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Abstract

Human epigenome and transcription activities have been characterized by a number of

sequence-based deep learning approaches which only utilize the DNA sequences. How-

ever, transcription factors interact with each other, and their collaborative regulatory activi-

ties go beyond the linear DNA sequence. Therefore leveraging the informative 3D

chromatin organization to investigate the collaborations among transcription factors is criti-

cal. We developed ECHO, a graph-based neural network, to predict chromatin features and

characterize the collaboration among them by incorporating 3D chromatin organization from

200-bp high-resolution Micro-C contact maps. ECHO predicted 2,583 chromatin features

with significantly higher average AUROC and AUPR than the best sequence-based model.

We observed that chromatin contacts of different distances affected different types of chro-

matin features’ prediction in diverse ways, suggesting complex and divergent collaborative

regulatory mechanisms. Moreover, ECHO was interpretable via gradient-based attribution

methods. The attributions on chromatin contacts identify important contacts relevant to

chromatin features. The attributions on DNA sequences identify TF binding motifs and TF

collaborative binding. Furthermore, combining the attributions on contacts and sequences

reveals important sequence patterns in the neighborhood which are relevant to a target

sequence’s chromatin feature prediction.

Author summary

Human transcription activities are regulated by chromatin features including transcrip-

tion factor binding, histone modification, and DNase I hypersensitive site. Recently many

computational models are proposed to predict chromatin features from DNA sequence.

However, human genome has a complex and dynamic spatial organization, and chroma-

tin loops form and bring regulatory elements that lie far apart on the genomic sequence

into spatial proximity so that transcription factors which bind far apart may interact with

each other. Therefore, to investigate the collaborations among chromatin features, utiliz-

ing 3D chromatin organization is critical. In this work, we propose a graph neural
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network model to predict chromatin features in the light of 200bp-resolution Micro-C

contact maps which capture fine-scale chromatin contacts well. Furthermore, by inter-

preting the model, we identify important chromatin contacts which contribute to chroma-

tin feature prediction, and characterize the collaborations among these chromatin

features, which helps researchers understand transcription factor collaborative binding

mechanisms.

Introduction

The human body consists of hundreds of different cell types in spite of the identical genotype

[1], and the precise gene expression, cell identities and plasticity are dictated by transcriptional

regulatory mechanisms [2]. In this process, transcription factors (TFs) bind DNA regulatory

sequences by recognizing their binding motifs and form a complex system that regulates chro-

matin and transcription [3]. Motivated by this, plenty of current deep learning based predic-

tion models characterize TF binding and other chromatin features such as histone marks and

DNase I hypersensitive sites,only from the DNA sequences. However, growing evidence indi-

cates that transcription factors interact with each other [4, 5] and may form condensates in the

3D chromatin organization [6]. Therefore, it is critical for a computational model to properly

characterize collaborative transcription regulation in the light of 3D chromatin organization.

Currently, multiple deep learning based models are proposed to predict chromatin features

from DNA sequence, but most of these models predict chromatin features without utilizing

the 3D chromatin organization. Here according to whether 3D chromatin organization is uti-

lized, we categorize the deep learning based computational works for predicting chromatin

features into sequence-based and graph-basedmodels. Well-known sequence-based models,

such as DeepSEA [7], DanQ [8], DeepBind [9], Basset [10], Basenji [11], and SATORI [12],

predict chromatin features only from DNA sequences and ignore the informative chromatin

structures. To the best of our knowledge, the only graph-based chromatin feature prediction

model ChromeGCN [13] uses a gated graph convolution network to leverage the neighbor-

hood information from 1kb resolution Hi-C contact maps which capture the spatial interac-

tions between 1kb genomic regions, but it does not fully characterize cooperation among

chromatin features.

In this paper, we proposed ECHO (Epigenomic feature analyzer with 3D CHromosome

Organization), a graph-based neural network to predict the chromatin features and identify

collaboration among them by including 3D chromatin organization. In ECHO, nucleosome-

resolution Micro-C contact maps which capture higher resolution chromatin contacts than

Hi-C, were represented as graphs, in which nodes were non-overlapping 200 base pair (bp)

long genomic segments and weighted edges were chromatin contacts between these segments.

Inspired by recent work [14, 15], we transformed the graph structure data to grid structure,

which was then operated by 1D convolutions to leverage the neighborhood information.

