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Abstract: When wood is used as a structural material, the fact that it is a highly inhomogeneous
material, which significantly affects its static and fatigue properties, presents a major challenge to
engineers. In this paper, a novel approach to modelling the fatigue-life properties of wood is presented.
In the model, the common inverse-power-law relationship between the structural amplitude loads
and the corresponding number of load cycles to failure is augmented with the influence of the wood’s
mass density, the loading direction and the processing lot. The model is based on the two-parametric
conditional Weibull’s probability density function with a constant shape parameter and a scale
parameter that is a function of the previously mentioned parameters. The proposed approach was
validated using the example of experimental static and fatigue-strength data from spruce beams.
It turned out that the newly presented model is capable of adequately replicating the spruce’s S-N
curves with a scatter, despite the relatively scarce amount of experimental data, which came from
different production lots that were loaded in different directions and had a significant variation in
density. Based on the experimental data, the statistical model predicts that the lower density wood
has better fatigue strength.

Keywords: spruce wood; wood density; static material characteristics; fatigue strength; Weibull’s
probability density function; augmented inverse power law

1. Introduction

In recent years, wood has become an increasingly interesting alternative to steel and
concrete due to greater environmental awareness and the general trend towards sustainable
construction materials. There are many studies that have investigated different materials
and manufacturing processes to develop highly engineered wood products to achieve
an increased load-bearing capacity and stiffness [1–6]. Products made from biological
materials such as wood often exhibit complex mechanical behaviour. Although such
materials have been used for thousands of years, their mechanical behaviour is not yet
fully understood. Their properties often vary from sample to sample and exhibit non-linear
mechanical behaviour when subjected to large loads.

Spruce is often used in the construction industry, either in the form of load-bearing
axial or bending beams, or as the basic building material of various carpentry products,
such as door and window frames. In most construction applications, the wooden structural
elements are subjected to quasi-static loading with a small change in the load over time.
In such applications it is the static strength of the wood that determines the load-carrying
capacity of the structure. However, in some applications, when the structural elements
are frequently exposed to unfriendly environmental conditions (e.g., windy locations) or a
dynamic environment (e.g., vibration or repeated mechanical impact loads), the structure
might fail due to the fatigue process. The fatigue strength of wood-based materials is lower
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than the corresponding ultimate static strength [7–11], which is typical for the vast majority
of structural materials. Consequently, to enable the design of structural elements, the static
and fatigue strengths of wood must be known. One of the first studies related to the fatigue
of wood was carried out by Wood [12], who presented the so-called “Madison curve” as
the relationship between the stress and the load duration. In recent years, much research
has been conducted to explain the fatigue phenomena with respect to wood [8,10,11,13–16].

Unlike structural metals or polymers, wood has a very inhomogeneous structure. It
depends on the growth conditions, the orientation of the cut elements, the relative humidity
(reflected in the mass density of the wood), knots, resin channels, fibre deviations, reaction
wood, etc. [8–10]. This means that a significant scatter of the strength characteristics is
expected for each type of wood. Spruce, which was the subject of our research, is not
an exception. During the research of its properties, static and fatigue bending tests were
performed on beam-like specimens with the same geometry, but different properties (i.e.,
density, processing lot and orientation of the load with respect to the growth rings). Since a
characterisation of the static properties of the material was previously published by Fajdiga
et al. [17–20], the main focus in this paper is an evaluation of the fatigue properties of
spruce. Nevertheless, a statistical analysis is also performed for the static data to show the
difference between the static and fatigue behaviours of the wood.

The main problem that needs to be addressed when characterising the fatigue proper-
ties of inhomogeneous materials with significant variations of the structural characteristics
is the scatter of the fatigue-life data. This means that not only the trend of the fatigue-life
curve needs to be estimated, but also its scatter. Due to the many influencing factors that
have an effect on the durability of spruce, the scatter of the fatigue-life curve (i.e., a diagram
of the number of load cycles to failure N vs. the loading levels S) can span more than an or-
der of magnitude along the N axis of the S-N curve. An overview of the statistical methods
for a data analysis of this kind is presented in the book of Nelson [21]. According to the
ASTM E 739-91 standard [22], the fatigue-life curve and its scatter in the high-cycle fatigue
domain are modelled by combining the log-normal probability density function (PDF)
f (N|S) of the number of load cycles to failure N with an inverse power-law relationship
between the number of load cycles to failure N and the loading level S as follows:

