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Abstract

Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking
dynamics of neural networks changes with stimuli, tasks or dynamic network states. How-
ever, neurophysiological studies in vivo often rather measure the mass activity of neuronal
microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially
separated currents across the neuronal membrane, they cannot be computed directly from
quantities defined in models of point-like LIF neurons. Here, we explore the best approxima-
tion for predicting the LFP based on standard output from point-neuron LIF networks. To
search for this best “LFP proxy”, we compared LFP predictions from candidate proxies
based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with
“ground-truth” LFP obtained when the LIF network synaptic input currents were injected into
an analogous three-dimensional (3D) network model of multi-compartmental neurons with
realistic morphology, spatial distributions of somata and synapses. We found that a specific
fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy,
accounting for most of the variance of the LFP time course observed in the 3D network for
all recording locations. This proxy performed well over a broad set of conditions, including
substantial variations of the neuronal morphologies. Our results provide a simple formula
for estimating the time course of the LFP from LIF network simulations in cases where a sin-
gle pyramidal population dominates the LFP generation, and thereby facilitate quantitative
comparison between computational models and experimental LFP recordings in vivo.
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Author Summary

Leaky integrate-and-fire (LIF) networks are often used to model neural network activity.
The spike trains they produce, however, cannot be directly compared to the local field
potentials (LFPs) that are measured by low-pass filtering the potential recorded from
extracellular electrodes. This is because LFPs are generated by neurons with spatial exten-
sions, while LIF networks typically consist of point neurons. In order to still be able to
approximately predict LFPs from LIF network simulations, we here explore simple proxies
for computing LFPs based on standard output from LIF network simulations. Predictions
from the various LFP proxies were compared with “ground-truth” LFPs computed by
means of well-established volume conduction theory where synaptic currents correspond-
ing to the LIF network simulation were injected into populations of multi-compartmental
neurons with realistic morphologies. We found that a simple weighted sum of the LIF syn-
aptic currents with a single universally applicable set of weights excellently capture the
time course of the LFP signal when the LFP predominantly is generated by a single popula-
tion of pyramidal cells. Our study therefore provides a simple formula by which the LFP
signal can be estimated directly from the LIF network activity, providing a missing quanti-
tative link between simple neural models and LFP measures in vivo.

Introduction

Models of recurrently connected networks of leaky integrate-and-fire (LIF) neurons are well
established tools for studying brain function [1,2]. The equations describing the single LIF neu-
ron are simple and can be easily adapted to generate complex dynamics [3,4]. Despite their
simplicity, LIF network models have proved able to describe a wide spectrum of different corti-
cal dynamics and cortical functions, from the emergence of up and down states [5-7], working
memory [8-10], attention [11,12], decision making [13], rhythmogenesis [14], and sensory
information coding [11,15,16]. In some cases it is possible to describe the dynamics of LIF net-
works analytically [17,18], thus providing deeper insights into how spiking neuronal networks
may implement the basic cerebral computational mechanisms [19].

Models can only be properly tested against experimental evidence when they can predict
empirical measures quantitatively. Local cortical activity is often recorded in vivo or in vitro
using the local field potential (LFP), a measure obtained by low-pass filtering (below a few hun-
dred hertz) the electrical potential recorded from extracellular electrodes. The LFP signal
reflects mass neural activity arising within a few hundred micrometers or more from the
recording electrode [20-25]. This spatial scale is highly relevant for LIF network models, which
typically aim to describe the activity of thousands or tens of thousands of cells. The recording
of LFPs has a prominent role in systems neuroscience, and such recordings have been used
extensively to investigate cortical network mechanisms involved in sensory processing [26],
motor planning [27], and higher cognitive processes [28].

LFP is generated by transmembrane currents in the neurons in the vicinity of the recording
electrode [23] and depends on morphological features of the contributing cells, the positioning
of synapses, as well as the correlation level of synaptic inputs [20,21,29,30]. Under reasonable
assumptions about the extracellular milieu the cellular LFP contributions can be computed as a
weighted sum of the transmembrane currents in multi-compartment neuron models [31-34].
This allows for detailed numerical investigations of spatial, as well as spectral features of the
LFP signals [35]. In particular, such simulations of large populations of morphologically
detailed neurons have provided insight into how the neuronal activity at the population level
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influences the spatial reach and laminar variation of the LFP signal in vivo [20,21,33,34,36] the
relative importance of active and passive currents [37], and the population LFP signal mea-
sured from cortical slices in microelectrode arrays (MEAs) [38,39].

However, it has been unclear how best to use LIF networks to model and provide under-
standing of LFP recordings. This is because extracellular potentials arise in biological tissue due
to a spatial separation of inward (sinks) and outward (sources) transmembrane currents of the
neurons, and neuron models used to compute an LFP signal must thus have a minimum of two
spatially separated compartments in order to generate a potential [32]. In LIF models, however,
a single compartment is typically used as an approximation of the entire neuron, including the
spatially extended dendritic structure, and individual cells within a population are not assigned
to a specific spatial position.

One possible way to compute LFPs from LIF network is to project the spike times generated
by the LIF network under consideration onto morphologically detailed 3D neuron models and
then compute the field that the currents flowing through these 3D networks generate. How-
ever, this approach would require the modeler to set up a cumbersome and computationally
expensive network model based on multi-compartment model neuron. As a much simpler
alternative, we here instead search for a general and easy-to-use proxy to predict the time
course of the LFP based on variables available directly from the LIF network simulations. Here
we investigate and evaluate different strategies to compute an LFP proxy directly from the out-
put of standard LIF network simulations without the use of multi-compartment neuronal
morphologies.

Our approach is as follows: we first simulate an LIF point-neuron network model and
record the output spiking activity, membrane potentials, and synaptic currents. Next, we com-
pute a realistic ground-truth estimate of the LFP that the same LIF network activity would gen-
erate. We do this by injecting distributed synaptic currents corresponding to the stored LIF
synaptic events, onto a population of multi-compartment neurons with realistic distributions
of dendrites and synapses (we call this population the “3D network”). We then compare this
simulated ground-truth LFP signal to a number of LFP proxies computed directly from mea-
sures of activity of the point-neuron LIF network. These proxies include those previously pro-
posed in the literature (e.g., the average firing rate [11,14,40], the average membrane potential
[24,41-44], the sum of synaptic currents [7,45], and the sum of absolute values of synaptic cur-
rents [15]), as well as others proposed here. By separating the spiking dynamics generated by
the LIF network from the LFP generated by the 3D network, we are also able to investigate how
different assumptions regarding cell morphology, synaptic distributions and recording posi-
tions influence the accuracy of the different LEP proxies.

We find that a simple linear combination of excitatory (AMPA) and inhibitory (GABA)
synaptic currents extracted from the point-neuron LIF network provides a proxy for the LFP
that closely matches the temporal features of the signals resulting from the morphologically
realistic LFP model generated by the 3D network. Even with a small set of fixed parameters this
LFP proxy is able to account for the LFP signal with a high degree of precision under most
investigated conditions.

Results
A morphological model for a cortical LIF network

Our goal was to understand how to compute a simple yet accurate approximation (denoted as
“proxy” in the following) of the LFP that would be generated by the time series of synaptic
activity of an LIF network if its neurons had a realistic spatial structure and arrangement. We
therefore first simulated an LIF network (known to reproduce several features of cortical
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dynamics). Next, we injected the synaptic activity it generated into a synthetic three-dimen-
sional network model (3D network) of a layer of a cortical column that employed multi-com-
partmental neurons with realistic morphology, spatial distributions of somata and synapses,
and computed the extracellular potentials generated by this synaptic activity.

We selected an LIF network (adapted from [14] and refined in [15,16,46,47]) that has been
shown to reproduce a number of important features of the dynamics of visual primary cortical
neural population recorded in vivo during naturalistic sensory stimulation, including a realistic
spectrum of cortical dynamics and of its modulation with the visual stimuli, including low-fre-
quency (1-12 Hz) and gamma (50-100 Hz) oscillations [15,46]. Moreover, when using a sim-
ple proxy (which is demonstrated below to perform well) to compute an LFP from synaptic
currents, this LIF network reproduced quantitatively several important properties of recorded
extracellular potentials, including LFP power spectra and spectral information content [15],
and cross-frequency and spike-field relationships [16,46]. Thus, the LIF network seemed to
generate a sufficiently realistic dynamics to provide synaptic input for the generation of biolog-
ically plausible LEPs in the 3D network.

The LIF network model (Fig 1A) was composed of 4000 excitatory and 1000 inhibitory LIF
neurons that were randomly connected with a pair-wise connection probability of 0.2 (for fur-
ther details see Methods). The LIF network received two kinds of external inputs: a “thalamic”
synaptic input thought to carry the information about the external stimuli and a stimulus-
unrelated input representing slow ongoing fluctuations of activity. Synaptic dynamics and
parameters are reported in Tables 1 and 2, and further details can be found in the Methods.
Importantly, as is the case for most LIF network models to date, our LIF network did not have
any spatial structure: the individual neurons were not assigned to a specific spatial position and
consequently the connectivity had a random and sparse structure.

The LFP signal that would result from the time series of spikes generated by the LIF network
provided the postsynaptic neurons had biologically plausible dendritic structures, was com-
puted by injecting the LIF synaptic activity into a 3D network of morphologically detailed
multi-compartmental model neurons (Fig 1B, see Methods). A summary of the properties of
the 3D network is reported in Table 3, while the synaptic parameters are listed in Table 4 (see
Methods for further details). In order to set up the 3D network we were required to make addi-
tional assumptions regarding the spatial positioning of cells, the shape and size of their den-
dritic structures, as well as the synaptic distributions. We focused on computing the LFP
generated by one cortical layer (in terms of soma positions) that comprised both inhibitory
and excitatory neurons. In our default setting, we assumed all neurons in the 3D network to be
inside two cylinders with 250 pm radius and 250 um height that were stacked one above the
other to resemble the vertical structure of layer 2/3 (Fig 1B). Note that this spatial scale is simi-
lar to the size of the neuronal pool contributing to the recorded LFP, the so-called spatial reach,
in the case of uncorrelated synaptic activity driving a neuronal population [20,21,35], and
resulted in a neuronal density consistent with known estimates of 50000 neurons per mm” in
the cortex [48]. While our two model populations most directly resemble a pair of excitatory
and inhibitory populations in cortical L2/3, we show in subsection “Dependency of the LFP sig-
nal on dendritic morphology” that our results also pertain to the LFP generated by neuron
morphologies found in other cortical layers.

