid contains high levels of the Treg recruiting chemokine,
CCL22 (63). Unsurprisingly, Treg accumulate in the ascites
isolated from late stage OC patients (64, 65). Treg release IL-6
and IL-10 which induces expression of B7-H4 on macrophages
and subsequently leads to cytotoxic T cell cycle arrest (65).

Discussed in the following section, these impacts extend beyond
suppression of T cell immune responses and likely also interfere
with productive, anti-tumor NK cell function (Figure 3).

NK Cells in the OC Tumor
Microenvironment
The important contributions of NK cells to cancer control
were identified through mouse models deficient in NK cells
or key NK cell activating receptors (66, 67). The protective
effect of NK cells was further supported by studies in humans
that correlated poor NK cell function to cancer susceptibility,
progression and metastases in a variety of both solid and
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FIGURE 3 | The immunosuppressive TME of OC. Myeloid derived suppressor

cells (MDSC) and regulatory T cells (Treg) release high levels of

immunosuppressive cytokines including IL-10 and TGF-β. These cytokines

function to alter and suppress the function of multiple cells within the TME

including natural killer (NK) cells, dendritic cells (DC), and macrophages (M).

These cells frequently feedback onto lymphocytes by inducing further Treg

differentiation and preventing anti-tumor cytotoxic T cell function through

insufficient antigen presentation and the induction of cell cycle arrest.

hematologic cancers (68, 69). In OC, the prognostic value of
infiltrating NK cells has been debated—NK cells and the NK
cell-like population, innate-like lymphocytes (ILCs), have been
associated with both tumor progression and control (70–72).
NK cells co-infiltrate with cytotoxic T cells and are strongly
associated with patient survival (71, 73). One study stratified
OC patients into three subgroups based on infiltration of T
cells and other lymphocytes, primarily NK cells, and reported
differential 5-year survival rates: T + NK cells (90%), NK cells
only (63%) and neither T nor NK cell infiltration (0%) (70). Even
when they are present in OC, NK cells are dysfunctional: they
exhibit reduced proliferation, decreased cytolytic function and
decreased inflammatory cytokine production compared to the
same patient’s peripheral blood NK cells (74, 75) (Summarized
in Table 1). Hence, a better understanding of how to enumerate,
assess and control NK cells will be required to maximize their
infiltration, function and reactive potential in the TME.

Alterations in NK cell phenotype and function occur as
a result of the products of a growing ovarian tumor, related
ascites, and a variety of immunosuppressive cytokines produced
by myeloid derived suppressor cells (MDSC) and Treg (76).
For example, macrophage migration inhibitory factor (MIF)
overexpression has been reported in OC and correlates with
tumor progression (77). MIF downregulates transcription of
the NK activating receptor NKG2D (37, 77, 78). MIF is
also associated with increased expression of the inhibitory
checkpoint, B7-H6, which is associated with overall poorer
prognosis in OC (34, 79). Similarly, TGF-β overexpression
can suppress CD16-triggered NK cell IFN-γ production (80)
and, together with IL-10, has been shown to decrease the

inflammatory cytokine production and cytotoxicity of various
effector cells including NK cells (81–84). These alterations
include a downregulation of activating receptors 2B4, CD16,
NKp30, DNAM1, and an upregulation of the inhibitory
checkpoint receptor PD-1 (21, 31, 32, 37, 40). Finally, despite
upregulation of the early activation marker, CD69, NK cells
expressing it remain poorly cytolytic (31). In addition to cytokine
mediated suppression, CA-125, an antigen overexpressed in 80%
of OC, can directly protect tumor cells from NK cell-mediated
cytotoxicity by preventing the formation of an immune synapse,
regardless of the repertoire of receptors expressed on the NK cells
(79, 85).

Taken together, the available research indicates that NK
cells interact dynamically with the OC TME and are highly
sensitive to the immunoregulation it drives. Infiltration of NK
cells into a tumor may only partially predict outcomes of
OC. Better understanding the mechanisms through which the
TME contributes to immune exclusion and dysregulation will
be required for precise tumor control and to maximize NK
cell reactivity.

OC IMMUNOTHERAPY: A FOCUS ON THE
ROLES AND POTENTIAL OF NK CELLS

Successful immunotherapy requires restoration of immunity
in the immunosuppressive TME and complete targeting of a
heterogeneous tumor. Anti-tumor immunity can be driven by
ex vivo re-stimulation of lymphocytes, engineering cells for
direct targeting of specific tumor-associated antigens or turning
off immune suppression (86–90). Antibody-based therapies can
redirect immune cells by blocking their function, or for antibody-
dependent cell-mediated cytotoxicity (ADCC), a process for
which NK cells are major effectors. While the majority of
immunotherapeutic approaches have been developed with a
goal of supporting or reinvigorating antigen-specific anticancer
activity, they can also support the function of NK cells, whose
functional features can complement and extend the breadth of
OC immunotherapy (Figure 1). In the following sections, we
highlight current approaches to cancer immunotherapy, their
potential interactions with NK cells and the opportunities to
maximize anti-tumor immunity by recruiting NK cells.