ECHO accurately predicted chromatin features including transcription factor binding, histone

modifications, and DNase I hypersensitive sites, with an average AUROC 0.921 and an average

AUPR 0.378 in the prediction of 2,583 chromatin features, significantly higher than the best

sequence-basedmodel with an average AUROC 0.885 and an average AUPR 0.318. In addition,

by evaluating the model using contacts of different distances, we identified patterns about how

chromatin contacts of different distances affected chromatin feature prediction.

Moreover, the contributions of Micro-C contacts and DNA sequences to the investigated

chromatin features were characterized by applying an attribution method to ECHO. For TFs

PLOS COMPUTATIONAL BIOLOGY Characterizing collaborative transcription regulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010162 June 6, 2022 2 / 25

International Human Epigenome Consortium

(IHEC). The TF binding profiles are all collected

from ENCODE narrowPeak bed files. The download

urls of the chromatin feature profiles and the

source code of ECHO are available in the GitHub

repository: https://github.com/liu-bioinfo-lab/echo.

Funding: ZZ, FF and JL were supported by National

Human Genome Research Institute award

R35HG011279. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1010162
https://github.com/liu-bioinfo-lab/echo


with known motifs, the corresponding high attribution score regions on DNA sequences

match their binding motifs. For TFs without known motifs, previous sequence-based methods

may fail to extract prediction patterns from the binding DNA sequences. From the comparison

of ECHO and sequence-based model’s results, we found that these TFs’ prediction accuracy

improved more than that of TFs with known motifs. Therefore, ECHO leveraged chromatin

structures and extracted information from the neighborhood to assist prediction. As we attrib-

uted the TFs to the neighborhood, the high attribution score regions in the neighbor sequences

also matched other TFs’ binding motifs, which indicated that ECHO recovered TF collabora-

tive binding activities. Furthermore, important sequence patterns were revealed from high

attribution score regions in the neighborhood, and some were consistent with existing biologi-

cal knowledge.

Results

A graph neural network that leverages 3D chromatin organization and

predicts chromatin features

We proposed ECHO, a graph neural network model to predict various chromatin features,

including transcription factors (TFs) binding activities, histone modifications, and DNase I

hypersensitive sites (DHSs), and characterize their collaboration in the light of high-resolution

3D chromatin organization. ECHO takes inputs including one-hot representations of 1000-bp

DNA sequences from the reference genome and chromatin contacts from Micro-C contact

maps, and outputs a vector of predicted chromatin features. The architecture of ECHO con-

sists of sequence layers, graph layers, and one prediction layer (Fig 1a and S6 Fig). The

sequence layers extract sequence features. The graph layers aggregate neighborhood informa-

tion to extract features from the neighborhood. The prediction layer makes predictions from

previous graph layers. Unlike previous sequence-based models such as DeepSEA [7] and

DanQ [8], ECHO leveraged neighborhood information to assist the prediction of chromatin

features. Unlike ChromeGCN [13] which used graph convolution networks (GCNs) and

aggregated the neighborhood information based on the weighted adjacency matrix, we first

transformed the graph structure of chromatin contact data to a grid structure [14, 15], and

then we performed convolution to learn features from sequential and spatial chromatin struc-

tures. Additionally, ECHO utilized 200bp resolution Micro-C contact maps since many of the

DHS peaks were narrower than 200bp (S5 Fig), and the widths of TF binding sites were typi-

cally much smaller than 200bp. To predict chromatin features at this high resolution, Micro-C

which detected chromatin contacts between much shorter fragments than Hi-C and better

illustrated fine-scale chromatin interactions, was more desirable. Moreover, different from

ChromeGCN which required full batch training, ECHO used neighborhood sampling and

mini-batch training which made it applicable to large graphs [16].