Given these geometrical constraints, we created the multi-compartmental cell models in the
3D network in the following way: soma locations for all cells were homogeneously distributed
within the lower cylinder (Fig 1B). Next, we placed artificial straight axons that were distrib-
uted at random cortical depths and random orientations within both cylinders. They served as
targets in an algorithmic generation of dendrites, through which pyramidal cell dendrites were
connected to all axons within a specified reach distance while optimizing the following wiring
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Fig 1. LIF network and 3D morphological network. (A) Sketch of the leaky integrate-and-fire (LIF) network. A population of 1000 interneurons with GABA
synapses (blue) and a population of 4000 pyramidal neurons with AMPA synapses (red) receive recurrent inputs (random connectivity with 20% probability)
and two kinds of external inputs: global ongoing cortical activity (Ornstein-Uhlenbeck process) and a regular thalamic stimulation. (B) Sketch of the
morphological 3D network made of two stacked cylinders with 250 ym radius and 250 um height. A representative interneuron and pyramidal cell are
depicted. Interneuron dendrites remain in the lower cylinder while the pyramidal neuron dendrites reach out to the upper cylinder. Dendrites in the lower
cylinder receive both AMPA and GABA synapses while dendrites in the upper cylinder receive only AMPA synapses. (C) Graphical rendering of a subset of
the 3D network composed of 10 interneurons and 40 pyramidal neurons. (D) Raster plot of the spiking activity of the 10 interneurons (blue, top) and the 40
pyramidal neurons (red, bottom) with the highest spiking activity in the LIF network, for a thalamic stimulation of 1.5 spikes/ms. (E) Depth-resolved LFP signal
as simulated by injecting the spikes generated by the whole network during thalamic stimulation of 1.5 spikes/ms into the 3D network. Black lines show LFP
for 100 and -100 um depth.

doi:10.1371/journal.pcbi.1004584.9001

conditions: short conductions times, short total cable length and synaptic democracy (i.e.,
equal impact of synaptic inputs at the site of dendritic integration [49,50]). This procedure has
been shown previously to reproduce pyramidal-cell-like dendrites [51]. The number of axons
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Table 1. Summary of leaky integrate-and-fire (LIF) network model.

A-Leaky integrate and fire model summary

Populations
Topology
Connectivity
Neuron model
Synapse model
Plasticity

Input
Measurements
B—Populations
Type
Interneurons (GABA synapses)
Pyramidal neurons (AMPA synapses)
C—Connectivity
Name

AMPA _cor-Pyr
AMPA_cor-Inter
GABA-Pyr
GABA-Inter
AMPA_th-Pyr
AMPA_th-Inter
D- Neuron
Type
Description

E-Synapse

Type
Description

F-Input
Type

Poisson
Poisson

G—Measurements (for each population)
Type

Firing rate

AMPA

GABA

Vim

b

2|

Weighted Sum (WS)

Reference Weighted Sum (RWS)

doi:10.1371/journal.pcbi.1004584.t001

excitatory, inhibitory

Random and sparse

Leaky integrate and fire, fixed threshold, fixed refractory time

Difference of exponential functions defined by rise and decay time.Current-based synapses.
Sum of independent Poisson processes with same time-varying rate for all neurons

For each population: firing rate, GABA and AMPA currents, membrane potential

Elements

LIF neurons

LIF neurons

Source Target Pattern

Pyramidal Pyramidal dir. conn. pyc weight: Jampa_cor/pyr
Pyramidal Interneuron dir. conn. pgc Weight: Jampa_corinter
Interneuron Pyramidal dir. conn. pyc weight: Jgasa/pyr
Interneuron Interneuron dir. conn. pgc Weight: Jeasavinter
External Pyramidal Uniform, Jampa_th/pyr

External Interneuron Uniform, Jaaga_thpyr

Leaky integrate and fire
Subthreshold dynamics: 7,,V/,,(t) = —V,,(t) + > PSC,,,(t)
If Vi>Vir & t>t*+Trefractory

{t* = t; spike emitted with time stamp t*; Vi, = Vieset}

Current synapse
TaynP SC(t) = —PSC(t) + x(t)
Trsyn X(t) = _X(t) + Tm (sznzé(t - tsyn - TI))

syn

Description

“Thalamic”: time-constant input with rate A.

“Long range cortico-cortical”: Ornstein Uhnlenbeck process (OU) with zero mean
1,0U= —0U + ¢(2t,)W

where W is a white noise process with zero mean

Description

Sum of spikes

Sum of AMPA PSCs (cortical and thalamic)

Sum of GABA PSCs

Mean of membrane potential

Sum of AMPA and GABA PSCs. Note that AMPA and GABA have opposite signs.
Sum of absolute values of AMPA and GABA PSCs.

[ZAMPA(t ~ Tapa) — Y GABA(t - TGABA)]

pyr pyr

[ZAMPA(t —6ms) — 1.65 (ZGABA(t))]

pyr pyr
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Table 2. Parameters for the two cell types used in the LIF network model.

Leaky integrate and fire model parameters Pyramidal neurons Interneurons
Population

Size 4000 1000
Connectivity

Pdc 0.2 0.2
Neuron

Vinr (MV) 18 18
Vieset(mV) 11 11
Ty (MS) 20 10
Trotractory (MS) 2 1
Synapse

T,GaBa (MS) 0.25 0.25
TaGABA (MS) 5 5
Tanmpa (MS) 0.4 0.2
Tgampa (MS) 2 2
Jeasa (MV) -1.7 2.7
Jampa—cort- (MV) 0.42 0.7
Javpa-tn (MV) 0.55 0.95
Inputs

Thalamic input (spikes/ms) [0.5:0.5:3, 6] [0.5:0.5:3, 6]
OU 1, (ms) 16 16
OU o(mV) 0.25 0.25

doi:10.1371/journal.pcbi.1004584.t002

and their length were set so that the resulting cell morphologies matched the membrane surface
distribution of real cortical layer 2/3 pyramidal cell reconstructions [52] within the constraints
of the simplified columnar arrangement that was chosen for this study. This procedure also
provided good matches for total cable lengths and number of branch points (compare mem-
brane surface distribution in S1 Fig and see Methods for more details). Note that the virtual
axons used for the generation of the morphologies were subsequently discarded. Since the
membrane area (and consequently the transmembrane current) of the axons is very small com-
pared to the dendrites, we expected them to have a negligible contribution to the present 3D
network LFP generation.

Stellate cell dendrites were generated in a similar manner, but were only connected to axons
in the lower cylinder. This resulted in stellate cell morphologies with realistic bush-like den-
drites. Fig 1C illustrates the overall structure of the resulting 3D network.

To further validate the simulation results obtained with these morphologies, we also built
an alternative 3D network with anatomically reconstructed morphologies (see Methods) and
checked that the results were essentially the same as for algorithmically grown morphologies
(see subsection “Performance of LFP proxies in different dynamic network states”).

Finally, AMPA synapses were homogeneously distributed over the whole neuronal surface
while GABA synapses were located only in the lower cylinder, closer to the soma (Fig 1B, see
Methods for details). Alternative synaptic distributions are explored in the “Dependency of the
LFP signal on the distribution of synapses” subsection.

For each neuron in the LIF network we randomly assigned a multi-compartmental neuron
model with a unique dendritic structure in the 3D network. The connectivity of the LIF net-
work determined which postsynaptic spikes in the LIF network simulation should serve as
input spikes for each multi-compartment neuron. We then used these spike times together

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004584 December 14,2015 7/38
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Table 3. Summary of 3D network model of multi-compartmental neurons.

A- 3D morphological network model summary

Populations
Neuron
Connectivity
Synapse model

Input
Measurements
B—Populations
Type

Geometry

Cell positions

Parameters
C—Connectivity

Populations of pyramidal cells and interneurons
Passive multi-compartment neuron models

Bi-exponential functions defined by rise and decay time.Current-based synapses in
all analysis except Fig 10 (conductance-based synapses)

Synaptic input identical to the LIF neurons in the network model (Table 1)
Model LFP signal, dipole moment

Populations of N pyramidal neurons and N; interneurons
Two cylinders with radius R separated in depth by distance d

Random soma positions within the lower cylinder, dendrites extending both
cylinders

Ne, N;, R, d

No network connectivity, but synaptic inputs derived from LIF network connectivity (Table 1)

D-Neuron
Type
Morphology

Neuron dynamics
Compartments

Parameters
E-Synapse
Type

Description

Type
Description

Parameters
F—Input
Type
Thalamic

Long-range cortico-
cortical

Recurrent excitatory
inputs

Recurrent inhibitory
inputs

Multi-compartmental models with unique dendritic morphologies

Generated uniquely for each cell from distribution of synaptic contacts with axons
from presynaptic cells (see Methods). For pyramidal cells synaptic contacts are
distributed in both cylinders while interneurons make synaptic contacts only in
lower cylinder.

Non-spiking neurons with passive membrane with specific membrane resistance
Rp,, pyrint: SPEcific axial resistance R,, and specific membrane capacitance C,

Length of each compartment during simulation set to be shorter than the
electrotonic length at 100Hz.

Rm, pyr/ints Rav Crn

Bi-exponential current synapse (everywhere but Fig 10)
An incoming spike at t_syn elicits a postsynaptic current (PSC) for times t>t_syn:

PSC(t) = J,,,A {exp (’if,%f,j”)) —exp (’%:y”))] where A is a normalization factor to
give a peak current Jgyn
Bi-exponential conductance synapse (Fig 10)

An incoming spike at ts,, elicits a postsynaptic current (PSC) for times t>t_syn:

PSC(t) = G(V(t) — E

syn

)A {exp (y) —exp (M)} where A is a normalization
ecay

factor to give a peak conductance G
Trise, Tdecay, Jsyn, Gi Esyn fOr €ach connection type

Description
Time-constant rate r.,. as defined in the LIF network
Ornstein-Uhlenbeck process with rate .

Recreated using the connectivity combined with the output spike trains in the LIF
network and the output spikes from the excitatory LIF network population.

Recreated using the connectivity combined with the output spike trains in the LIF
network and the output spikes from the inhibitory LIF network population.

Parameters Fexcs Iec
G-Measurements
Model LFP
(Continued)
PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004584 December 14,2015 8/38
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Table 3. (Continued)

Type Extracellular field potentials calculated using the line-source method [31] as
implemented in the LFPy toolbox [34].

Assumptions Extracellular medium assumed to be purely resistive (non-capacitive, infinite
volume) with extracellular conductivity 0zong-

Electrode placement Ideal point-electrode (no filtering) placed in the center of the population at different
electrode depths zg/ec

Parameters Ocond) Zelec
Dipole moment

Type Current dipole moment d, along the z-direction computed for each point in time by a
weighted sum of transmembrane currents: d,(t) = 3; z/i(t)

where /; is the transmembrane current in compartment i located at position z.

doi:10.1371/journal.pcbi.1004584.t003

with the external input (see above) to activate synaptic currents in the 3D network (see Meth-
ods). In this way we assured that the synaptic input in a multi-compartment neuron was identi-
cal to its LIF neuron counterpart. The synaptic dynamics in the 3D network was identical to
that in the LIF network. In a subsequent step, we took into account all transmembrane currents
in the neurons of the 3D network to compute the LFP by means of well-established volume
conduction theory and the so called line-source method [31,34] (see Methods).