1. A linear-regression model is first set-up for the log(N) vs. log(S) relationship on the
basis of n experimental data points S = {(Si,Ni); i = 1, . . . , n}:

log
(

N̂
)
= a0 + a1· log(S); a0 > 0, a1 < 0 (1)

2. The linear-regression model from Equation (1) represents the mean value µ of the
conditional log normal PDF f (N|S). Its standard deviation is calculated from the
deviations between the logarithmic values of the measured Ni and the predicted N̂i
load cycles:

σ =

√
1

n− 1
·∑n

i=1

[
log
(

N̂i
)
− log(Ni)

]2 (2)

The approach of the ASTM E 739-91 standard [22] works well if all the fatigue-life data
from the sample set S = {(Si,Ni); i =1, . . . , n} represent the fatigue failures. However, if the
sample set also consists of run-out experiments, this procedure cannot be directly applied
to the complete dataset. Run-out experiments are common during fatigue testing, because
the tests are usually terminated if no fatigue failure occurs before a predefined number of
loading cycles. To set-up the fatigue-life curve model from Equations (1) and (2), the run-
out data should either be discarded or they should be considered using the approach that
was proposed by Pascual and Meeker [23]. Following their procedure, the parameters a0,
a1 and σ from Equations (1) and (2) are estimated using an enhanced maximum-likelihood
function, in which the fatigue failures are considered via the PDF f (N|S) and the run-outs
are considered via the corresponding cumulative probability function F(N|S). This is a
problem if the PDF f (N|S) has a log-normal form, since its cumulative probability function
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F(N|S) cannot be analytically determined. The solution is to replace the log-normal PDF
f (N|S) with a conditional Weibull’s PDF [24].

f (N|S) = β

η
·
(

N
η

)β−1
· exp

[
−
(

N
η

)β
]

; N, β, η > 0 (3)

where β is the constant scale parameter of the Weibull’s PDF and η is its scale parameter,
which is dependent on the loading level S according to the inverse power-law equation:

η = η(S) = 10a0+a1· log (S); a0 > 0, a1 < 0 (4)

Therefore, the scattered fatigue-life curve that is used to estimate the specimen’s
fatigue-life curve and its scatter is modelled with three parameters: a0, a1 and β. This
approach was already successfully applied previously to model the fatigue-life properties
of different metallic materials and structures [25–33].

However, if this approach is directly applied to materials or products that have a
very inhomogeneous and random internal structure or were processed and tested using
different procedures the resulting scatter would be enormous and the Weibull’s shape
parameter β from Equation (3) would be low. One solution to this problem is to model
a relationship between the influencing factors (e.g., inhomogeneity types, processing or
testing conditions) and the fatigue-life curve model using neural networks. In this way
a significant part of the scatter is described by the influencing factors and the fatigue-life
curve is determined for a quasi-constant material state or testing conditions. The drawback
of this method is that a lot of sample points are needed to obtain a reliable neural network
that links the influencing factors to the corresponding fatigue-life curves. In our case, the
fatigue-life data for different states of the material and the processing lot of the spruce
specimens are rather scarce. For this reason, we decided to augment Equation (4) with
additional terms that should reflect the influence of the wood’s density and the processing
lot on its fatigue life. This novel model was successfully validated on the spruce specimens
that were taken from a serial production of wooden window frames.

The rest of the article is structured as follows. In the second section the static and
fatigue experiments are first described, then the experimental data are explained, which
is followed by an explanation of the theoretical concepts of the proposed model. In the
third section the augmented fatigue-life-curve model is applied to the spruce data. The
results are discussed and compared to the static properties of the wood. The article ends
with conclusions, acknowledgments and a list of references.

2. Materials and Methods
2.1. Specimen Preparation

The initial samples were made of Norway spruce (Picea abies (L.) Karst.) (M SORA
d.d., Žiri, Slovenia) and had dimensions of 25 × 25 × 549 mm3 (b × h × L) (Figure 1). The
samples were produced in two batches (Lot 1 and Lot 2).
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Figure 1. Dimension of a Norway spruce (Picea abies (L.) Karst.) sample. (unit: mm) Figure 1. Dimension of a Norway spruce (Picea abies (L.) Karst.) sample. (unit: mm).

In preparing the specimens, special care was taken to ensure that the wood fibres,
as well as the growth rings, were aligned as parallel as possible along the entire length
of the specimen. The samples were also visually inspected and sorted by their suitable
growth-ring alignment and frequency of occurrence in the wood. Prior to testing, the
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samples were stored for on month under normal conditions at 20 ◦C and 65% relative
humidity. To determine the density ρ of each sample, all samples were accurately weighed
and measured. The samples to be tested were then selected from our assortment.