Cytokine-Based Immunomodulation
Recognizing that immunosuppression is a major hindrance for
lymphocytes to proceed in anti-cancer activity, approaches with
cytokines to induce local and/or systemic inflammation have
been tested. A strategy to elicit and improve immune cell
activation in humans was first attempted using a variety of
activating cytokines including IL-2, IL-12, IL-15, IFN-α, and
IFN-γ (91).

IL-2 was one of the earliest cytokines tested for improving
anti-tumor immunity. Although early clinical trials were limited
by toxicity and activation of Treg, they provided an important
proof of concept that stimulating T and NK cells can impact
tumor progression. Since then, research has focused on strategies
to improve IL-2 safety including low-dose IL-2. In patients with
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platinum-sensitive advanced OC, low-dose IL-2 in combination
with 13-cis-retinoic acid improved clinical outcomes and
increased lymphocyte and NK cell counts (92). As low-dose IL-
2 can activate Treg, current efforts are testing constructs that
selectively bind to NK cells to support anti-tumor immunity
without driving Treg proliferation (93, 94).

Similar disappointing and toxicity-related issues were
reported in many trials of activating cytokines. Research
resulting in the development of analogs and oncolytic strategies
for local delivery may provide the required specificity to
bring cytokines safely into clinical use. IL-15 is similar to IL-2
but more specific in that it binds cytotoxic T cells and non-
terminally differentiated NK cells to enhance cell cytotoxicity
and proliferation. Further, the toxicity of IL-15 is less than that of
IL-2, but the concentrations of IL-15 required to drive efficient
anti-tumor function remain toxic. Ongoing efforts involve IL-15
“superagonists,” which deliver the IL-15 signal in complex with
the IL-15 receptor alpha subunit or its biologically-relevant
fragments, and/or fused in dimers with an IgG1Fc molecule to
stabilize the complex. In each instance, these superagonists more
closely replicate the biologically-potent delivery of IL-15, exhibit
longer in vivo half-lives, and drive lymphocytes (including NK
cells) for anti-cancer activity without marked toxicity (95).

ALT-803 is an IL-15 superagonist that potently enhances NK
functionality in vitro and in vivo against OC cell lines (96).
After ALT-803 treatment, NK cells isolated from OC patient
ascitic fluid exhibited greater degranulation (CD107a) and IFN-γ
production (24). Several clinical trials are ongoing evaluating
the efficacy of ALT-803 and other IL-15-based therapies, alone
and in combination with other immunotherapies including
three for patients with OC: NCT03054909, NCT03197584, and
NCT03127098 (97). It is expected that the addition of IL-15
and its related superagonists will support NK cell proliferation
and development. Metrics to understand NK cell recruitment
to the OC TME, persistence and NK cell reactivity (i.e., with
ex vivo restimulation) will enlighten subsequent clinical trials
by indicating how NK cell reactivity can be improved further.
Furthermore, studies to understand whether the cytokine milieu
varies with defined OC subtypes might help to predict how NK
cells will be recruited and effective in patients with OC.

Checkpoint Blockage and Antigen
Insufficiency
A high mutational burden creates a challenge for antigen-
targeted immunotherapies, but it creates an opportunity
for immune-mediated OC recognition. Tumors with high
mutational burdens may have increased neoantigen levels,
against which antigen-specific T cells may be activated. Many
studies have predicted that resistant tumors may lack the
neoantigen burden required to mount an effective T cell response
(98). One recent investigation profiling tumor and T-cells isolated
from the ascites of three OC patients identified that while
a high mutational burden was indeed present, only 1.3% of
these mutations were recognized by tumor-associated T cells
(99). As expected, the presence of neoantigen-reactive T cells
(rather than T cells with non-specific reactivity) is predictive

of improved prognosis in OC (99, 100). This highlights the
importance of the immunogenicity of antigens and an adequate
repertoire of tumor-reactive T cells, rather than the overall tumor
mutational burden in predicting OC outcomes (101). However,
the immune-suppressive TME can still interfere with T cell-
mediated tumor recognition.

High mutational burdens have been associated with improved
responses to immune checkpoint therapies in both melanoma
and non-small cell lung cancers (102, 103). Unexpectedly, despite
a significant mutational load being present in pre-treatment
surgical samples of OC patients, overall response rates to anti-
PD1 treatment in clinical trials have been largely disappointing,
ranging from 11–24% (104, 105). These clinical trials weremainly
conducted in OC patients that progressed despite conventional
treatments—these tumors likely had established immune evasion
strategies; earlier intervention with immunotherapy may have
achieved better outcomes. Regardless, these clinical trials
highlight that a subset of OC patients can respond to anti-PD1
treatment, but the majority have innate or acquired resistance or
lack T cells with appropriate anti-tumor reactivity (106).