ECHO predicted chromatin features more accurately than baseline

methods

We first compared the prediction performance of ECHO and three sequence-based models,

including DeepCNN (the deep neural network with six convolutional layers used in ExPecto

framework [17]), DeepSEA [7], and DanQ [8]. AUROC and AUPR scores were calculated for

individual chromatin features. Overall, ECHO predicted chromatin features accurately with

an averaged AUROC of 0.921, which is significantly higher than DeepCNN (AUROC 0.885, p-
value 6.73E−97), DeepSEA (AUROC 0.881, p-value 1.89E−124), and DanQ (AUROC 0.881, p-
value 1.57E−122) (Fig 1b). Similarly, ECHO yielded an averaged AUPR of 0.378, which is
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Fig 1. Architectural details of ECHO and its empirical performance in chromatin feature prediction tasks. (a)

Model architecture. The model inputs are one-hot representations of DNA sequences. The inputs x are first fed into

sequence layers f to extract hidden representations ϕ. For central sequence i, we first sample a fixed number of

sequential neighbor sequences from its sequential neighbor set N ðiÞ
c and a fixed number of spatial neighbor sequences

from the spatial neighbor set N ðiÞ
s . The hidden representations of sampled sequential neighbors are stacked into a

feature matrix XðiÞc which is input to graph layers gc to learn an updated hidden representation hðiÞc . The feature matrix

XðiÞs stacked by spatial neighbors is fed into gs to learn an updated hidden representation hðiÞs . A feature embedding

concatenated by the two hidden representations will be fed into the final prediction layer p to compute a chromatin
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significantly higher than DeepCNN (AUROC 0.318, p-value 7.20E−25), DeepSEA (AUROC

0.312, p-value 1.96E−25), and DanQ (AUROC 0.316, p-value 1.41E−29) (Fig 1b). When we

separated model performance in terms of the three categories of chromatin features, namely

TF, histone mark, and DHS, we observed that the ECHO’s dramatically improved the predic-

tion for histone mark, moderately improved the prediction for TF, and mildly improved the

prediction for DHS (Fig 1c and S1 Fig).

ECHO used both spatial neighbors from the contact maps and sequential neighbors along

the DNA sequence to predict chromatin features. To show the importance of spatial neighbors

from contact maps, we built ECHO with only a large number of sequential neighbors along

the DNA sequence but no spatial neighbors, and the model yielded an AUROC score 0.917

and an AUPR score 0.369 which were lower than those from original ECHO model (S2 Table).

We also showed the importance of sequential neighbors along the DNA sequence by building

ECHO with the spatial neighbors only, and the model achieved an AUROC of 0.918 and an

AUPR of 0.372 which were sightly lower than those from original ECHO (S2 Table).

Since the collected chromatin features are from 402 cell lines, we further compared ECHO

with DeepCNN in a cell-type specific chromatin feature prediction task. ECHO achieved

higher mean AUC scores and mean AUPR scores for almost all the collected cell types (S2 and

S3 Figs). Although the prediction performance improvement is not obvious for some under-

represented cell types (i.e., these with only one collected chromatin feature, see S3 Fig), the

improvement on other cell types is much more significant (S2 Fig).

The current results from ECHO used DeepCNN as the pre-train model to pre-train the

sequence layers, and we were curious whether the improvement was consistent if we changed

DeepCNN to DeepSEA and DanQ. Experiment results showed that when applying the same

ECHO framework to different pre-train sequence-based models such DeepSEA and DanQ,

the prediction was improved consistently, ECHO pre-trained by DeepSEA had an average

AUROC of 0.918 and AUPR of 0.373, and ECHO pre-trained by DanQ yielded an average

AUROC of 0.919 and AUPR of 0.386 (S2 Table).

In addition, we compared ECHO with a graph-based model ChromeGCN [13]. Chro-

meGCN’s full batch training is computationally prohibitive on our evaluation datasets (over

2.9 million sequence segments and 2,583 chromatin features). Therefore, we used the small

dataset processed by ChromeGCN to compare our ECHO and ChromeGCN. The small data-

set was for GM12878 only, which included 103 chromatin features (90 TFs, 11 histone marks,

and 2 DHSs) and a 1kb resolution Hi-C contact map. For both ECHO and ChromeGCN, each

2000-bp input DNA sequence and its reverse complement sequence were first embedded

using one-hot encoding (use vectors of 0.25 for sequence gaps and unannotated regions).