2.2. Static and Fatigue Experiments

The static three-point bending tests were performed using a Zwick Z100 testing
machine (Zwick GmbH˛Co. KG, Ulm, Germany).

Although the machine can perform many types of tests, we focused on the three-point
bending to failure test for our wood specimens. The cylindrical supports were 30 mm
in diameter and 350 mm apart, which is 14 times the height of the tested specimens and
consistent with ISO 13061-4: 2014 [34], to determine the modulus of elasticity in a static
bending test. The load was applied from a cylindrical block of a similar size at the centre of
the specimen at a constant rate of 10 mm/min.

The bending tests were performed for two orientations of the wood: the tangential
and radial directions.

Two hours after completion of the tests, small pieces (25 × 25 × 20 mm3) of the samples
were cut to determine the moisture content in all tested samples by drying them in a Kambič SP-
210 laboratory dryer (Kambič d.o.o., Semič, Slovenia). The procedure followed the instructions
described in the standard ISO 13061-1: 2014 [35]. All measured samples had a moisture
content of approximately 11%. The values for the ultimate strength Sst and the modulus
of elasticity E were corrected for a 12% moisture content by considering the standards ISO
13061-3: 2014 [36] and ISO 13061-4: 2014 [34]. The results of the static three-point bending
tests are shown in Table 1.

Table 1. Specimen data with the results of the static three-point bending experiments.

Sample Number Loading
Direction Processing Lot Density

ρ [kg/m3]
Maximum Force

F [N]

Maximum
Bend. Stress

Sst [MPa]

Elastic
Modulus
E [MPa]

S2 Tangential Lot 1 540 3372.1 110.2 14,113.4
S22 Tangential Lot 1 540 3913.0 128.6 14,583.5
S21 Tangential Lot 1 536 3265.8 106.4 12,743.5
S4 Tangential Lot 1 509 3450.4 113.4 13,583.2

S14 Tangential Lot 1 505 2964.5 97.4 12,381.8
S32 Tangential Lot 1 500 2900.1 94.4 11,899.2
S11 Radial Lot 1 498 2545.5 83.2 11,051.5
S5 Tangential Lot 1 491 3284.4 105.2 12,879.9

S33 Radial Lot 1 489 2865.8 92.9 12,113.3
S3 Tangential Lot 1 488 3133.2 100.8 12,596.6

S34 Radial Lot 1 485 2952.2 95.3 12,981.6
S19 Tangential Lot 1 470 3036.2 99.4 11,412.1
S20 Tangential Lot 1 467 2997.2 98.1 11,180.5
S13 Radial Lot 1 464 2587.3 82.9 10,267.6
S24 Radial Lot 1 464 3002.3 97.3 11,860.6
S12 Tangential Lot 1 460 2977.1 96.5 12,155.0
S17 Radial Lot 1 454 2547.4 81.9 10,529.6
S25 Tangential Lot 1 446 2464.9 79.9 9908.6
S15 Tangential Lot 1 434 2637.8 86.2 10,226.3
S42 Tangential Lot 1 422 2548.9 82.7 10,028.9
S40 Tangential Lot 1 419 2536.4 82.3 9925.6
S35 Tangential Lot 1 356 2061.1 67.8 7445.9
S55 Tangential Lot 2 538 3259.7 112.4 14,714.4
S54 Tangential Lot 2 532 3579.9 124.6 15,168.1
S60 Tangential Lot 2 460 2355.9 80.9 9960.1
S46 Tangential Lot 2 455 2705.7 92.7 10,329.3
S57 Tangential Lot 2 432 2505.1 86.3 11,271.4
S56 Tangential Lot 2 432 2534.8 86.9 10,965.1
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Fatigue three-point bending tests were conducted on a self-developed, pneumatic,
fatigue test rig (Figure 2). The specimen is supported at the ends by two fixed cylindrical
elements with diameters of 30 mm with a separation of 350 mm.
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tem, consisting of a compressed-air preparation unit, a control unit, a digital air regulator, 
two valves and a cylinder, was used (Figure 2). The entire pneumatic system is designed 
for a maximum loading force of 3500 N at 7 bar. The whole structure of the test rig is 
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Figure 2. Main fatigue test rig’s components: 1. Cut-off switch, 2. Air preparation unit, 3. Digital
air regulator, 4. Two valves, 5. Programmable logic controller, 6. Main power switch (emergency
Stop), 7. Power supply 8. Pneumatic cylinder, 9. Load cell, 10. Cylindrical support, 11. Specimen, 12.
Aluminium frame, 13. Switches (Start-Stop).