Various changes in the TME have been identified that may
be associated with anti-PD1 resistance including genomic
mutations and downregulation of HLA and its associated
processing and presentation pathway components (106, 107).
These alterations have been reported in both melanoma and
lung tumors treated with anti-PD1 (106, 107). Specifically,
the acquired genomic mutations provided protection against
T-cell mediated killing via loss of IFN-γ or HLA class I
components (108, 109). It is not yet known whether anti-
PD1 therapy drives similar genetic alterations in OC, but in
recurrent OC the expression of HLA genes was negatively
correlated with expression of PD-L1, suggesting two mutually
exclusive pathways to immune evasion (110). This loss of
HLA class I expression, together with insufficient T cell-
mediated recognition of tumor antigens, may contribute to
the insufficiency of anti-PD1 for complete OC clearance.
Strategies to augment NK cell function, particularly those NK
cell populations that recognize cells with DNA damage and loss
of components of the HLA processing and presentation
pathway (i.e., the “licensed” NK cell population), may
improve OC treatment and the outcome of anti-PD1 therapy,
and complement existing strategies aimed at maximizing
T cell-mediated OC control. Likewise, phenotyping of
tumor-infiltrating NK cells or the tumors themselves for
expression of checkpoints and HLA expression may assist in
predicting how NK cells may be functional or inhibited against
tumor killing.

Checkpoint inhibitors interfere with inhibitory signaling
that prevents anti-tumor reactivity; their application enables
lymphocytes to proceed in anticancer cytotoxicity. Although
anti-PD1 therapies were designed to rescue T cells from
immunosuppression, PD-1 has been found to be expressed on
NK cells isolated from OC and other tumor types (40, 111, 112).
PD-1 expression is not universal on NK cells however, with
studies reporting highly variable PD-1 expression peripheral NK
cells in healthy donors, from 0 to 50% (40, 113). In patients with
OC however, PD-1 expression on peripheral blood NK cells is
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increased suggesting that the presence of a tumor could induce
its expression (40).

Despite inconsistent expression on NK cells, anti-PD1
therapies have demonstrated the potential to simultaneously
support T and NK cell responses in the TME, suggesting that
PD-1 blockade could indirectly influence NK cell function, or
that PD-1 expression could be dynamic on NK cells in response
to the TME. A recent study investigated the therapeutic effect of
anti-PD1 therapy on NK cells using several mouse cancer models
and concluded that NK cells were crucial to anti-tumor responses
(114). Additionally, OC xenograft studies have demonstrated that
both NK cell persistence and cytotoxicity can be improved with
PD-L1 blockade (115). Hence, NK cells may be contributing
to the outcomes of checkpoint inhibition therapy, even if they
have not been expressly studied for this purpose. Recognizing
this potentially important feature, clinical trials have also begun
to investigate the impact of anti-PD-1 treatment on preventing
or reversing NK cell exhaustion in the TME (NCT03241927),
but this is not yet standard in clinical trials. Given that NK
cells may contribute to the anti-tumor immunity driven by
checkpoint inhibition therapies, metrics to assess their prevalence
and function may help to illuminate the larger picture of anti-
OC immunity.

Some studies have identified an immunoregulatory
population of NK cells that exhibit the PD-1 ligand PD-L1
in patients with cancer, but its function has not been determined
(116). In antigen presenting cells cis expression of PD-L1 and
PD-1 permits regulation of PD-1 signaling (117); whether this
also occurs in NK cells is unknown. An alternative mechanism,
demonstrated in a mouse model, involves PD-L1-mediated
editing of dendritic cells, limiting the extent of their interactions
with T cells and development of productive anti-tumor T cell
response (118). With this in mind, expression of PD-L1 (and its
control by anti-PDL1 antibodies) may have significant impacts
on direct NK cell function and its interactions with neighboring
cells; this warrants further investigation.

In addition to PD-1, other immune checkpoints, including
KIR, NKG2A, and TIGIT are being explored as targets for
immunotherapy (119, 120). Like PD-1, TIGIT is expressed
on both T and NK cells and suppresses anti-tumor effector
function in both (120). While its mechanism of action in
T cells was recognized, it was only recently identified that
they also prevent or reverse NK cell exhaustion (120). TIGIT
blockade improved prognosis in murine T and B-deficient, NK-
sufficient xenograft models against several human tumor cell
lines including colon, breast, melanoma, and fibrosarcoma (120).
Anti-TIGIT antibodies are now undergoing clinical trials and
just one includes OC (NCT036286770). This trial does not plan
measurements of NK cell phenotype or function; future studies
should include this as an important outcome measure.