Spatial distribution of simulated LFP signal

Fig 1 shows a half-second excerpt of results for an example simulation using the spiking activity
generated by the LIF network (Fig 1D) in response to a 1.5 spikes/ms stimulus (see Methods
for details) to calculate the corresponding LFP signal along the vertical axis of the cylinder at
different electrode depths from the 3D network (Fig 1E). The temporal fluctuations of the LIF
signal were strongly correlated across depth, albeit with a sign shift around the depth just
between the two cylinders (which we from now on will refer to as the inversion point). The
sign of the baseline (DC) LFP was negative above the inversion point while it was positive
below it. This reflects that the LFP was dominated by the perisomatic inhibitory synapses gen-
erating a net source current close to the soma and sink return currents in the apical branches.
The excitatory synapses contributed less due to their homogeneous distribution (Fig 1B), giving
only a weak current dipole [29], as will be discussed in more detail in the next sections.

We defined the amplitude of LFP fluctuations at each depth as the standard deviation of the
signal over time, and further assigned it the same sign as the LFP baseline, i.e., negative/positive
above/below the inversion point. The magnitude of the LFP amplitude was largest around the
middle of each cylinder (Fig 2A), decreased steeply close to the inversion point and more
smoothly beyond the vertical boundaries of the network. The decrease of the amplitude of the
LFP fluctuations when the electrode was moved away from the center of the 3D network is
shown in Fig 2B for all depths. This decrease in LFP power was consistent with results of [20]:
inside the 3D network (X/R < 1, where X is the displacement of the electrode from the center
and R is the radius of the cylinder) differences were small, but when the electrode was placed
outside the 3D network (X/R > 1) the decrease was steep. Note that the region around the
inversion point where the potential is very small, broadened with the distance from the center.

We observed that all power spectra recorded outside this noise-dominated region had simi-
lar shapes (Fig 2C and 2D), suggesting that LEP fluctuations could be roughly approximated by
the same time series rescaled by the numerical value of the LFP amplitude shown in Fig 2B.
The observation that LFPs recorded in different spatial positions had similar temporal behavior
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Table 4. Parameter values for the 3D network model of multi-compartmental neurons.

A—Population
Name Description Value
Ne Number of pyramidal neurons 4000
N; Number of interneurons 1000
R Population radius 250 ym
D Distance between cylinders used when generating 0-500 pm
morphologies
B—Neuron
Name Description Value
R, pyr Specific membrane resistance, pyramidal cells 30 kQcm?
BrNint Specific membrane resistance, interneurons 20 kQcm?
R, Specific axial resistance 150 Qcm
Cm Specific membrane capacitance 1.0 uF/cm?
C-Synapse
Excitatory, pyramidal cells ->pyramidal cells
Name Description Value
e Synaptic rise time constant 0.4 ms
Tdecay Synaptic decay time constant 2ms
Jsyn Synaptic weight (current based) 0.070 nA
G Synaptic weight (conductance based) 0.014 uS
o Synaptic reversal potential (conductance based) omV
Excitatory, thalamic ->pyramidal cells
Description Description Value
T Synaptic rise time constant 0.4 ms
Tdecay Synaptic decay time constant 2ms
Jsyn Synaptic weight (current based) 0.091 nA
G Synaptic weight (conductance based) 0.0027 uS
Esyn Synaptic reversal potential (conductance based) 0mV
Excitatory, external cortical -> pyramidal cells
Name Description Value
e Synaptic rise time constant 0.4 ms
ey Synaptic decay time constant 2ms
Jsyn Synaptic weight (current based) 0.070 nA
G Synaptic weight (conductance based) 0.014 uS
Esyn Synaptic reversal potential (conductance based) omV
Inhibitory, interneurons ->pyramidal cells
Name Description Value
T Synaptic rise time constant 0.25 ms
Tdecay Synaptic decay time constant 5ms
Jsyn Synaptic weight (current based) -0.145 nA
G Synaptic weight (conductance based) 0.0057uS
Esyn Synaptic reversal potential (conductance based) -90 mV
Excitatory, pyramidal cells ->interneurons
Name Description Value
s Synaptic rise time constant 0.2 ms
Tdecay Synaptic decay time constant 1ms
Jsyn Synaptic weight (current based) 0.093 nA
G Synaptic weight (conductance based) 0.0023 uS
(Continued)
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Table 4. (Continued)

Esyn

Synaptic reversal potential (conductance based)

Excitatory, thalamic ->interneurons

Name
Trise
Tdecay
Jsyn

G

Esyn

Description

Synaptic rise time constant

Synaptic decay time constant

Synaptic weight (current based)

Synaptic weight (conductance based)

Synaptic reversal potential (conductance based)

Excitatory, external cortical ->interneurons

Name
Trise
Tdecay
J, syn

G

Esyn

Description

Synaptic rise time constant

Synaptic decay time constant

Synaptic weight (current based)

Synaptic weight (conductance based)

Synaptic reversal potential (conductance based)

Inhibitory, interneurons ->interneurons

Name
Trise
Tdecay
szn

G

Esyn

Description

Synaptic rise time constant

Synaptic decay time constant

Synaptic weight (current based)

Synaptic weight (conductance based)

Synaptic reversal potential (conductance based)

D-Measurements

Model LFP
Name
Ocond

Zelec

Description
Extracellular conductivity
Electrode depth

doi:10.1371/journal.pcbi.1004584.t004

omV

Value

0.2 ms
1ms
0.126 nA
0.0047 uS
omVv

Value
0.2 ms
1ms
0.093 nA
0.023 pS
omV

Value
0.25 ms
5 ms
-0.092 nA
0.090 pS
-90 mV

Value
0.3 S/m

(-400)— 400 pm, in steps of
25 uym

and differed mainly by a scaling factor, suggested that a single LFP proxy could work for
recordings at different depths and positions in the horizontal plane, provided that it is properly
scaled. Such a factorization of spatial and temporal dimensions can be expressed (see [30]) as

LFPpmxy(r7 d? t) :f‘;m)xy(r7 d) * gpmxy(t)

(1)

where d is the depth and r the distance from the population center. The term f,,,.,(r, d) then
gives the amplitude of the signal as a function of the electrode position (as in Fig 2B) while the
dimensionless g,,,,(t) has variance equal to one and describes the temporal features of the

LFP signal.

We first focused on finding the optimal g, (t) for an LFP signal recorded at selected
depths along the central vertical axis (X/R = 0) of the 3D network. However, we found (see sub-
section “New class of LFP proxies”) that the identified optimal LFP proxy was applicable also
to other depths and radial distances of the populations (given an appropriate overall scaling of
the signal amplitudes, cf. Fig 2B).

The contribution to the LFP signal from synaptic inputs onto the interneurons (and their
associated return currents) was negligible both in amplitude (Fig 3A) and in determining the
LFP spectrum (Fig 3B). This was due to the different morphologies of the two types of neurons:
consistently with what was shown previously for stellate cells with symmetrically placed
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Fig 2. Simulated local field potentials (LFPs) as a function of depth and lateral position of the electrode from the center of the 3D network. (A)
Amplitude of LFP signal generated by the morphological 3D network at 50 um spaced depths, when the dynamics were driven by a 10 seconds thalamic
input of 1.5 spikes/ms. The amplitude was measured as the standard deviation of the LFP signal over the entire time course with the same sign as the
baseline (see Fig 1E). Dashed lines indicate network boundaries (-250 ym < d < 250 ym) (B) Amplitude of LFP signal at different depths and distances from
the center of the 3D network. Distances were measured in units of 3D network radius R (= 250 um). The dashed lines separate the area inside the network (X/
R<1 & -250 um < d < 250 pm) and outside the network. (C) Power spectral density (PSD) of LFP signal in the center of the 3D network for different depths.
Dashed lines indicate network boundaries -250 um < d < 250 um). (D) Power spectral density (PSD) of LFP signal at different distances from the center of the
3D network at a reference depth of 100 ym. Dashed line indicates network boundary (X/R = 1).

doi:10.1371/journal.pcbi.1004584.9002

synapses [20] (i.e., a so-called close-field arrangement [53]), the contribution from the inter-
neurons to the LFP was negligible (Fig 3). Further, the associated power spectrum of this con-
tribution was closer to colored noise and did not display gamma fluctuations. We investigate
this in detail in the subsection “Dependency of the LFP signal on dendritic morphology”.
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Fig 3. Contribution from individual neuron types to simulated LFP signal. Decomposition of LFP obtained in same conditions as Fig 2 into contributions
from currents through the membrane of interneurons and pyramidal neurons. (A) Depth-resolved amplitude of LFP signal generated by all neurons (black), by
the pyramidal neurons (red), and by the interneurons (blue). (B) Corresponding LFP power spectra for the three sets depicted in (A) at a depth of 100 pm.

doi:10.1371/journal.pcbi.1004584.9003

Since we obtained a very similar LFP when we only simulated the contribution from synap-
tic inputs onto the pyramidal neurons, all the results shown in the following will, unless other-
wise stated, consider only the contributions from pyramidal neurons to LFP. Likewise, the LFP
proxies will be based only on input onto excitatory neurons (as done previously [15]). How-
ever, the inhibitory neurons obviously play a key role (i) in generating the dynamics and (ii) in
providing the GABA currents of synapses onto pyramidal neurons that contribute strongly to
the LFP.

Performance of different LFP proxies

We first tested six LFP proxy candidates (Fig 4A): AMPA currents, GABA currents, the average
firing rate FR, the average membrane potential V,,,, and the sum of these synaptic currents XI
as well as their absolute values ¥|I|. Note that the "AMPA currents" and "GABA currents" prox-
ies are defined as the sum of the post-synaptic currents for each type of synapse over all pyra-
midal neurons (see Table 1G). These currents have depolarizing and hyperpolarizing effects,
respectively, on the postsynaptic neurons. We thus here use the convention that assigns a posi-
tive sign to AMPA currents and a negative sign to GABA currents.