To apply the cyclically pulsating load (dynamic load factor R = 0), a pneumatic system,
consisting of a compressed-air preparation unit, a control unit, a digital air regulator, two
valves and a cylinder, was used (Figure 2). The entire pneumatic system is designed for a
maximum loading force of 3500 N at 7 bar. The whole structure of the test rig is described
in detail in [37].

The fatigue frequency for the current setup is a 1 s load period followed by a 1 s
relaxation period. The fatigue-load data (bending stress amplitude) for each test specimen
are given in Table 2. The test was stopped after a pre-set limit for the number of load cycles
(2,500,000).
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Table 2. Specimen data with the results of the fatigue three-point bending experiments.

Sample Number Loading Direction Processing Lot Density
ρ [kg/m3]

Bend. Stress
Amplitude

S [MPa]

Cycles to
Failure
N [–]

Fatigue
Failure

S8 Tangential Lot 1 433 66.9 605 Yes
S29 Tangential Lot 1 402 60.6 614,365 Yes
S9 Tangential Lot 1 398 59.9 42,838 Yes

S59 Tangential Lot 2 492 60.8 49,716 Yes
S48 Tangential Lot 2 479 59.8 782,859 No
S47 Tangential Lot 2 442 59.6 2,420,000 No
S53 Tangential Lot 2 442 61.3 1,588,740 Yes
S58 Tangential Lot 2 440 61.3 2,502,096 No
S45 Tangential Lot 2 436 70.8 318,222 Yes
S50 Tangential Lot 2 435 71.4 108,990 Yes
S37 Tangential Lot 1 398 59.0 118,685 Yes
S27 Radial Lot 1 391 49.8 589,235 Yes
S39 Radial Lot 1 386 49.8 2,500,000 No

2.3. Theoretical Background of the Data Modelling

The basic idea, which was followed when modelling the fatigue-life curve and its
scatter for the wood, was to consider the differences between the wood specimens having
different density ρ values, processing lots and loading directions according to the growth
rings. It was observed during the experiments that these three parameters significantly
influence the fatigue behaviour of the specimens and can result in different fatigue-life
curves. See, for example, Figure 3.
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Figure 3. Fatigue-life curves with scatter for different densities of wood.

Each of the fatigue-life curves in Figure 3 can be modelled using the conditional
Weibull’s PDF f (N|S) from Equation (3) with the constant shape parameter β and the
load-dependent scale parameter η(S) following the inverse power-law from Equation (4).
To obtain a more universal model of the fatigue-life curves, the functional relationship
from Equation (4) is augmented with additional terms to obtain the following multivariate
linear-regression model:

log(η) = a0 + a1· log(S) + a2·ρ + a31·D1 + a32·D2 + . . . + a4·O; a0 > 0, a1 < 0 (5)
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Equation (5) is characterised by a universal intercept coefficient being equal to a0 and
a common slope a1 for every combination of the processing lot and density ρ. The term a2·ρ
considers the influence of the wood’s density on the intercept of a particular fatigue-life
curve. The wood mass density is an indicator of its dryness. The drier the wood, the lower
its mass density should be and the better its mechanical properties should be. Different
processing lots are identified through the dummy variables D1, D2, etc. Each dummy
variable is equal to 1 for the corresponding processing lot. Otherwise, it is equal to 0. Since
one processing lot is always used as a reference, the number of dummy variables is equal
to the number of processing lots minus one. There are many influencing factors that could
be hidden in the different production lots, such as the parameters of the machining process,
the origin and history of the logs, etc. In our case, all specimens were machined with the
same process parameters, but the other factors were not controlled. This is a common
occurrence in practice, as the end user usually does not have complete control over these
factors. For this reason, our goal was to assess how different production lots affect the
fatigue life. The binary dummy variable O represents the orientation of the force during the
three-point bending test according to the growth rings. The reference orientation (O = 0) is
the tangential loading direction. If the loading direction is radial, then O is equal to 1. In
our case there were two processing lots, so only one dummy variable D was used in the
model of the Weibull’s scale parameter η from Equation (5):

η = η(S, ρ, D, O) = 10a0+a1· log (S)+a2·ρ+a3·D+a4·O; a0 > 0, a1 < 0 (6)