DeepCNN was selected as the pre-train model. In ECHO, 30 spatial and 10 sequential neigh-

bors were sampled for each input sequence. In ChromeGCN, a combination of constant

neighborhood and Hi-C contact maps was used. In both ChromeGCN and ECHO, hidden

representations of each original sequence with its reverse complement were extracted when

the pre-train model achieved a minimum loss on validation sets, which were then input to the

graph layers. The outputs for the original sequence and its reverse complement were averaged

in the calculation of the loss. The hyperparameters were all kept the same for ECHO and

feature vector y(i). (b) The AUROC and AUPR scores for individual chromatin feature are provided according to

ECHO and three baselines including DeepCNN, DeepSEA and DanQ. The given p-values from paired t-tests indicate

that ECHO achieves a significant improvement. (c) Scatter plots of each chromatin feature’s AUROC score (top

panels) and AUPR scores (bottom panels) from ECHO and DeepCNN. ECHO outperforms DeepCNN on TF, histone

mark and DHS profile prediction for both AUROC scores and AUPR scores.

https://doi.org/10.1371/journal.pcbi.1010162.g001
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ChromeGCN. ECHO predicted GM12878’s chromatin features accurately with a mean

AUROC of 0.924, a mean AUPR of 0.429 and a mean recall at 50% FDR of 0.399, which out-

performed ChromeGCN (AUROC 0.916, AUPR 0.406 and recall at 50% FDR 0.372) (S3 Table

and S4 Fig).

The influences of Micro-C contact distances on chromatin feature

prediction

We next investigate whether the improved chromatin feature prediction depends on the chro-

matin contact distances. To compare the influences of long-range and short-range Micro-C

contacts on chromatin feature prediction, we separated the Micro-C contacts into four non-

overlapping groups by contact distance within 0−1 kb, 1−5 kb, 5−20 kb, and over 20 kb. The

four groups have 14, 30, 26, and 13 million chromatin contacts, respectively. For each group,

we ran ECHO only using the specified range of Micro-C contacts without sampling sequential

neighbors. The effects of each contact distance group were evaluated by the same model per-

formance criteria, including AUROC and AUPR. By comparing the performance of each

group with the baselines and original ECHO with all Micro-C contacts, we found both the

long-range and short-range Micro-C contacts contributed to chromatin feature prediction.

Overall, short-range Micro-C contacts produced a more significant improvement on model

performance, which was indicated by the more significant p-values from the paired t-tests with

baseline DeepCNN (p-values for AUROC: 0−1 kb (1.95E−29), 1−5 kb (1.91E−42), 5−20 kb

(1.62E−13), 20− kb (3.25E−4); p-values for AUPR: 0−1 kb (1.03E−10), 1−5 kb (1.12E−10),

5−20 kb (3.81E−4), 20− kb (3.24E−2) Fig 2a).

We further investigated the influences of Micro-C contact distances on the prediction of

TFs and histone marks separately. Surprisingly, three patterns were revealed (Fig 2b, 2c, 2d,

and 2e). First, for predicting TFs related to chromatin structure maintenance such as CTCF,

RAD21, and SMC3, ECHO using short-range Micro-C contacts with contact distances

within 0−1 kb and ECHO using long-range Micro-C contacts with contact distances over 20

kb improved the model the most (Fig 2b). The high AUPR and AUROC scores for over 20

kb Micro-C contacts indicated that ECHO leveraged long-range interactions between these

structural proteins. Second, for chromatin features mostly binding to promoters and

enhancers and related to gene activation such as H3K4me3, H3K4me1, H3K27ac, H3K9ac,

and POLR2A, ECHO achieved the highest AUROC and AUPR scores with 0−5 kb short-

range Micro-C contacts, while the performance deteriorated as contact distance increased

(Fig 2c and S7 Fig).

The last pattern was that the Micro-C contacts with contact distance within 1−20 kb (espe-

cially 1−5 kb) improved the prediction of gene elongation marks (including H3K36me3,

H3K79me2, and H4K20me1, Fig 2d) and repressive marks (including H3K9me3 and

H3K27me3, Fig 2e) the most. Gene elongation marks usually spanned longer than gene activa-

tion marks, resulting in correlation over longer distances. DNA methylation was found to be

better correlated between distant loci in the B compartment where the repressive marks were

enriched [18], and these correlation patterns were also revealed by ECHO. Overall, these pat-

terns validated our assumption that Micro-C contacts of different contact distances could be

related to chromatin features in different ways, and they indicated that ECHO identified these

complex collaborative regulatory mechanisms, which might contribute to its great improve-

ment on histone mark and TF prediction.
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Fig 2. How much chromatin contacts helps to predict a chromatin feature is contact-distance specific. (a)