Because of the opposite signs assigned to the AMPA and GABA currents, the sum of the
absolute values of the currents ¥|1| is equivalent to the difference between the currents. For sev-
eral reasons, i.e., synaptic delay and dendritic filtering, we expected the best proxy for the LFP
time course to possibly involve time-delayed measures of LIF network variables. To assess the
best values of these delays we first computed the cross-correlation function between the
ground-truth LFP and the considered LFP proxy obtained from the LIF network, and found
the delay at which the absolute value of the correlation was largest (for half of the recording
depths the correlation is negative due to LFP inversion). The LEP proxy that we chose was the
z-scored (i.e., baseline-subtracted and normalized to have variance equal to one) and time-
shifted LIF network variable that maximized the fraction of variance explained, R>. Finding the
best delay and rescaling factor was done separately for each depth, but we found that the differ-
ences in the observed best values of the delay across depth, were minor (see S2B Fig). Fig 4B
and 4C shows the comparison between the 3D network LFP signal at two different electrode
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Fig 4. Performance of candidate LFP proxies. (A) lllustrations of predictions of LFP time courses from candidate LFP proxies. From top to bottom: firing
rate (FR), membrane potential (V,), AMPA currents, GABA currents (note: these have a negative sign), sum of absolute values of AMPA and GABA currents
Y |/], sum of AMPA and GABA currents ¥ /. Results are shown for a thalamic stimulation of 1.5 spikes/ms, and the proxies are normalized to have variance
equal to one (see text),. (B-C) time course of the LFP signal (black) for reference depths 100 um (B) and -100 pm (C) compared to the best matching proxy, ¥ |
1] (magenta). The title indicates the fraction of variance explained (85% in both cases). (D-E) Cross-correlation in time between the LFP and the Y |/| proxy for
the two depths. Note that the peaks corresponding to the highest cross-correlation magnitudes corresponded to a lag of 1 ms, i.e., the LFP was best
predicted by the value of ¥ |/| one millisecond in the past. (F-G) Fraction of LFP signal variance explained by different LFP proxies with optimal delay (same
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The firing rate FR was a poor proxy, and the other three were moderately good proxies.

doi:10.1371/journal.pcbi.1004584.9004

depths and the LFP proxy given by the sum of absolute values of the synaptic currents ¥|1|, that
given our sign convention simply becomes the difference between the currents, i.e.,

LEPS~ , (r,d,t) = fy~ (1, d) = Norm [ZWAMPA(t —7) =Y GABA(t-7)| (2)

where Norm|] indicates the mean-subtracted, normalized version of the time series between
square brackets. Fig 4D and 4E shows the cross correlation between the 3D network LFP signal
and proxy for the two depths.

A comparison of the average fraction of variance explained by all the LFP proxies displayed
in Fig 4A across different depths (Fig 4F and 4G) shows that the best one was the sum of abso-
lute values of synaptic currents ¥|I| (<R*> = 0.83) followed by the negative of the GABA cur-
rents (<R*> = 0.81) and then the AMPA currents (<R*> = 0.78). The negative of the sum of
synaptic currents I and membrane potential V., performed in a similar way (<R*> = 0.69),
while the firing rate FR gave a poor fit (<R”> = 0.51). The R” is slightly larger for depths about
100 um from the inversion point, probably due to stronger synaptic and return currents.
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We found two results to be of particular interest. The first was that a proxy based on GABA
currents alone gave clearly a better match for the simulated LFP signal than the AMPA cur-
rents alone. The second was that the X|I| gives the best fit which suggests that the magnitude of
the AMPA currents locally sums with the magnitude of the GABA return currents. Thus the
two types of synaptic currents contribute to the LFP with the same sign. This feature is partly
due to the fact that AMPA synapses are distributed over the whole surface of pyramidal neu-
rons, while GABA synapses are located only in the lower cylinder close to the soma (Fig 1B).
This will be further investigated in the “Dependency of the LEP signal on the distribution of
synapses” subsection.

The fits above were computed by averaging the time-varying variables over the set of excit-
atory neurons in the LIF network. However, we also tested the quality of the fit obtained by
averaging over all the neurons in the LIF network or only over inhibitory neurons. The results
for each variable and depth are shown in S2A Fig, together with the associated optimal delays.
The relative ranking of the candidate proxies remains unaltered. Further, proxies obtained by
averaging the firing rate, the membrane potential, or the synaptic input currents over the excit-
atory neurons (as above) performed better than proxies obtained by averaging the same vari-
ables over the inhibitory neurons set and roughly the same as proxies obtained averaging over
all neurons (S2A Fig).

New class of LFP proxies

Since AMPA and GABA currents contributed differently to the LFP signal we investigated a
novel proxy, the weighted sum between AMPA and GABA currents (WS), that uses a linear
combination of AMPA and GABA synaptic currents where we introduce a factor a describing
the relative contribution of the two currents and a specific delay for each type of current:

LEP,(r,d, t) = fos(r, d) * Norm [ZpyrAMpA(t — Toma) — oc(ZWGABA(t - TGABA))} (3)

Note that the two proxies ¥|I| and ¥I are particular cases of the above equation in which the
delays are the same, and a is equal to 1 and -1 respectively.

We first tested the WS proxy with the electrode located in the center of the 3D network for
different depths. The optimal value of o was always positive, but varied across depths (Fig 5A).
The optimal delays were always in the range [5-7] ms for T45sp4 ms and in the range [-1 1] ms
for Tgapa. This implies that the optimal LFP proxy was achieved by subtracting the GABA
PSCs (postsynaptic currents) from the AMPA PSCs occurring around 6 ms in the past. Perfor-
mance was very high for all depths (up to 93% of variance explained, see Fig 5B). Since the opti-
mal values of &, (Fig 5A) Tanpa and Tgapa (S2B Fig) were relatively stable across depths, we
defined a new proxy: the reference weighted sum LFP proxy (RWS). The structure of the RWS
proxy is the same as the WS proxy but the variables are fixed: & is set to the average accross
depths of the optimal values for WS (1.65, see Fig 5A) and the delays to T45pa = 6 ms and
Tgapa = 0 (S2C Fig). This results in

LEPy5(r,d,t) = fys(r.d)  Norm | > AMPA(t —Gms) —1.65() GABA(1))| (4)

We found that the performance of this proxy was almost indistinguishable from the single-
depth optimized values across depths (Fig 5B) and largely outperformed all other proxies.
Moreover, we found the performance of a proxy with o = 1.65 to be very good (>80% of vari-
ance explained) for a broad range of other AMPA- and GABA-current delays (S2C Fig).
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Fig 5. New proxy explaining more than 90% of the variance in the LFP signal. (A) Value of relative contribution of AMPA and GABA currents (a
parameter in Eq (3)) optimizing correlation between WS proxy and ground truth LFP in the same conditions as Fig 4. Dashed line indicates average value
over depths a = 1.65 used for RWS proxy (Eq 4). (B) Same as Fig 4F and 4G including also WS proxy (black) and RWS proxy (blue). (C) Fraction of LFP
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doi:10.1371/journal.pcbi.1004584.9005

We next tested the performance of the proxies for different distances of the electrode from
the center of the 3D network: Fig 5C compares the fraction of variance explained by WS, RWS
and the other proxies mentioned above for LFPs measured at different distances from the cen-
ter of the 3D network. The depicted results are found from averaging across all depths. The
Standard Error of the Mean of R* across depths was < 1% for all proxies and all lateral displace-
ments and is not displayed in the figure since it would not be visible. Values for explained vari-
ance were very stable for different lateral electrode positions: in particular, for all lateral
displacements RWS performances were similar to WS and outperformed all other proxies (Fig
5C). The average optimal value of @ across depths was always close to the reference value 1.65
(Fig 5D). Given that the RWS proxy was much simpler than WS (see below) and able to explain
more than 90% of the variance of the LFP time course at a wide range of electrode recording
positions, we tentatively propose this as the best proxy for the LFP signal computable directly
from LIF network variables.

The proxies given by the combination of two synaptic parameters (WS and RWS) have four
free parameters (scale as described by the function fin Eq 1 and following, AMPA and GABA
delays, relative amplitude of AMPA and GABA contribution) while the other proxies have
only two free parameters (scale, delay). We assessed by means of the Bayesian Information Cri-
terion (BIC, [54], see Methods for details) whether the benefit in terms of improved perfor-
mance of the models based on the linear combinations of synaptic currents was worth the
increase in model complexity due to the higher number of parameters. We found that, accord-
ing to this model selection criterion, RWS outperforms all previous proxies and WS outper-
forms RWS and all other proxies (S3 Fig), demonstrating the power of the RWS and WS
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models. However, the optimal WS parameters are by construction different for each recording
position and, as we will see in the following, for various network structures and states. Thus
comparison of LFP predictions from use of the WS proxy requires detailed knowledge about
recording position as well as the characteristics of the underlying network, and will thus have
limited practical use. On the other hand, as the parameters of the RWS proxy are fixed, it can
be used directly for all locations in space. As seen in the following, the RWS proxy performs
well for a broad set of conditions (input intensity, neuron morphology, synaptic distribution),
and this means crucially that the proxy can be used also under weak assumptions about the
spatial structure of the underlying network. We thus conclude that RWS is the best LFP proxy
based on LIF network variables. In the following we will test its robustness for different
dynamic network states, spatial architectures and synaptic properties.

Performance of LFP proxies in different dynamic network states

So far we investigated the LFP proxies using LIF networks in a state exhibiting weakly synchro-
nized oscillations in the spiking dynamics, stimulating the LIF network at a relatively low
intensity (1.5 spikes/ms). However, LIF networks can generate a variety of different dynamic
network states when the frequency of external inputs is varied [14,15,18]. In order to test LFP
proxies in different dynamic network states, we stimulated the LIF network with a wide range
of input intensities, covering both much higher and much lower intensities than the one tested
in above.

Fig 6A shows, from left to right, a raster plot of a subset of neurons in the LIF network for a
low-intensity input (0.5 spikes/ms), the default input level (1.5 spikes/ms), and a high-intensity
input (6 spikes/ms). Shown below (Fig 6B) is the LFP signal generated in the 3D network at the
reference depth of 100 pm for these three cases together with their corresponding WS fits. For
external stimulation with 0.5 spikes/ms, recurrent activity in the LIF network was almost
absent, with all pyramidal neurons and most interneurons being silent. The LFP amplitude was
very small and the signal very noisy. For an input of 1.5 spikes/ms, firing was sparse with coex-
isting slow and high-frequency LFP fluctuations, and for 6 spikes/ms the dynamics were domi-
nated by high-frequency LFP gamma oscillations also visible in the LIF network spiking
activity.

With an input frequency of 0.5 spikes/ms, none of the candidate proxies was able to account
for the LFP (Fig 6C). This was presumably because in these low-firing conditions, randomly
occurring, uncorrelated synaptic inputs onto the neurons close to the electrode dominated the
LFP signal. Such activity does not give a strong dipolar LFP pattern [21] and is apparently
more difficult to capture with the global LIF network variables considered in the proxies. For
the larger inputs ranging from 1 to 6 spikes/ms, however, the WS proxy was able to explain
more than 91% of the variance. RWS was able to explain 88-91% of the variance between 1 to
3 spikes/ms with a small decrease to 87% for an input of 6 spikes/ms (Fig 6C). For inputs of 1
spikes/ms or more the sum of the absolute values of the synaptic currents explained 81-85% of
the variance, the membrane potential 70-79%, the sum of the currents 70-79%, and the firing
rate only 51-60%. Overall, the ranking of the proxies regarding their R values remained the
same for all dynamic network states and the RWS provided an excellent proxy in all cases. As
shown in Fig 6D the relative weighting between AMPA and GABA currents as given by the
parameter « for the WS proxy was stable and close to the reference values 1.65 chosen for RWS
for input stimulus intensities, except for the case of very low-intensity input in which the LFP
signal is almost absent and the fit is poor.