Like TIGIT and PD-1, NKG2A, and the inhibitory subset
of KIRs prevent excessive inflammation but may interfere with
productive anti-cancer activity. For NK cells, NKG2A and KIR
convey an important signal of “self ” upon binding with HLA
class I. The importance of preventing NK cell inhibition is clear in
patients undergoing hematopoietic cell transplantation for acute
myelogenous leukemia, where “uninhibitable” populations of NK

cells predict for less relapse and greater overall survival (19, 121–
123). These observations inspired the creation of antibodies
against KIR and NKG2A, which are now being tested against
other hematologic and solid malignancies, but not yet in OC.

HLA-E, the ligand for NKG2A, is a non-classical and
ubiquitous HLAmolecule that has been found at high expression
levels in OC tumors (124). AsHLA-E overexpression is negatively
correlated with survival and exhibited in the majority of tumor
types, blocking this NKG2A/HLA-E inhibition could enhance
immunotherapy across an array of tumors, including OC (125,
126). In tumors exhibiting high-density HLA-E expression,
infiltrating CD8+T and NK cells exhibit high NKG2A and PD-1,
suggesting adoption of a phenotype highly sensitive to inhibition
in the TME (126). Although OC-infiltrating NK cells’ NKG2A
expression has not been expressly measured, the abundance of
HLA-E on OC tumors would suggest that preventing inhibition
of NK cells via NKG2A may enable strong anti-tumor reactivity.

Experimentally, NKG2A surface expression has been
eliminated on NK cells by blocking its export from the
endoplasmic reticulum using a protein expression blocker
construct (126). Primary human NK cells engineered in this
way lacked NKG2A surface expression and more efficiently
controlled growth of human tumor xenografts in mice (126).
Toward a similar goal, a monoclonal antibody, anti-NKG2A
(monalizumab) has been delivered for direct delivery to patients.
In addition to boosting NK cell cytotoxicity against targets
expressing HLA-E, anti-NKG2A has also been demonstrated to
augment the function of T cells expressing NKG2A, providing
an opportunity to activate both NK and T cells; both were shown
to contribute to control of tumor xenografts in mice (127).
Inclusion of NKG2A and HLA-E measurements in OC tumors
from patients could help to ascertain whether a patient might
benefit from anti-NKG2A therapy.

The anti-KIR antibody IPH2101 (lirilumab) aims to interfere
with inhibition via the KIR2DL1/2/3 receptors. In vitro, lirilumab
functions to enhance killing of tumor cells by NK cells (128).
Unfortunately, efficacy for this monoclonal antibody has been
poor in clinical trials for patients with hematologic malignancies
(129), a finding that corresponds with decreased surface
density of KIR molecules and “detuning” or diminishment of
missing self-responsiveness (130). IPH2101 has not yet been
tested against OC, but the available information suggests that
further improvements, such as interrupting inhibitory signaling
without altering receptor expression, preventing the loss of cell
surface KIR through the trogocytosis prompted by IPH2101, or
stratifying patients based on particular KIR haplotypes or KIR
allotypes likely to be sensitive to lirilumab, will be necessary to
gain efficacy against OC.

By combining checkpoint inhibitors, it may be possible to
augment the NK cell anti-tumor response—by relieving two or
more inhibitory signals, or by rebalancing immunity toward
activation by blocking inhibition while triggering activation.
These approaches could lower the threshold for NK cell
activation and provide a failsafe to target a tumor that evolves
away from dependence on PD-L1 and/or HLA expression. Unlike
T cells, where TIGIT and PD-1 are often co-expressed, TIGIT
and PD-1 expression was nearly mutually exclusive on NK
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cells, suggesting that checkpoint blockade for both molecules
simultaneously may permit rescue of a larger population of
NK cells from inhibition and exhaustion (120). Simultaneous
blockade of NKG2A and triggering of ADCC using the anti-
EGFR antibody cetuximab enhanced in vivo control of tumor
xenografts more efficiently than either antibody alone (127).
In a phase II trial (NCT02643550), monalizumab was given to
patients with squamous cell carcinoma of the head and neck
after chemotherapy and alongside standard-of-care treatment
with cetuximab (127). This combination was deemed safe, with
interim results indicating an improvement from the addition of
monalizumab compared with historical control subjects treated
with cetuxumab only, but further studies will be required to
formally draw this conclusion.

Clinical trials are now testing combinations of anti-PD1
with novel checkpoint inhibitor therapies including anti-
KIR2D antibody (lirilumab) (NCT01714739), anti-NKG2A
(monalizumab) (NCT02671435, NCT03822351, NCT02557516,
NCT03794544, NCT03833440), and anti-TIGIT (MTIG7192A)
(NCT02794571, NCT03119428, NCT03563716, NCT03628677)
(127). Theoretically, further strategies to appraise the tumor’s
expression of PD-L1 (which is the current standard of care for
checkpoint therapies in other cancers), HLA and TIGIT ligands
may inform the rational combination of checkpoint inhibitors to
maximize NK cell function.