The dummy variable D was equal to 0 for the processing lot 2 and equal to 1 for
the processing lot 1. The conditional Weibull’s PDF now has four conditional variables:
the loading level S, the wood’s density ρ, the processing-lot dummy variable D and the
loading-orientation dummy variable O. For this reason it is denoted by f (N|S,ρ,D,O). Its
shape parameter β is kept constant. This means that the fatigue-curve model for the spruce
specimens is determined using six parameters a0, a1, a2, a3, a4 and β, which need to be
determined from the experimental dataset. The sample set from the fatigue experiments is
made up of n data points S = {(Si,Ni,δi,ρi,Di,Oi); i = 1, . . . ,n} with the parameter δi being an
indicator of the fatigue failure as follows:

δi =

{
1; fatigue failure
0; run− out exp.

(7)

To properly estimate the six parameters a0, a1, a2, a3, a4 and β by considering the infor-
mation that is included in the censored data (i.e., the run-out experiments) the maximum-
log-likelihood cost function from Pascual and Meeker is applied [23]:

L(S|θ) =
n

∑
i=1
{δi· ln[ f (Ni|Si, ρi, Di, Oi,θ)] + (1− δi)· ln[1− F(Ni|Si, ρi, Di, Oi,θ)]} (8)

θ = (a0, a1, a2, a3, a4, β) (9)

F(N|S,ρ,D,O) is the cumulative probability function that corresponds to the Weibull’s
PDF f (N|S,ρ,D,O) with the scale parameter η defined in Equation (6):

F(N|S, ρ, D, O) = 1− exp

[
−
(

N
η(S, ρ, D, O)

)β
]

(10)

Due to the complex relationship between the cost-function value, the six model param-
eters and the dataset S, the maximising of the cost function L from Equation (8) was carried
out numerically. In our case, a real-valued genetic algorithm was applied for this purpose,
which combined the classic single-point crossover and linear crossover of chromosomes
during mating as well as a mutation-with-momentum method for mutating the chromo-
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somes. The details of this optimisation algorithm are given in Klemenc and Fajdiga [17]
and will not be repeated here.

3. Results and Discussion
3.1. Static Experiments

The statistical analyses in the continuation were based on the 28 experimental samples
in Table 1. They were all calculated with IBM SPSS statistical software. The Pearson’s
correlations between the three relevant scale variables (i.e., the spruce’s density ρ, the
maximum bending stress Smax,st and the elastic modulus E of the tested specimens) are
presented in Table 3 for the static experiments.

Table 3. Correlations between the density, the bending strength and the elastic modulus.

Wood Mass Density Max. Bending Stress Elastic Modulus

Wood mass density 1.000 0.843 0.900
Max. bending stress 0.843 1.000 0.938

Elastic modulus 0.900 0.938 1.000

All the correlations in Table 3 are two-tailed significant at the 0.01 significance level.
This indicates the strong dependence of the maximum bending force and the elastic modu-
lus on the spruce’s density. The influence of the two ordinal variables (i.e., the processing
lot and the loading orientation) on the maximum bending strength and the elastic modulus
were first checked with a series of two-way ANOVA analyses. For the processing lot, the
reference was lot 2 (D = 0) and for the loading direction, the reference orientation was the
tangential direction (O = 0). A summary of the results for the four ANOVA analyses is
presented in Table 4.

Table 4. Results of ANOVA analyses for the bending strength and the elastic modulus.

Analysis No. Independent
Variable

Dependent
Variable F-Statistics Significance

1 Processing lot Max. bend. stress 0.158 0.695
2 Loading direction Max. bend. stress 1.564 0.222
3 Processing lot Elastic modulus 0.283 0.599
4 Loading direction Elastic modulus 0.157 0.695

The homogeneity-of-variances tests for the four analyses in Table 4 were relatively
insignificant in all the cases. We can conclude that the processing lot has a relatively
insignificant influence on both the maximum bending stress and the elastic modulus. The
loading direction, on the other hand, has a more pronounced (yet not very significant)
influence on the maximum bending stress. Its influence on the spruce’s elastic modulus
is relatively insignificant. Based on the results from Tables 3 and 4, four linear-regression
models (LRMs) for the static material properties were set-up and compared:

Ŝmax,st = a0,st + a1,st·ρ + a2,st·O + a3,st·D (11)

Ŝmax,st = a0,st + a1,st·ρ + a2,st·O (12)