A key property of the LIF network is that it exhibits a prominent gamma-band activity (30-
100 Hz) in the overall firing activity when the input intensity is increased as indicated by an
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Fig 6. Effects of dynamic network states of the LIF model on the simulated LFP signal. (A) Raster plots of 50 interneurons (blue, top) and 200 pyramidal
neurons (red, bottom). Neurons displayed are those with the highest number of spikes fired in the considered interval. Each panel corresponds to a different
stimulation frequency: from left to right: 0.5 spikes/ms, 1.5 spikes/ms (the stimulation used in Figs 1—4), 6 spikes/ms. Note that in the selected interval all
pyramidal neurons and most interneurons were silent for 0.5 spikes/ms stimulation. (B) LFP signal (black line) for 100 um depth and corresponding best fit
with the WS proxy (red) for these three stimulation frequencies. The titles show the fraction of variance explained over the whole 10 second simulation period.
Note the different vertical scales. (C) Average fraction of LFP variance explained over all depths by different proxies for different thalamic input frequencies.
Error bars are not displayed since they would not be visible in the figure. Same proxy arrangement as Fig 5C. (D) Mean and standard deviation across depths
of optimal coefficients of a in the WS proxy as a function of thalamic input. Dashed line indicates the fixed coefficient of the RWS proxy.

doi:10.1371/journal.pcbi.1004584.9006
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Fig 7. Spectral analysis of LFP signal. (A) Power spectra of the LFP signal at recorded at the 100 um depth position, and predictions from candidate LFP
proxies for input stimulation frequencies of 1 spikes/ms (left), 1.5 spikes/ms (center), 3 spikes/ms (right). Similar results are found for recordings at all depths.
Note that for low inputs the power decreased almost monotonously with frequency, while for sufficiently strong input, LFP gamma fluctuations appeared and
increased in power and frequency with stimulus intensity. (B) Variation of gamma (30—100 Hz) peak power with stimulus input intensity for the LFP signal and
all proxies (measured as relative increase compared to the power at 1.5 spikes/ms). (C) Gamma peak frequency as a function of input frequency for the LFP

signal and all proxies.

doi:10.1371/journal.pcbi.1004584.9007

increased peak in the power spectral density (PSD) [15]. We therefore investigated how this is
reflected in our simulated LFP signal and how well the LFP proxies capture these properties of
the LFP signal. Fig 7A shows the power spectra for three different input frequencies. All proxies
except for the membrane potential tended to underestimate the low frequency LFP fluctuations
and to overestimate frequencies in the gamma range. WS and RWS proxies both produced a
nearly perfect fit of the LFP spectrum in the gamma-band range while exhibiting the smallest
error in the low frequency components among all proxies. In the 1-3 spikes/ms input range
the modulation of the LFP gamma power was well approximated by all proxies, while for 6
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spikes/ms input, WS and RWS underestimated it (Fig 7B). All proxies essentially predicted the
correct peak LFP gamma frequency (Fig 7C) for all input levels above 1 spikes/ms.

Dependency of the LFP signal on dendritic morphology

We hypothesized that the negligible contribution of inhibitory neurons was due to the weak
dipole moment created by the symmetrically placed synapses on the dendrites of stellate cells
[29]. To test this hypothesis we investigated in the following the effect of neuron shape on the
LFP generation by systematically altering the morphology of the interneuron population while
keeping its inputs fixed. This manipulation also tested the robustness of the LFP proxies to the
specific choice of the neuronal morphology. We started with two overlapping cylinders
(distance = 0 um) describing the stellate cell morphology. Then we progressively increased
their “pyramidalness”, i.e., the distance between the two dendritic bushes and generated a new
interneuron population for each cylinder distance (Fig 8A; see Methods for details). The gener-
ated morphologies ranged from pure stellate cells (the interneuron used in the reference case),
to cells corresponding to layer 2/3 pyramidal cells where the two cylinders were juxtaposed
(the pyramidal neuron used in the reference case), to cells where the two areas were parted by
several hundred micrometers (as in layer 5 pyramidal neurons). In all cases GABA synapses
were distributed only on dendrites located inside the lower cylinder, while AMPA synapses
were distributed over the entire dendritic tree (Fig 1B).

We found that the LFP signal from the 1000 interneurons was very weak for cylinder dis-
tances less than about 100 um, corresponding to a 40% overlap between the two cylinders (see
Fig 8B and 8C). The amplitude of the LFP signal increased with the cylinder distance together
with the current dipole moment (Fig 8C and 8D; see Methods). The “transition distance” of
about 100 um is seen to be associated with the appearance of an inversion point in the LFP (Fig
8C) and with the establishment of a sizable dipole moment (Fig 8D). Above this transition dis-
tance the LFP became larger with larger cylinder separations, yet saturating somewhat for dis-
tances above about 250 um, corresponding to our reference model of layer 2/3 pyramidal cell.
This demonstrates that the lack of a sizable contribution to the overall LFP from our interneu-
rons in the reference model was due to their stellate morphologies.

Below the inter-cylinder transition distance all proxies performed poorly with average frac-
tion of variance explained across depths smaller than 70% (for 100 um the range was <R*>
between 0.37 and 0.64), but <R*> quickly saturated as soon as the dipole appeared (Fig SE).
<R*> was smaller for all proxies compared to the reference case (since the noise was larger
due to the smaller number of neurons, i.e., 1000 neurons versus 4000 neurons for the reference
case), but the ranking of performances for different proxies remained roughly the same: above
the transition distance the fraction of variance explained by WS was 83%, RWS and the sum of
absolute values of currents both explained 80%, the membrane potential and sum of synaptic
currents 59%, while firing rate explained only 47% of the variance. Note that for inter-cylinder
distances above the transition distance, the stable performance of the proxies were accompa-
nied by stable values of the optimal coefficient o (Fig 8F). This result implies that the RWS we
have found for populations of layer-2/3-like pyramidal cells, likely also can be applied to pyra-
midal cell populations with different morphologies, as long as they produce a dipolar LFP.

In order to verify that the assumptions we made to algorithmically construct the neuronal
morphologies in the 3D network did not bias the results, we also did simulations using realistic
morphologies obtained from anatomical reconstructions (see Methods). The spatiotemporal
dynamics of these LFP signals was found to be qualitatively very similar to the one previously
shown, and the agreement with proxies was even higher, with RWS reaching R* = 0.95 (S4
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Fig 8. Effect of neuronal morphologies on neural signal. (A) Manipulation of the relative position of the two cylinders in which the dendrite arborizes,

50 pm steps. Each relative position induces a specific ‘pyramidalness’ of the model cortical cells (see Methods for details). Red and blue lines indicate the
center of the upper and lower cylinder respectively. When the two cylinders are completely superimposed (first panel of top row), the structure corresponds to
a stellate cell. When the two cylinders are on top of each other (last panel of top row, first of bottom row), the morphology corresponds to a layer 2/3 pyramidal
cell. When the boundaries of the two cylinders are separated by 250 um (last panel of bottom row), the cell morphology resembles a layer 5 pyramidal cell.
(B) LFP amplitude as a function of depth and distance between the two cylinders. (C) Average absolute amplitude (standard deviation) over depths of LFP
fluctuations as a function of distance between cylinders. (D) Amplitude of current dipole moment as a function of distance between cylinders. (E) Average
fraction of LFP variance over all depths explained by different proxies for different distances between cylinders. Error bars are not displayed since they would
not be visible in the figure. Same proxy arrangement as in Fig 5C. (F) Mean and standard deviation across depths of optimal coefficients of a in the WS proxy
as a function of distance between cylinders. Dashed line indicates the fixed coefficient of the RWS proxy. Note that since for distances below 100 ym the
performance of the fit was poor (see panel (E)), the fitted value of the relative weight of AMPA and GABA currents in contributing to the LFP signal has little
significance.

doi:10.1371/journal.pcbi.1004584.9008

Fig). This result indicates that our conclusions are not strongly dependent on the detailed
branching patterns within the basal and apical dendritic bushes.

Dependency of the LFP signal on the distribution of synapses

In the reference case (Fig 1B) GABA synapses were distributed only in the lower cylinder while
AMPA synapses were distributed homogeneously across all dendrites. In order to test how our
results depended on this distribution we therefore evaluated all LFP proxies for a variety of syn-
aptic distribution patterns. Fig 9A illustrates the three main different synaptic distributions
tested: (1) a case where all synapses were distributed homogeneously, (Hom.) (2) the reference
case (Ref.), and (3) a case where AMPA synapses were located only in the upper cylinder (AM
Up), leading to a complete separation between AMPA and GABA synapses. We further consid-
ered two conditions where (4) AMPA synapses were located only in the lower bush leaving the
upper bush empty (AM down) and where (5) AMPA cortical synapses were located in the
upper bush while thalamic AMPA inputs were distributed homogeneously (AM, Up).

Even though the parameters in the LIF network and thus the output activity remained pre-
cisely the same as before in these different situations, the corresponding LFP signal was dra-
matically altered by the choices of synaptic distributions (Fig 9B). The amplitude of the
fluctuations was strongly affected, while the spatiotemporal features were only moderately
altered. Note, however, that the position of the thalamic synapses only marginally affected the
LFP fluctuations, and only the mean value of the LFP was affected. As a rule of thumb, we
found that the more spatially segregated AMPA and GABA synapses are, the larger are the LFP
fluctuations (Fig 9C). We further observed that the variation of the LFP amplitude on the syn-
aptic distribution directly reflected changes in the magnitude of the current dipole moment
(Fig 9D).