Adoptive and Adaptive NK Cell Therapies
Recognizing the potential for NK cells to participate in immune-
mediated cancer control, a thrust in NK cell-based cancer
therapies is adoptive transfer of NK cells (131, 132). Since NK
cells do not require HLA matching to a specific patient, it is
feasible and safe to transfer cells across allogeneic barriers. This
opens the possibility of transferring NK cell lines (i.e., NK-92) or
ex vivo-expanded NK cells from third-party donors (25). Efforts
are underway to create cell lines—including those based on NK-
92 cells—which may enable direct targeting of OC based on
defined criteria (133, 134). In addition, clinical protocols are in
place for virtually unlimited expansion of primary NK cells for
adoptive transfer. Together, these efforts open the possibility of
off-the-shelf NK immunotherapy. A complete summary of all
clinical trials employing NK and NK-related cells for treatment
of OC is shown in Table 2.

Early attempts at inducing NK cells for anti-cancer function
included priming of lymphokine activated killer (LAK) and
cytokine induced killer (CIK) cells. LAK and CIK cells originate
from naïve lymphocytes which are “activated” or “induced” by
IL-2 alone (LAK) or following IFN-γ stimulation ex vivo (CIK)
(136, 137). In clinical trials, LAK cells exhibited limited clinical
response and high rates of peritoneal fibrosis (138–140). The
addition of IFN-γ stimulation to LAK cells to create CIK cells
substantially improved both proliferation and cytotoxicity. CIK
cells are characterized by the expression of a CD3+CD56+
cell phenotype and functional properties of NK cells (141).
CIK cells were used in a recent phase III study of adoptive
transfer following primary debulking and carboplatin/paclitaxel
chemotherapy of OC (141, 142). Results from this clinical trial
were positive with progression free survival improving from 22.2

months in the control group to 37.7 months among CIK-treated
patients (142).

A completed early phase II study used allogeneic,
haploidentical donor NK cells in combination with high-
intensity chemotherapy to treat patients with recurrent OC
(143). NK cell effects were difficult to differentiate from those
of the chemotherapy and limited efficacy was attributed by
the authors to a significantly increased number of Treg.
Overcoming immunosuppression, including that driven by
Treg, will indeed be important to ensuring the efficacy of
NK cell-based immunotherapy. One strategy is to combine
haploidentical donor NK cells with cytokines, with the goal
of reversing the suppressive immune TME, enabling NK cell
anticancer reactivity to proceed. Supporting this, the authors
of the aforementioned phase II study have recently reported
the ability to stimulate NK cells to overcome the soluble
immunosuppressive environment from OC patient ascites in
vitro with a combination of stimulatory IL-12, IL-15, and IL-18
(144). Indeed, this cytokine cocktail has been known to induce
an “adaptive” population of highly-functional NK cells (145).

“Adaptive” NK cell population, first identified following
cytomegalovirus infection but now known to be long-lived
effector cells with potent cytotoxic ability (47). A recent study
converted NK cells from a patient with OC to a cytotoxic
CD56superbrightCD16+ subset that upon autologous transfer
efficiently controlled growth of an autologous OC xenograft
in a mouse (146). These adaptive NK cells are refractory to
inhibition by Treg, implying a mechanism for their enhanced
function (147). In a current Phase I clinical trial, FATE-NK100
cells, which are primary NK cells isolated from haploidentical
cytomegalovirus-seropositive donors, are being transferred to
patients with OC (NCT03213964).

Identifying the ideal source of NK cells for adoptive
immunotherapy is a field of active study. Compared with mature
and in vitro differentiated NK cells, an alternate approach is
to transfer NK cells derived from umbilical cord blood (UCB)
stem cells (NCT03539406). UCB contains a high proportion of
immunologically-naïve NK cells that can be easily recovered
and exhibit functions similar to peripheral blood NK cells.
They produce similar amounts of IFN-γ and TNF (148–150).
Research has also highlighted some potential weaknesses of
UCB-derived NK cells: the relative immaturity of this NK cell
population is associated with lower cytotoxicity, lower expression
of perforin, granzyme B and KIR, and higher expression of
NKG2A (150, 151). The processes for NK cell differentiation, the
relative immaturity of NK cells from UCB and how they can be
further differentiated or potentiated using cytokine cocktails or
stimulation remain to be studied.