Ê = a0,st + a1,st·ρ + a2,st·O + a3,st·D (13)

Ê = a0,st + a1,st·ρ (14)

Table 5 has a summary for the four LRMs in Equations (11)–(14). To draw conclusions
about the applied LRMs, only the model’s quality and the significance of the individual
coefficients are meaningful. If the two LRMs from Equations (11) and (12) are compared, it
can be observed, based on the R and R2 parameters, that the two models are equivalent in
terms of the quality of predicting the spruce’s maximum static bending stress Sst. However,



Materials 2022, 15, 536 9 of 15

the adjusted R2 parameter is better when there are fewer independent variables (i.e., in
the LRM from Equation (12)) (the adjusted R2 parameter is an important estimate of the
goodness of fit, since it considers also the number of the regression parameters and a size
of the sample set beside the agreement of the predicted and measured data). This means
that the independent variable D (the processing lot) does not have a significant influence
on the maximum static bending stress. This is confirmed by the significance of the a3,st
coefficient in Table 4, which is very close to a value of 1.0 (totally insignificant influence of
the independent variable).

Table 5. Summary of the LRMs for the static properties of the spruce specimens.

Parameter LRM—Equation (11) LRM—Equation (12) LRM—Equation (13) LRM—Equation (14)

Correlation coefficient R 0.879 0.879 0.908 0.900
Coefficient of determination

R2 0.773 0.773 0.825 0.810

Adjusted R2 0.745 0.755 0.803 0.803
a0,st −32.474 −32.659 −5218.424 −5537.917

Significance of a0,st 0.043 0.035 0.005 0.002
a1,st 273.338 273.355 36413.254 36379.343

Significance of a1,st 0.000 0.000 0.000 0.000
a2,st −8.400 −8.467 −290.833 Not applicable

Significance of a2,st 0.021 0.014 0.446 Not applicable
a3,st −0.244 Not applicable −347.789 Not applicable

Significance of a3,st 0.943 Not applicable 0.363 Not applicable

A comparison of the LRMs from Equations (13) and (14) in Table 5 leads to the
conclusion that the independent variables O (the loading direction) and D (the processing
lot) do not have a significant influence on the elastic modulus E of the spruce. Despite
the fact that the R and R2 parameters for the LRM from Equation (13) are better when
compared to the LRM from Equation (14), the corresponding adjusted R2 parameters are
the same. As before, the relatively low influence of the O and D independent variables
for the elastic modulus is reflected in the low significance of the corresponding regression
coefficients a2,st and a3,st, which are both larger than 0.3. Moreover, the positive regression
coefficient a1,st in Equations (13) and (14) implies that the higher mass density leads to a
higher elastic modulus, which is consistent with the literature data [38,39].

3.2. Fatigue Experiments and S-N Curve Model with Scatter

The fatigue-life analyses were performed for the 13 experimental fatigue-life samples
in Table 2. To estimate a statistical significance for the different factors that influence the
fatigue durability of the spruce specimens, a linear-regression model for the dependent
variable log(N) (i.e., a logarithm of the number of load cycles to failure) was set up, which
resembles the functional form of Equation (5):

log(N) = a0 + a1· log(S) + a2·ρ + a3·D + a4·O; a0 > 0, a1 < 0 (15)

The parameters as well as the goodness of fit for the LRM in Equation (15) were
estimated with the IBM SPSS software. Table 6 has a summary of this LRM. To build this
LRM, only the nine samples corresponding to the fatigue-failure samples from Table 2
were considered.



Materials 2022, 15, 536 10 of 15

Table 6. Summary of the LRM for the fatigue life of the spruce specimens.

Parameter Goodness of Fit and LRM
Parameters

Significance of Regression
Coefficients

Corr. coeff. R 0.920 Not applicable
Coeff. of det. R2 0.847 Not applicable

Adjusted R2 0.694 Not applicable
a0 57.640 0.017
a1 −20.103 0.049
a2 −34.831 0.027
a3 −2.902 0.012
a4 −1.234 0.263

It can be concluded from the results in Table 6 that the logarithm of the loading level
log(S), the density ρ and the processing lot D significantly influence the spruce’s fatigue
durability. The influence of the loading direction O on the dynamic strength of the spruce
is less significant when compared to the static strength of the material (see also Table 5).
However, if this parameter is omitted from the LRM in Equation (15), the adjusted R2

parameter of the LRM would be reduced to the value of 0.652 and the significance of the
other four regression coefficients would not improve to any extent. This means that the
loading direction parameter O should also be considered when setting up the S-N curve
with scatter model. In contrast to the static characteristics of the material (Table 5), the
processing lot D has a significant influence on the fatigue-life data.