The individual contributions to the LFP from AMPA and GABA synapses were strongly
dependent on the spatial distributions (Fig 9E): when synapses were distributed homo-
geneously, the contribution of their currents to the LFP signal was small as compared to when
the synapses were segregated. Moreover, the AMPA contribution was larger when synapses
were confined to the upper than to the lower cylinder. When the synapses were distributed
homogeneously, the LFP signal was very weak resulting in poor performances for all LFP prox-
ies (Fig 9F). When the cortical AMPA synapses were confined to the upper bush, the perfor-
mance of the WS proxy was not affected, but a small decrease of 0.07 in the <R*> value was
observed for both RWS and the sum of the absolute values of synaptic currents. For the same
situation there was a larger decrease of 0.17 in the <R*> value to a global value of only 0.51 for
both the membrane potential and the sum of synaptic currents. However, in the configuration
in which AMPA synapses were confined to the lower bush and the LFP amplitude was small,
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Fig 9. LFP signal and synaptic distribution. (A) Example cases for different synaptic distributions. Left: both AMPA and GABA synapse distributed over
the entire surface of the cell. Center: GABA synapses distributed only in the lower cylinder, with AMPA synapses distributed over the entire cell. Right: GABA
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synapses distributed only in the lower cylinder and AMPA synapses only in the upper cylinder. (B) LFP time course for different synaptic distributions: the
three configurations presented in (A) correspond to black, red and green lines, respectively. Additional configurations were tested where GABA synapses
were located in the lower cylinder, thalamic synapses were in both cylinders and the cortical AMPA synapses were only in the upper cylinder (blue line, AM,
Up), and where all the AMPA synapses were located in the lower cylinder (cyan line, AM Down). (C) LFP amplitude as a function of depth (similar to Fig 2A)
for different synaptic distributions. Blue and green markers were superimposed, illustrating that changing the position of the thalamic synapses does not alter
the amplitude of the LFP (only but its mean value, cf. panel B). (D) Average LFP absolute amplitude over depths versus dipole moment (standard deviation
over time) for the different synaptic distributions. (E) Contribution of AMPA and GABA currents to LFP fluctuation amplitudes for different synaptic
distributions. (F) Average fraction of LFP variance explained by different proxies for different cylinder distances. Error bars are not displayed since they would
not be visible in the figure. Same proxy arrangement as Fig 5C. (G) Mean and standard deviation across depths of optimal coefficients of a in the WS proxy
as a function of synaptic distribution. Dashed line indicates the fixed coefficient of the RWS proxy. Note that since for homogeneous synaptic distribution the
performance of the fit was low (see panel (F)), the fitted value of the relative weight of AMPA and GABA currents in contributing to the LFP signal has little
significance.

doi:10.1371/journal.pcbi.1004584.9009

the <R*> for the membrane potential and the sum of synaptic currents rose to 0.81 and 0.79
respectively, a value comparable to results for the WS and RWS proxies (0.80 and 0.78). This
suggests that the advantage of using the WS and RWS proxies over, e.g., a membrane-potential
proxy is particularly large when the AMPA and GABA synapses are spatially separated so that
a large current dipole moment and a large amplitude LFP is generated (Figs 8C and 9D).

The best coefficients for WS strongly depended on the synaptic distribution (Fig 9G): When
AMPA synapses were confined to the upper cylinder forming a strong current dipole moment,
the optimal AMPA coefficients became larger than the GABA ones. Therefore, although the R*
value of RWS was still 0.82 under these conditions, a better result could be achieved with a
proper tuning of the coefficients.

Difference between current-based and conductance-based synapses
for the LFP signal

To keep the consistency with the LIF network in which the synapses were current-based (see
Methods), all LFP simulations considered until now were done using current-based synapses
in the 3D network. However, some neuronal features may be better approximated by conduc-
tance-based synaptic models in which the postsynaptic currents (PSCs) depend on the local
membrane potential and do not have a fixed shape as in the case of current-based synapses. To
test this situation, we repeated our simulations by introducing conductance-based synapses in
the 3D network. Synaptic time constants were left unchanged, while the peak conductance val-
ues were scaled to obtain PSC amplitudes equivalent to current-based synapses for the refer-
ence stimulus intensity 1.5 spikes/ms [47].

While the simulated LFP amplitude was smaller when using conductance-based instead of
current-based synapses (compare the three panels in Fig 10A with the three panels in Fig 6B
and note the different y-axis scales), the time course was similar. We found that the explana-
tory power of the proxies was similar or better in all cases compared to the situation with LFPs
computed with current-based synapses (Fig 10A): the R* values for the RWS were in the range
0.91-0.93 for inputs between 1 and 3 spikes/ms, and 0.88 for 6 spikes/ms. We hypothesize that
the main reason for the increase in performance was that the LFP contributions from different
neurons were more correlated when synapses were conductance-based [47]. Note that in the
case with conductance-based synapses, the performance of the membrane potential proxy is in
the very low 0.5-0.6 range for R* for all stimuli above 1 spikes/ms. This can be understood
given that the membrane potential no longer depends linearly on synaptic input currents as in
the case with current-based synapses.

The WS proxy coefficients for 1 spikes/ms inputs were rather similar to the current-based
case, but when the input frequency was increased, the optimized value of the coefficient o,
describing the ration of GABA to AMPA currents in the WS proxy, increased (Fig 10C). This
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Fig 10. Effects of modulation of inputs with conductance-based synaptic model. (A) LFP (black line) for 150 pm depth position when the stimulation
frequency was 0.5 spikes/ms (left), 1.5 spikes/ms (middle), 6 spikes/ms (right) and corresponding best fit with WS proxy (red). The depth was the one for
which WS proxy performance was highest. The titles indicate the fraction of variance explained. Note the different vertical scales. (B) Average fraction of LFP
variance over all depths explained by different proxies for different thalamic inputs. Error bars are not displayed since they would not be visible in the figure.
Same proxy arrangement as in Fig 5C. (C) Mean and standard deviation across depths of optimal coefficients of a in the WS proxy as a function of thalamic
input. Dashed line indicates the fixed coefficient of the RWS proxy.

doi:10.1371/journal.pcbi.1004584.9010

likely reflects that for stronger stimuli the neurons were more depolarized, so that the average
membrane potential was closer to the AMPA reversal potential and further away from GABA
reversal potential. Consequently, the GABA versus AMPA PSC-amplitude ratio increased.
Nevertheless, the RWS still performed well for all inputs (Fig 10B).

Discussion

The main aim of this work was to develop an accurate, robust and an easy-to-use method
to synthesize the LFP signal from output from a model network of LIF neurons. We
simulated a biophysically realistic LFP signal using a population of morphologically detailed
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multi-compartmental neuron models and compared this LFP signal with several LFP proxy
candidates extracted from the LIF network simulations. We found that a linear combination of
summed and time-shifted AMPA and GABA currents in the LIF network explained a large
fraction of the variance of the LFP of the 3D morphologically accurate network in nearly all
conditions considered. Specifically, we identified a specific set of parameters (Eq 4), the so-
called reference weighted sum LFP proxy (RWS), which accurately predicted the LFP time
course for all considered electrode positions (Fig 5), and across different dynamic network
states (Fig 6).

The fraction of LFP variance explained by the RWS proxy was only moderately affected by
changes in neural morphology (Fig 8, S4 Fig), in synaptic distribution (Fig 9), or in synaptic
dynamics (Fig 10). This LFP proxy was found to be very accurate for every condition consid-
ered in which the dipole generated by the synaptic currents was sizable and hence the ampli-
tude of the LFP substantial. This LFP proxy only performed poorly in situations where the
amplitude of the LFP signal itself was very small, i.e., at the inversion point or when the result-
ing current dipole moments from synaptic activation are small (homogeneous synaptic distri-
butions (Fig 9), low activity (Fig 6)). Furthermore, we showed that despite the complexity of
our LFP simulation setup (with 5000 different morphologies with realistic dendritic structures)
the temporal evolution of the LFP was well captured by the RWS proxy based on synaptic cur-
rents with adjustment of only three parameters, the relative weight of the contributions from
the two synaptic currents and the two synaptic delays. Our results further suggested that the
RWS proxy can be used for a wide range of LIF network models and pyramidal-neuron mor-
phologies to synthesize biophysically plausible LEP signals that can be compared with experi-
mental LFP recordings. Table 5 describes how to properly use the proxy in a variety of
conditions and modeling approaches.

Thanks to its robustness, our proxy can expectedly be applied to models of any brain area in
which the LFP is likely to be generated by one dominant population (as in the hippocampus
with a single population of pyramidal cells). When there are two or more populations giving a
significant contribution to the LFP (as is likely in whole cortical column model taking into
account several pyramidal neuron populations, e.g., layer 2/3, layer 5, layer 6), the total LFP
can be approximated as a suitable linear combination of individual contributions if informa-
tion on the depth positions of the populations relative to the recording electrode is available.
Comparison of the model LFP with experimental results might then be used to estimate the rel-
ative weights of the LFP contributions from the different populations.

Comparison of candidate proxies

A major difference between the accurate LFP proxies using synaptic currents (sum of currents,
WS, RWS) compared to the less accurate proxy based on firing rates is that a spike is a very
local event in time, while the postsynaptic current following after a spike (as well as the contri-
bution to the LFP) lasts for many milliseconds. So an instantaneous firing rate proxy like the
ones we are considering based on firing rates cannot be expected to perform well (even with a
fixed delay). In laminar population analysis (LPA, [30]) the LFP time course was rather
assumed to be given by the measured firing rates convolved with a suitable (i.e., delayed expo-
nential) kernel, the rationale being that spikes causally drive synaptic currents which in turn
set up the LFP. The present RWS proxy is similarly constructed, effectively corresponding to a
suitable weighted sum of exponentially convolved presynaptic spike rates corresponding to
excitatory and inhibitory synaptic currents. The postsynaptic soma membrane potentials fol-
lowing presynaptic spiking is more low-pass filtered than the synaptic currents (and also the
transmembrane return currents in the case of multicompartmental models) [29], and LFP
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Table 5. Summary of results for proxies and suggested adaption of results to other situations.

REFERENCE TABLE FOR LFP PROXY USE
For the following reference conditions:
 Layer 2/3 pyramidal cell (two neighboring dendritic bushes, (Fig 1B, left)

» Synaptic distribution with GABA synapses in lower (basal) bush and AMPA synapses in both (basal
+apical) bushes (Fig 9A, central panel)

¢ Current-based synapses
* 1.5 spikes/ms input

* Electrode recording from the center of the 3D network at depth = 100 pm relative to inversion point

The optimal proxy (RWS) is
LFPgs(r,d,t) = faus(r,d) « Norm

S AMPA(t — 6 ms) — 1.65 (ZGABA(t))]

pyr

The proxy is, however, robust or easily adaptable to a variety of conditions as described below:

Aim
Use a simpler proxy

Consider a different recording depth

Simulate LFP recorded with electrode
radially displaced from the center of
the 3D network

Vary rate of external synaptic input
(input intensity)

Include/remove LFP contribution from
transmembrane currents of stellate
interneurons

Simulate neurons with morphologies
different from pyramidal cell of layer
2/3

Simulate neurons with synaptic
distributions different from our
reference case

Simulate neurons with conductance
synapses

doi:10.1371/journal.pcbi.1004584.t005

Action required
Model temporal part of LFP as sum of AMPA and GABA currents
or simply as GABA currents (Fig 4F and 4G)

Use the RWS (Fig 5C) unless you are within 50 um from the
inversion point, in which the LFP largely cancels out (Fig 2A and
2B)

Use the RWS and determine amplitude frws(r,d) by means of Fig
2B

Use the RWS (as long as the synaptic input is sufficiently strong to
generate a sizable LFP, cf. Fig 6C)

Use the same RWS, since interneurons have a negligible effect on
the LFP (Fig 3)

Use the RWS for all morphologies in which two dendritic bushes
are vertically more distant than 150 um (i.e., for all cells except
stellate cells that do not contribute to LFP), see Fig 8E.