While selection of where to source NK cells from continues
to elicit debate, once transferred into a patient, persistence,
expansion, and homing/trafficking of the NK cells has proven
an additional challenge. Unsurprisingly these factors have been
identified as key to anti-tumor efficacy (143, 152, 153). Several
factors including modifying cryopreservation and cytokine
stimulation techniques can have profound impacts on homing,
persistence and expansion of NK cells in in vivo (154). Indeed, a
variety of strategies are being tested to improve NK cell potency
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TABLE 2 | Current NK cell-based adoptive cell immunotherapies under clinical trial for the treatment of ovarian cancer.

NK cell intervention Phase, date, (Status) Study population (n) Primary outcomes Results Reference/Clinical

trial identifier

Allogeneic NK cells (with IL-2) Phase II, 2008–2010

(Terminated due to

toxicity)

Ovarian cancer, fallopian

tube cancer, peritoneal

cavity cancer (12)

To evaluate the in vivo expansion

of an infused allogeneic natural

killer (NK) cell product

PR (3), SD (8),

PD (1)

NCT00652899

Allogeneic NK cells (with IL-2) Phase II, 2010–2014

(Completed)

Ovarian cancer, fallopian

tube cancer, primary

peritoneal cancer, breast

cancer (13)

Response Rate by RECIST [Time

Frame: Month 3]

N/A NCT01105650

Cord Blood Cytokine Induced

Killer Cells

Phase I, 2012–2014

(Completed)

Ovarian (4), colon (4),

rectal (5), hepatocellular

(2), gastric (1), pancreatic

(1), lung (1), esophagus (1)

Response Rate by RECIST CR (1, HCC, 1

esophageal),

PR (2 ovarian),

PD (1 HCC),

SD (10,

averaging 11.4

months)

(135)

Radiofrequency ablation and

Cytokine-induced Killer Cells

Phase II, 2015–2016

(Active, not recruiting)

Ovarian carcinoma (50) Recurrence-free survival [Time

Frame: 1 year]

N/A NCT02487693

NK cells with cryosurgery Phase I/II, 2016

(Recruiting)

Recurrent ovarian cancer Response Rate by RECIST N/A NCT02849353

FATE-NK 100 (CMV+ donor

NK cells with IL-2)

Phase I, 2017–2019

(Recruiting)

Epithelial ovarian cancer,

Fallopian tube cancer,

Primary peritoneal cancer

(estimated 16)

Maximum Tolerated Dose of

FATE-NK100 [Time Frame: 1 Year]

N/A NCT03213964

Primary NK cells Phase I/II, 2018

(Recruiting)

Lung cancer, breast

cancer, colon cancer,

pancreatic cancer, ovarian

cancer (200)

Incidence of toxicity induced by

NK infusion [Time Frame: 6

months]

N/A NCT03634501

NKG2D-Ligand Targeted

CAR-NK

Phase I, 2018 (Recruiting) Solid tumors (estimated

30)

Number of Adverse Events [Time

Frame: from day 0 to month 4]

N/A NCT03415100

6B11-OCIK Phase I, 2018 (Not yet

recruiting)

Recurrent

platinum-resistant ovarian

cancer (estimated 10)

Progress-free survival [Time

Frame: 3 years]

N/A NCT03542669

Allogeneic NK cells Phase I, 2018 (Not yet

recruiting)

Recurrent ovarian cancer,

recurrent fallopian tube

cancer, recurrent primary

peritoneal cancer

(estimated 12)

Incidence of treatment emergent

adverse events [Time Frame: 6

months]

N/A NCT03539406

Anti-Mesothelin CAR-NK Phase I, 2018 (Not yet

recruiting)

Epithelial ovarian cancer

(estimated 30)

Occurrence of treatment related

adverse events as assessed by

CTCAE v4.0 [Time Frame: Day

3-Year 2 after injection]

N/A NCT03692637

SD, stable disease; PR, partial response; CR, complete response; PD, progressive disease.

in vivo. Interestingly, a recent study describes the use of a NK-
cell-recruiting protein conjugated antibody that is cleaved into
CXCL16 upon interaction with the tumor surface. This created
a chemokine gradient resulting in increased NK cell tumor
infiltration in a mouse model of pancreatic cancer (155). Similar
strategies could be employed for other solid tumors including
OC. Likewise, inclusion of extensive immune phenotyping,
including that which would identify the type(s) and relative
differentiation of NK cells invading tumors in patients, with
stratifications based on outcomes and tumor subtypes, might
better inform precise application of adoptive NK cell therapies.