The S-N curve with scatter was then modelled with a conditional Weibull’s PDF from
Equation (3) with the constant shape parameter b and the variable scale parameter h, which
depends on the four independent variables log(S), ρ, D and O according to Equation (6).
The parameters of this model were estimated using the procedure from Section 2.3. To
obtain the best values possible for the six model parameters a0, a1, a2, a3, a4, β and all the
13 samples in Table 2, ten repetitions of the genetic algorithm were applied with different
randomly chosen initial conditions. In each repetition 200,000 iterations of the genetic
algorithm were run to ensure convergence to the optimal solution. Our own developed
C++ code was used for this purpose. The set-up of the genetic algorithm and the estimated
optimal values for the six parameters a0, a1, a2, a3, a4 and β are listed in Table 7.

Table 7. Summary of the LRM for the fatigue life of the spruce specimens.

Parameter for GA Settings Value

Population size 20
Probability of cross-over 0.6

Fraction of linear cross-over 0.5
Probability of mutation 0.05

Moment weight 1.0
Moment threshold 1.0

Estimated parameters Best solution Average value Std. deviation

Final value of the cost function −121.147 −121.917 0.566
a0 71.879 65.404 12.910
a1 −27.441 −25.084 5.402
a2 −36.071 −31.173 8.692
a3 −3.169 −2.867 0.518
a4 −1.693 −1.420 0.632
β 1.043 0.988 0.048

In all the repetitions of the genetic algorithm, the final value of the cost function
deviated by less than 2% from the maximum value of the cost function for the best solution.
Such a consistency of the optimisation processes means that the best solution is near to the
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global maximum of the cost function in Equation (8). The average value and the standard
deviation for the ten repetitions are also listed in Table 7.

If the values for the parameters a0, a1, a2, a3 and a4 in Table 7 are compared to the
parameters in Table 6, it can be concluded that the model of the fatigue-life curve with its
scatter is consistent with the LRM from Table 6. All the coefficients are of a comparable
order of magnitude and have the same signs. However, the four run-out samples from
Table 2 caused a lower value of the slope parameter a1 for the model of the fatigue-life
curve with scatter. Consequently, the intercept parameter a0 and the other parameters that
position the individual fatigue-life curves in the log(S)-log(N) space should be different.
That is why the absolute values of the four coefficients a0, a2, a3 and a4 in Table 7 are
consistently larger than in Table 6.

If the data in Table 2 are grouped, it can be concluded that there are two groups
of data related to the processing lot D, two groups related to the loading orientation O
and approximately three groups of data related to the wood’s density ρ (i.e., ρ = 400, 440,
485 kg/m3). In the continuation, the fatigue-life curves for the different probabilities of
fatigue failures are presented in three figures together with the corresponding experimental
data points:

• Figure 4: Fatigue-life curves with scatter for the processing lot 2 (D = 0), densities
ρ = 440 and 485 kg/m3 and the tangential loading direction (O = 0):

• Figure 5: Fatigue-life curves with scatter for the processing lot 1 (D = 1), densities
ρ = 400 and 440 kg/m3 and the tangential loading direction (O = 0);

• Figure 6: Fatigue-life curves with scatter for the processing lot 1 (D = 1), density
ρ = 400 kg/m3 and the radial loading direction (O = 1).
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In Figures 4–6 the dependencies of the maximum stress in the loading cycle Smax (i.e.,
the loading level) vs. the corresponding number of load cycles to failure N are presented. If
the diagrams in these figures are analysed, it can be concluded that the presented model for
the fatigue-life curve and their scatter models the experimental data well. In all the figures
the experimentally determined data points lie within the scatter band between 10% and
90% probability of failure. This means the comprehensive fatigue-life curve model can also
be applied for the case of the radial loading direction even though it is better fitted to the
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experimental data for the tangential loading direction, which represent more than 80% of
the experimental samples. It can be concluded from Tables 6 and 7, Figures 5 and 6 that a
higher density lowers the fatigue-life strength of the spruce, regardless of the processing lot.
Such a result is to be expected according to the literature [9,40], since drier wood with lower
mass density has higher specific gravity and better mechanical properties. This means that
the main influence of mass density on fatigue life of wood was correctly estimated, despite
a relatively small amount of experimental data. It can also be concluded from Table 6 and
Figures 5 and 6 that the fatigue life of the wood depends on the production lot. Such a
result was also expected because the origin of the logs from which the specimens in the
two production batches were made was not known. The influence of the loading direction
is not significant, which is in agreement with the data in the literature. At a stress level less
than half the ultimate bending strength, the test specimens should withstand more than
one million loading cycles, which is in accordance with the data in the literature [11].