As shown in Fig 9F and 9G:

* Both synapses in both bushes: no appreciable LFP and no good
proxy available

» AMPA synapses only in upper bush: RWS performs well (R% =
0.81), but to get better results increase relative weight of AMPA
currents as follows:

LFPrws(r, d, t) = frws(r, d)
sNorm| > "AMPA (t — 6ms) — 0.69(> _GABA(t)
pyr pyr
» AMPA synapses only in lower bush: RWS performs well (R? =
0.77)

Change AMPA and GABA coefficients as a function of input rate
as indicated in Fig 10C

proxies based on this dynamical variable will generally fail to predict the most rapid temporal

changes in the LFP.

Spectral properties

An interesting result is that all the proxies tested here displayed largely the same modulation of
the LFP gamma power as a function of input intensity, both in terms of relative power
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modulation and peak frequency (Fig 7D and 7E). This is encouraging since we did not specifi-
cally aim to find a good prediction of the power spectrum when constructing the LEP proxies
and estimating their parameters. We note however that no proxy is fully able to account for the
low-frequency end of the spectrum (Fig 7A and 7B), which is overestimated by the membrane
potential proxy and underestimated by the other proxies. If one is interested in a highly
detailed reproduction of the whole LFP spectrum, preliminary results hint to the possibility of
designing a WS fit optimized to match the spectrum instead than the spatiotemporal features
and to define an LFP proxy that slightly differs from the RWS discussed above. However, the
fraction of spectral variance explained by the RWS is already 0.91 (average over all stimulus
intensities above 0.5 spikes/ms, standard morphology and synaptic condition) which likely is
sufficient for most purposes.

Model assumptions and limitations

In the present work we have focused on how the relationship between LIF variables and
ground-truth LFP change when the 3D model features change, keeping the LIF model fixed.
While different LIF networks would generate different activity and hence different synaptic
currents, we expect roughly the same relationship between these synaptic currents and the gen-
erated LFP. Therefore, for any LIF network generating enough correlated activity to result in a
sizeable LFP, we expect RWS to be a good proxy.

Our strategy had the advantage that we could vary the assumptions in the LFP-generating
model, e.g., the distribution of synapses or neuronal morphologies, without affecting the spik-
ing dynamics. The disadvantage of this approach is, however, that the 3D network does not
match the LIF network in every respect; for instance, even though the synaptic input currents
were identical in the two models, the resulting soma potentials in the multi-compartmental
neurons were not identical to those in the LIF neurons (due to passive dendritic filtering). It is,
however, unlikely that imposing identical somatic potentials, or identical currents entering the
soma, in the two models would result in a more realistic LFP since large synaptic currents
would be needed to overcome the passive filtering for distant synapses. Instead one could con-
sider changing the synaptic weight distribution in the LIF network simulation to make the two
models match better. Our focus here was to use LIF models as commonly used in the literature
(typically using homogeneous weight distributions), but it would be an interesting topic for
future studies to extract effective point-neuron synaptic weight distributions from the multi-
compartmental population and use these in the LIF network simulations in order to make the
two simulation environments even more similar.

We did not test different LIF network architectures or sizes, but we expect the RWS proxy
to be applicable as long as the network displays a sufficient level of correlation. We have found
in previous modeling studies [20,21] that correlated synaptic activity is necessary to create a
sizable LFP signal, and in this case all cells in the dominant LFP-generating population will
contribute. Making the network size larger or altering its connectivity would therefore likely
not qualitatively change the form of the best LFP proxy (as long as a sufficient level of spiking
correlations is maintained in the network). The LFP generated by larger populations, however,
should be tested in further studies taking into account the summed effect of several cortical
populations, across layers as well as heterogeneous spatial structure in the horizontal direction.

A limitation of the presented simulation setup is that it models only AMPA and GABA syn-
apse contributions. However, most of our results pertaining to the proxy do not depend on the
particular feature of the synapses and are therefore likely to extend to different synapses as
well. For instance, it should not matter for the quality of our suggested proxy whether or not
the synaptic weights are changing due to plasticity since the weight changes will be reflected in
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the synaptic currents extracted from the LIF network as well. Including slower synapses, such
as NMDA synapses in the model setup, will on the other hand affect the LFP frequency con-
tent, particularly at low frequencies. This effect could be captured by a proxy including NMDA
in the sum of synaptic currents with a weight depending on the number and spatial distribution
of NMDA synapses. As with the synaptic weight distributions discussed above, the inclusion of
NMDA synapses when computing the LFP proxy presupposes that it is also included in the LIF
network model (which was beyond the scope of this study). Moreover, we did not model sub-
threshold active dendritic conductance [55], nor the active channels behind spike generation.
The contributions from the latter is expectedly negligible for at least the low frequencies of the
LFP [56] (but see [57-59]), while the effect of the former should be explored in future projects.

The present suggested proxy assumes the LFP contribution following spikes to be spatio-
temporally separable, i.e., factorizable into a product of a function of time with a function of
space [30]. Due to, for example, the intrinsic filtering effect [29,36,60] this is not strictly true as
the spatial distribution of the transmembrane currents setting up the LFP depends to some
extent on the frequency. However, if warranted the present proxy can be extended, for example
by assuming a more detailed proxy consisting of a sum of such spatiotemporally separable
kernels.

Importance of this work for analytical studies of LFPs

Recently, we presented an analytical method to estimate the LEP spectrum from the dynamics
of a LIF network [61] using as LFP proxy the sum of the absolute values of synaptic currents.
By fitting a recurrent excitatory-inhibitory LIF network model to LFP recordings from mon-
keys presented with visual stimuli, we were able to estimate the LIF model that best fitted the
observed LFP, and to predict at least in part the observed firing rate and some of the visual fea-
tures in the receptive field that elicited the observed neural activity. In this recent work [61],
the time evolution of the LFP was computed analytically from the LIF network as a function of
the external input by applying linear response theory to the mean-field approximations of each
kind of synaptic current separately and then summing their absolute values over pyramidal
neurons (as in [15] and in Eq 2). In principle, it is possible to extend this analytical calculation
by using the more efficient proxy presented here by simply changing the coefficients in the
final sum of the synaptic currents. This paves the work for obtaining realistic analytical estima-
tions of LFPs from recurrent LIF networks. As discussed in [35], an efficient analytical
approach could be at the heart of the development of model-based analysis methods for per-
forming inferential statistics of network models on LEPs, analogous to the role played by
Dynamic Causal Modelling [62,63] in the analysis of EEG and fMRI recordings.

Outlook

Here we studied proxies for the LFP produced by a local 3D network, corresponding to a single
cortical layer. Experimentally recorded LFPs, however, are most likely containing contributions
from several layers [20]. Therefore, a natural extension of this work would be to study the LFP
generated by several connected 3D networks forming a full cortical columns [64,65] and deter-
mine how LFP proxies should be designed in this context. Since electrical potentials in the ner-
vous tissue are assumed to add linearly, we expect LFP proxies to be constructed in largely the
same manner as presented here, by summing synaptic contributions from different cortical lay-
ers, possibly with a weighting depending on the recording depths. Constructing the LEP signal
from a full cortical column model [65] is the topic for a separate ongoing project [66].
We expect our proxy to also work well for other brain structures where pyramidal neurons

are elongated and arranged in an almost parallel way, such as the CA1 and CA2 regions of the
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hippocampus. On the other hand, many subcortical structures have a neuronal architecture so
different from the cortex that we that we cannot a priori expect the present rules of LFP predic-
tion to be applicable. A possible future line of research will be to apply the combination of LIF
dynamics and 3D morphology we used in this work to investigate such areas to find a compact
way to study the mechanisms generating the LFP observed there.

We focused in the present study on the LFP signal, but finding good models for relating
activity in spiking network models and experimentally measured signals is relevant also for
other types of commonly recorded signals such as the EEG, MEG and VSD. Since the biophysi-
cal mechanisms generating these signals are in principle known, we believe our framework
could be extended to also study other measurement modalities in the future.

Methods
Leaky integrate-and-fire (LIF) recurrent network model

We summarize here the structure of the LIF network that generated the spiking dynamics. We
refer to [15,46] for full details. The network was composed of LIF neurons with current-based
synapses whose time evolution was modeled as difference between exponentials (see below),
fixed threshold, fixed refractory time [67], and fixed conduction delay of 1 ms. Subthreshold
dynamics for each neuron were given by

7,V () = =V, (t) + > _PSC,,(t) (5)

where 7, corresponded to the membrane time constant due to the leak, V,, was the membrane
potential, and PSC were the occurring synaptic events as a function of time t. When the mem-
brane potential V,,, crossed a threshold value of 18 mV above resting potential, a spike
occurred, the potential dropped to a reset value of 11 mV above the reset potential and no
spike could be emitted for a refractory time of 2 ms.

Post-synaptic currents (PSCs) were determined by the spikes emitted by the pre-synaptic
neurons in the LIF network as well as by the external inputs. The time course of PSCs was
described by the difference of two exponentials simulating the opening and closing process of
the synapse. The equation can be written with two first order differential equations introducing
the auxiliary variable x:

T4, PSC(t) = —PSC(t) + x(t) (6)

Tt (1) = =x(0) + 7,7, ) 0(t =1, = 7)) (7)

where 7,/45,, indicate the rise and decay times of the synapses, and J,,,, indicates the synaptic
strength. The latency time of the synapses 7; was set to 1 ms. Compound synaptic currents
were the linear sum of contributions induced by single pre-synaptic spikes occurring at time
toyn. We included two types of synapses: AMPA and GABA. Pyramidal neurons had AMPA-
like synapses, and interneurons had GABA-like synapses. Moreover, each neuron received
excitatory external drive from (1) a long range cortico-cortical input activating AMPA synap-
ses identical to those of the recurrent connections and (2) a thalamic input activating AMPA
synapses with timescales and strengths resembling those of thalamocortical synapses. Synaptic
parameters such as rise time, decay time, and amplitude depended on the type of synapse and
the category of the post-synaptic neuron. All simulation parameters were in the range of the
values reported in the literature [68-70] and are listed in Table 2. We verified that modifying
these values did not affect the results qualitatively [15,46].
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The default network was composed of 4000 pyramidal neurons and 1000 interneurons (Fig
1A). The LIF network connectivity was random and sparse, with a directed connection proba-
bility of 0.2 between any pair of cells. This resulted in an inhomogeneous connectivity with an
average of 1000 pre- and post- synaptic connections for each cell. Each neuron received inhibi-
tory and excitatory inputs from the neurons in the network, and also cortico-cortical and tha-
lamic excitatory drives as described above. The long-range cortico-cortical drive represented
the ongoing activity and the global contributions from other areas of cortex. Since ongoing cor-
tical activity has most power for slow frequencies, this external drive was generated by an Orn-
stein-Uhlenbeck process with a low pass cut-oft frequency of 10 Hz and a 0.25 mV standard
deviation. Thalamic inputs were time-invariant in this set of simulations. Synapses carrying
both types of external inputs were activated by random Poisson spike trains, with time-varying
rates identical for all neurons. Details can be found in Table 1 and 2.