Antigen Targeting With Antibodies and
CAR-NK Cells
T cells engineered to express a chimeric antigen receptor
(CAR)-T cells targeting CD19, a tumor antigen present on

B-cell malignancies, provided the groundwork, and rationale for
development of T cells engineered to target a specific antigen.
Likewise, antibodies against CD20 and the HER2 receptor on
lymphoma and breast cancer, respectively, provided the first
proof-of-principle that tumors can be tagged for recognition
and elimination by the immune system. Noteworthy, many of
these antibody therapies rely on NK cells to mediate ADCC,
and their efficacy has been inversely correlated to the extent of
inhibitory KIR expression on NK cells (43, 156, 157). The list
of targetable antigens in OC has been growing, and currently
includes CA-125, FOLR1, EPCAM,MUC-1, and NY-ESO-1 (158,
159). Unfortunately, immunotherapies targeting these specific
antigens have been largely ineffective. Currently, two CAR-T
cell therapies have been approved by the FDA (160); neither is
applicable to OC. For patients with OC, CAR-T cells against CA-
125 are being developed and have shown promise against human
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xenograft models and plans to evaluate their safety in in-human
phase I clinical trials have been reported (161, 162).

There are limitations to the universal use of CAR-T cells,
which may be directly addressed by NK cells: CAR-T cells take
weeks to produce, are difficult to generate as autologous, and
expensive, making them impractical for patients requiring quick
treatment for aggressive tumors or standard of care therapy
(163). Moreover, allogeneic CAR-T cells pose the risk of graft-
vs.-host disease (GvHD), even whenHLA-matched, due tominor
mismatches (164).

Since NK cells can be delivered from allogeneic sources,
they are readily available and relatively more cost-effective.
Importantly, NK cells are not associated with GvHD, and
therefore CAR-NK cells may be a safer alternative to CAR-T cells
for engineered cell therapy. Preliminary data supports the safety
and efficacy of CAR-NK cell therapy, which may be attributed
to the relatively short lifespan of NK cells, which lowers the
risk of long-term autoimmunity and toxicity (165). Moreover,
the pre-existing tolerance conveyed by germline-encoded NK
cell inhibitory receptors (i.e., KIR, NKG2A) may restrict their
reactivity to the tumor and damaged cells, making them less
likely to convey off-target and toxic effects than CAR-T cells.
Two CAR-NK cells currently under development include CARs
against CD24 and mesothelin.

CD24, a cancer stem cell marker, is rarely expressed in non-
hematologic healthy tissue, and associated with poor clinical
outcome in OC patients (166, 167). Recently published work
tested a genetically engineered CAR-NK92 against CD24, and
demonstrated its to ability kill OC cells in vitro, in addition
to producing high levels of IFN-γ upon co-culture with CD24
expressing OC cell lines (168). Researchers indicate that future in
vivo experiments will be conducted to further evaluate efficacy.

One of the most developed CAR-NK cells is engineered
against mesothelin, the receptor for CA-125. CA-125 is
overexpressed in ∼80% of patients and elicits an effective
T cell response in vitro (169). A recent study evaluating various
CAR constructs against mesothelin demonstrated their cytotoxic
potential in vitro and further proved to be less toxic than their
CAR-T cell counterparts in vivo while retaining similar anti-
tumor effects (170). Based on early success in vivo, there are
plans to evaluate mesothelin targeting CAR-NK cells in a phase
I clinical trial (NCT03692637).

Despite its high expression on OC tumors, antibodies against
CA-125 have not proven efficacious in OC patients (171),
suggesting that exclusively targeting CA-125 is insufficient
to target the heterogeneity associated with primary OC.
“Antigen escape” in which the target antigen is lost through
downregulation, acquired gene mutation or outgrowth of tumor
subpopulations, occurs as a result of the selective pressure applied
by antigen-targeting therapies like CAR-T cells and antibodies.
This likely underlies the incomplete tumor control by existing
antigen-specific immunotherapies and is facilitated by the tumor
heterogeneity (172, 173). Complete control of OC will likely
require simultaneous targeting of more than one feature.

In addition to CA-125, several therapeutics targeting NK
cells to specific OC-associated antigens to activate ADCC are
emerging. These include monoclonal and bi-specific antibodies,

antibody-drug conjugates alone, and in combination with CAR-
engineered NK cells (165, 174). One notable study found that
the bispecific monoclonal antibody anti-EpCAM x anti-CD3
simultaneously activated T and NK cells with a strong enough
interaction to overcome the immunosuppressive TME found
in malignant ascites (175). Antibody-drug conjugates have also
been developed for OC patients (176). Of these, Mirvetuximab
Soravtasine (IMGN83), an anti-folate receptor alpha antibody
conjugated to a cytotoxic maytansinoid, is the most developed
and has demonstrated efficacy as a single agent in vivo (177).
Unfortunately, this efficacy did not translate into clinical efficacy:
a phase III study in platinum resistant OC patients concluded
that progression free survival was not superior to standard
chemotherapy (178, 179). Limited efficacy in antibody-based
therapies, including IMGN83, may be due to one or several
strategies including acquired resistance and/or an insufficient
immune response.