On the other hand, if the density ρ, the processing lot D and the loading direction
O were not considered in the fatigue-life curve model and only the slope and intercept
parameters a1 and a0 were considered in Equation (6), the scatter of the fatigue life curves
would be enormous (see Figure 7). The parameters a0 = 17.975, a1 = −6.740 and β = 0.554 in
this case are wrongly estimated (see a comparison with Table 6 or Table 7), because their
estimation is made for the whole sample set, without considering the special features of
the individual groups of data. It is obvious from Figure 7 that the slope of the fatigue-life
curves is too steep, and the scatter is large due to the relatively small value of the Weibull’s
shape parameter β. This means that it is important that the spruce’s characteristics, like
density, processing lot and orientation of the load, with respect to the growth rings are
considered when modelling the wood’s strength.

Materials 2022, 15, x FOR PEER REVIEW 13 of 15 
 

 

more than 80% of the experimental samples. It can be concluded from Tables 6 and 7, 
Figures 5 and 6 that a higher density lowers the fatigue-life strength of the spruce, regard-
less of the processing lot. Such a result is to be expected according to the literature [9,40], 
since drier wood with lower mass density has higher specific gravity and better mechan-
ical properties. This means that the main influence of mass density on fatigue life of wood 
was correctly estimated, despite a relatively small amount of experimental data. It can 
also be concluded from Table 6 and Figures 5 and 6 that the fatigue life of the wood de-
pends on the production lot. Such a result was also expected because the origin of the logs 
from which the specimens in the two production batches were made was not known. The 
influence of the loading direction is not significant, which is in agreement with the data 
in the literature. At a stress level less than half the ultimate bending strength, the test 
specimens should withstand more than one million loading cycles, which is in accordance 
with the data in the literature [11].  

On the other hand, if the density ߩ, the processing lot D and the loading direction O 
were not considered in the fatigue-life curve model and only the slope and intercept pa-
rameters a1 and a0 were considered in Equation (6), the scatter of the fatigue life curves 
would be enormous (see Figure 7). The parameters a0 = 17.975, a1 = −6.740 and β = 0.554 in 
this case are wrongly estimated (see a comparison with Table 6 or Table 7), because their 
estimation is made for the whole sample set, without considering the special features of 
the individual groups of data. It is obvious from Figure 7 that the slope of the fatigue-life 
curves is too steep, and the scatter is large due to the relatively small value of the Weibull’s 
shape parameter β. This means that it is important that the spruce’s characteristics, like 
density, processing lot and orientation of the load, with respect to the growth rings are 
considered when modelling the wood’s strength. 

 
Figure 7. Fatigue-life curves for the summarised data. 

4. Conclusions 
From the experimental data and the corresponding statistical analyses, it can be con-

cluded that the density of the spruce improves the static bending strength but reduces the 
fatigue strength. For the static strength, the processing lot is insignificant, although it 

Figure 7. Fatigue-life curves for the summarised data.

4. Conclusions

From the experimental data and the corresponding statistical analyses, it can be
concluded that the density of the spruce improves the static bending strength but reduces
the fatigue strength. For the static strength, the processing lot is insignificant, although
it strongly influences the fatigue resistance of the spruce. Generally, the radial loading
direction is more detrimental to the static and fatigue strength than the tangential loading
direction, mainly due to delamination effects.
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Based on a statistical analysis of the static and the fatigue-life experiments, an aug-
mented model for the fatigue-life curves and their scatter was set-up and validated for the
case of bending specimens made of spruce. In the augmented model, the inverse power-law
dependency between the loading level S and the number of load cycles to failure N is
supplemented with the effects of the wood’s density, the processing lot and the orientation
of the load. The presented model matches the fatigue-life experimental results. It yields a
much better fatigue-life prediction than the usual inverse power-law model, which does
not consider the special properties of the material and/or the processing history. The main
conclusion of this study is that dried wood with the superior specific gravity should be
used for demanding building applications where the wood is subjected to fatigue loading.
In addition, engineers should be aware that the mechanical properties of the same species
of timber, but from different production lots, can vary significantly.
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