Simulations were computed with time steps of 0.05 ms and lasted 10.1 seconds, with the
first 100 ms removed to limit the analysis to the network steady state.

Current based and conductance based LIF model source codes are identical to those used in
[47] and are already available on the ModelDB sharing repository (http://senselab.med.yale.
edu/ModelDB/ShowModel.asp?model=152539) with accession number 152539.

Morphological model of a simplified layered cortical column

In order to compute the transmembrane currents that lead to an LFP signal, we constructed
3D morphological neuron models that captured the main morphological features of the cortical
network described by point neurons in the LIF model. The algorithm used to construct the
model morphologies was based on the fact that dendrites connect to their presynaptic partners
in a manner minimizing their total length and conduction times from all synapses to the soma
[71]. In such a framework, pyramidal cell dendrites can be seen as tree structures connecting as
directly as possible to axons that are distributed in two distinct layers [51]. The generation of
synthetic trees and subsequent analysis were performed using the TREES toolbox [71,72]
[http://www.treestoolbox.org]. Two cylinders (250 pum radius and 250 pum height each) were
therefore stacked to form a cylindrical column (Fig 1B). Somata of all cells were homo-
geneously distributed in the lower cylinder for both cell types. Axons were distributed isotropi-
cally within planes perpendicular to the cortical depth at random depth values. Pyramidal cells
were connected first to the axons in the upper cylinder and then to the axons of the lower cylin-
der, this resulted in characteristic apical and basal dendritic trees. Stellate cells were only con-
nected to the axons in the lower cylinder. Using 160 axons in each layer and a maximal reach
distance of 150 pm for any dendrite to an input axon, resulted in realistic membrane surfaces,
cable lengths and branch point number distributions (see S1 Fig). Diameter taper was selected
to equalize synaptic democracy [73] and yielded good fits to the real counterparts with similar
parameters for interneurons and pyramidal cells. The resulting pyramidal cell somatic input
resistance was about 200 MQ with specific membrane resistances R, = 20000 Qcm? and axial
resistances R, = 150 Qcm. The stellate cell input resistance was 175 MQ with specific mem-
brane resistances Ry, = 10000 Qcm” and axial resistances R, = 150 Qcm. In order to spatially
embed the simplified LIF network model, 4000 such pyramidal cells and 1000 interneurons
were generated to populate the simplified columnar architecture. The resulting morphologies
were then exported to NEURON [74,75] using the TREES toolbox functions.

In order to continuously alter the “pyramidalness” of cortical neurons as in Fig 8 we simply
modulated the distance between the two cylinders corresponding to the two layers. With a dis-
tance of 0 um, a perfect overlap of both cylinders, the resulting shape was symmetric as for the
stellate cell. As the distance was increased between the two cylinders, the shape of the cortical
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cell traversed the shape of layer 2/3 pyramidal cells (distance of 250 um), layer 4 pyramidal
cells (distance of 350 um) and layer 5 pyramidal cells (distance larger than 500 pm). The corre-
sponding validation of morphological features compared with real dendrite reconstructions as
can be observed in S1 Fig.

As a control for use of algorithmically constructed morphologies we derived an alternative
model using multiple copies of real reconstructions distributed within the columnar arrange-
ment. We used reconstructions from NeuroMorpho.org [76], made available by the group of
Markram [76], of both stellate cells and layer 2/3 pyramidal cells in young rat somatosensory
cortex. Since only 4 stellate cells and 36 layer 2/3 pyramidal cell morphologies were available,
we reached the number of 1000 interneurons and 4000 pyramidal neurons by randomly select-
ing copies of the smaller sample and distributing them within the simplified columnar geome-
try. Cell body locations were chosen to preserve a fairly homogeneous distribution of
membrane throughout the cylinders. This alternative model was then injected with the same
synaptic current stimuli as the original model based on algorithmically developed morpholo-
gies, and yielded similar results (compare Fig 6 and 54 Fig).

Connecting two simulation frameworks

Spike trains generated by the LIF network were used as input in the 3D network model used for
LFP generation. Each multi-compartmental neuron model in the 3D network was associated
with a given point neuron in the LIF network. To make sure the total synaptic currents in each
cell were identical in the two simulation environments, we used the connectivity structure of the
LIF network to determine the presynaptic LIF neurons for each postsynaptic multi-compartmen-
tal neuron in the 3D network. We triggered the synaptic currents in the multi-compartmental
neurons of the 3D network at the precise times given by the spike trains generated by the presyn-
aptic cells during LIF network simulations. Note that we did not take into account synaptic
latency time. In the 3D network we associated with each presynaptic cell a single specific synapse
in the postsynaptic cell. Synaptic dynamics in the 3D network was identical to the one in the LIF
network (Egs 4 and 5). In addition we recreated the external inputs (“Thalamic” and “Cortical”,
see Fig 1A) used in the LIF network simulations and injected the same patterns of external spike
trains in specific AMPA synapses in the 3D network neurons.

Since the LIF neuron model used in the LIF network simulations lacked spatial structure, we
needed to make additional assumptions regarding the synapse placement when simulating the
multi-compartmental neurons in the 3D network. The cylinders that were used to create the
morphologies of the multi-compartmental models (see above) were also used to broadly define
the synaptic regions. Our default setting was to place GABA synapses only in the lower cylin-
der, while AMPA synapses were placed in both cylinders. We tested also other scenarios in the
“Dependency of the LFP signal on the distribution of synapses” subsection of Results (Fig 9).
We randomly chose the detailed spatial position on the dendritic structure for each synapse,
with the probability for a section to be selected being proportional to its membrane area, such
that the resulting synaptic density was homogeneous within the selected cylinder

Calculation of local field potential (LFP) from the morphological 3D
network

We calculated the model LFP signal from the transmembrane currents in the multi-compart-
mental neuron populations based on volume conduction theory and the line-source approxi-
mation implemented in the Python package LFPy (http://lfpy.github.io/) [34]. We first
simulated transmembrane currents resulting from synaptic activity using the NEURON simu-
lation environment [74,75] after which extracellular potentials were calculated as a weighted
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sum of those transmembrane currents [31,32,34]. The extracellular potentials were computed
for 32 equispaced vertically aligned points in space (simulating a laminar multielectrode), set at
25 um intervals along the central vertical axis of the 3D network cylinder (Fig 1B). For the anal-
ysis illustrated in the subsection “Spatial distribution of simulated LEP signal” the recording
locations were set at different distances from the vertical axis of the 3D network cylinder. To
directly match the LIF network simulations, morphological neurons used current synapses in
the reference case, except in the simulation discussed in the subsection “Difference between
current-based and conductance-based synapses for the LFP signal” were conductance synapses
were adopted (Table 3E). The calculations of transmembrane currents in the morphological
model were performed using passive neuron models with the parameters listed above
(Table 4). Following volume conductor theory, the model neurons were assumed to be sur-
rounded by an infinitely sized extracellular medium with conductivity assumed to be real, sca-
lar (the same in all directions) and homogeneous (the same everywhere) with o= 0.3 S/m [77].
For further discussion on these assumptions see [32].

The Python codes we used to generate LFP from artificial morphologies injected with LIF
spike dynamics are available on the LFPy official site (http://lfpy.github.io/).

LFP proxies for LIF networks

We tested several simple models to match the LFP simulation based on the different variables
describing the activity in the LIF network: firing rate, membrane potential, AMPA and GABA
synaptic currents. We considered variables computed over the set of all pyramidal neurons, of
all interneurons or both populations. We considered proxies based on these variables and on
the simple sum or the sum of absolute values of synaptic currents as in [15,46]. Then we con-
sidered linear combinations of synaptic currents with different time delays. We tested the accu-
racy of the proxy in describing the time evolution of the LFP given by the morphological model
by using the mean of squared values of the correlation coefficient R (which is equivalent to the
fraction of variance explained). The quality of the proxy was tested separately for each depth.
We computed the cross-correlation between the simulated LFP signal and the corresponding
proxy and we determined the delay as the lag of the cross-correlation peak (see Fig 4). For this
delay we determined the best linear fit using the Matlab function polyfit for single regressors
and the Matlab function regress for regressor combinations. We estimated the quality of the
proxy as the squared correlation coefficient between the best fit and the LFP. The proxy for
each depth is defined by the optimal delays and the coefficients of the different components for
regressor combinations. To compare the performance of the different proxies taking into
account the different number of free parameters between WS, RWS and all the other proxies,
we used the Bayesian Information Criterion (BIC, [54,78])

BIC = —2]+ Klogn (8)
where [ is the optimized loglikelihood function, K the number of estimable parameters and n

the sample size. Under the assumption of Gaussian noise, —2/ can be approximated as
constant + nlog®% [79] where RSS is the sum of the residual squares, so the BIC criterion

n

becomes
RSS
BIC = nlog— + Klogn 9)
n

which is the criterion we adopted in the manuscript.
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Supporting Information

S1 Fig. Calibration of morphology of multi-compartmental models. (A) Layer 2/3 pyrami-
dal cells: Comparison of amount of cellular membrane surface between anatomically recon-
structed cells (left) and synthetic morphologies (right). Results shown in units of um” per cell
for 25 um bins of cortical depth. Green lines indicate profiles of individual cells and black lines
are average traces. (B) As in panel A, but for stellate cells.

(TIF)

$2 Fig. Summary of all tested proxies in the reference case. (A) Fraction of LFP variance
explained by the different proxies at different depths. FR: Firing rate; Vm: membrane potential;
AMPA/GABA: input current values; 2I: sum of the two input currents; ¥|I|: sum of the absolute
values of the two input currents. Quantities with _exc/_inh subscript are computed only over
the set of excitatory/inhibitory neurons, e.g., AMPA_exc is the average AMPA current input
into excitatory neurons. Quantities with no subscript are computed over all neurons. (B) Opti-
mal time lag for different depths for same proxies as previous panel. (C) Fraction of variance
explained by combination of AMPA and GABA currents with same coefficients as Eq (4) and
different delays. Optimal (and reference) combination is indicated by an X.

(EPS)

S3 Fig. Bayesian information criterion. Same as panel 5C but showing for each proxy the BIC
value (see Methods) instead of the fraction of variance explained.
(EPS)

$4 Fig. Input modulation with real morphologies. Same as Fig 6B and 6D when using real
reconstructed morphologies of cortical stellate and layer 2/3 pyramidal cells (see Methods).
(EPS)
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