NK cells from cancer patients often exhibit downregulation
of the Fc receptor CD16 required for ADCC, resulting in
reduced efficacy of antibody-based approaches (180, 181).
To overcome this challenge and augment NK cell-mediated
ADCC, researchers are inhibiting the metalloproteinases that
cleave CD16 (182), or specifically engineering NK cells or
cell lines for permanent expression of CD16 to facilitate
ADCC (183).

The combination of antigen-agnostic reactivity (i.e., through
germline-encoded activating receptors) together with the
abilty to recruit NK cells for responsiveness against specific
tumor antigens (i.e., through CAR or antibodies) may provide
the required heterogeneous immune response required to
combat the highly heterogeneous cancer that is OC. Cancer
phenotyping to understand this heterogeneity—with extensions
in predicting the ideal configuration of NK immunity—
would assist in developing more precise approaches to
OC immunotherapy.

FUTURE RECOMMENDATIONS

Immunotherapies that focus and predict the specific ligands
and ligand combinations for NK cells are likely to enhance
OC clearance and control. NK cells can provide a multifaceted
approach to meet the challenge of heterogeneity in OC tumors.
That NK cells can serve both antigen-specific (i.e., ADCC,
CAR) and antigen-agnostic roles (i.e., DNA damage, cell stress)
(15, 184), in detecting and eliminating tumors is a strength
of NK-based immunotherapies, especially against the highly-
heterogeneous OC.

Enhancing or replacing NK cell function in OC is both a
feasible and logical strategy that complements several existing
immunotherapies. To maximize NK function and activation
within the TME, further research is warranted to first identify the
relevance of NK cells for the outcome of OC patients. Toward
the inclusion of NK cells as key players in immunotherapy
we have synthesized the following recommendations for those
researching how the OC TME interacts with cancer therapies.
These recommendations should be considered when developing
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fundamental, translational and clinical studies to contribute to
the growing body of knowledge surrounding NK cell relevance
in OC.

1. NK cells as outcome measures
It is crucial that NK cells be included as outcome measures in
clinical trials evaluating immunotherapies. For example, anti-
PD-1 therapies characterize T cell populations and neglect
the evaluation of other lymphocytes. Likewise, NK cells are
important mediators of ADCC; therefore, NK cell function
should be considered in antibody-based approaches.

2. Further characterization of NK cells in OC
Identifying phenotypic classification and prognostic value of
NK in OC may also aid in the stratification of patients for
therapy. For example, identifying KIR immunogenomic status
may allow identification of immunotherapeutic responders
from non-responders based on immunogenetics and NK
cell licensing. Inspiration for this can be drawn from
investigations in other cancers that have shown important
contributions of NK cell education and inhibition in
contributing to therapeutic outcomes (19).

3. Measure leukocyte reactivity and compositions in the TME
Efficient tumor control by immune mechanisms involves
the collaboration of innate and adaptive lymphocytes. Thus,
strategies to better understand immune function in the tumor
will identify shortcomings in the current approaches and keys
to next-generation immunotherapies.

CONCLUSIONS

Limited treatment options, no effective screening strategies,
high recurrence, and poor overall survival emphasize the
need for improving therapeutic strategies to combat OC.
It is clear that current treatments are unable to control
OC progression. As with several other hard-to-treat tumors,
researchers and oncologists are turning to immunotherapy to
treat OC. Immune cell infiltration carries both predictive and
prognostic value in OC; however, the complex relationship
between the immune system and tumor remains a topic of
active study. This investigation has revealed an extremely
immunosuppressive TME in OC that results in the dysregulation
of immune effector cells leading to immune evasion and
tumor progression.

While immunotherapies have encountered several challenges,
strategies are being developed to improve their efficacy. Cytokine
treatments now focus on enhancing specificity and safety.
The development of cytokine superagonists and oncolytic
virus delivery strategies can theoretically provide the required
specificity to bring these into clinical use. Similarly, adoptive
cell transfer therapies are being enhanced to establish feasibility
and efficacy. Most promising are combination immunotherapies
designed to target and activate multiple immune pathways.

These advances demonstrate promise to improve
immunotherapies and minimize associated toxicities; however,
without strategies to efficiently identify OC responders,
immunotherapies will continue to yield disappointing results.
The ability to properly stratify patients relies on understanding
of a patient’s underlying immunity and the pre-existing immune
TME. It also requires an in depth understanding into how
these factors interact with and respond to chemo-, radio- and
immuno-therapies. By focusing and targeting immunotherapies
to individual pathways, including those which enhance
functionality of just one cell type or one immune cell pathway,
the therapeutic impact may be limited. The broad functions
of NK cells make them amenable for immunotherapy because
they can mediate tumor killing using a variety of mechanisms,
including ADCC and germline-encoded receptors, with minimal
toxicity. Alone, or in combination with existing strategies, NK
cells hold great promise for treatment of OC.
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