Comparing the performance of ECHO using Micro-C contacts from specified contact distance ranges. The x-axis shows

four groups with different contact distance ranges and the total number of Micro-C contacts used. The p-values

calculated by paired t-tests are given. (b-e) show the effects of Micro-C contact distances on the prediction of chromatin

structure maintenance related TFs, gene activation related chromatin features, gene elongation marks, and gene

repressive marks, respectively.

https://doi.org/10.1371/journal.pcbi.1010162.g002
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Chromatin contact resolution is critical in ECHO’s prediction of

chromatin features

To investigate whether the resolution of chromatin contacts is critical to improve the predic-

tion performance, we compared the performance of ECHO using the high-resolution Micro-C

contact maps and the relatively low-resolution Hi-C contact maps. In the previous settings,

high-resolution 200-bp Micro-C contact maps were used to provide spatial neighborhood

information for ECHO. Different from Hi-C which used a restriction enzyme [19], Micro-C

used MNase for chromatin fragmentation [20], providing higher resolution than Hi-C. Since

Hi-C could not reach the resolution higher than 1 kb, we sampled 200bp chromatin contacts

from the 1 kb resolution Hi-C contact maps as follows. For each 200bp central sequence, we

first found the 1kb bin where it located so that we could identify its 1kb spatial neighbors from

1kb Hi-C contact maps. Then, for each of these 1kb spatial neighbors, we connected the cen-

tered 200bp bin with the original 200bp central sequence to form a 200-bp resolution Hi-C

contact map. The motivation of this sampling strategy was that the centered 200bp bin with

the flanking regions could also cover the whole 1kb region. Consistent with the normalization

of Micro-C contact maps, both the HFF and H1-hESC Hi-C contact maps were normalized

and merged by taking the maximum contact value at each position to generate a weighted

adjacency matrix, and contacts with low contact values were filtered out with some threshold.

In this experiment, we chose two thresholds and sampled 50 spatial neighbors and 10 sequen-

tial neighbors for each sequence similarly, resulting in 61M and 83M Hi-C contacts, respec-

tively. ECHO using Micro-C contact maps predicted chromatin features with a mean AUROC

of 0.921, which was significantly higher than ECHO with 83M Hi-C contacts (AUROC 0.914,

p-value 7.08E−6), ECHO with 61M Hi-C contacts (AUROC 0.912, p-value 4.67E−10) and

DeepCNN (AUROC 0.885, p-value 6.73E−97). Moreover, ECHO with Micro-C contact maps

yielded a mean AUPR of 0.378, which outperformed ECHO with 83M Hi-C contacts (AUPR

0.367, p-value 4.92E−2), ECHO with 61M Hi-C contacts (AUPR 0.361, p-value 4.79E−3) and

DeepCNN (AUPR 0.318, p-value 7.20E−25). As the results demonstrated, ECHO with either

Micro-C or Hi-C contact maps achieved better performance than baseline DeepCNN. How-

ever, ECHO with Micro-C contact maps using fewer contacts outperformed ECHO with Hi-C

contact maps, which indicated that high-resolution Micro-C contact maps provided more pre-

cise chromatin contact information for predicting chromatin features (Fig 3).

Identifying important chromatin contacts contributing to predicting

chromatin features

For characterizing the contributions of Micro-C contacts and DNA sequences towards pre-

dicting chromatin features, we applied an attribution method [21] to our ECHO framework,

which calculated the attribution scores of the inputs as gradient × input (Fig 4a and Methods).

Unlike sequence-based models which only attributed the chromatin features to the sequence

itself, ECHO also attributed chromatin feature prediction to the sequences of its neighbors

implied by chromatin contacts, which characterizes the contributions of neighbor sequences

to the chromatin features.

Moreover, the attribution scores computed on the contact matrices identified the important

contacts relevant to the targeted chromatin feature (S8 Fig). To validate the contact attribution,

we took CTCF for example. As an architectural protein bridging genome topology and func-

tions [22], CTCF interactions play an important role in DNA looping and transcriptional regu-

lation. Suppose that each contact connected one central sequence and one of its neighbor

sequences, we first identified all chromatin contacts whose central sequences were bound to

CTCF, and calculated their attribution scores related to CTCF prediction. Then the contacts
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with attribution scores greater than 0.1 were divided into four groups with contact distance

between 5−10 kb, 10−30 kb, 30−100 kb, and over 100 kb. In each group, we calculated the pro-

portion of these contacts whose other anchor was also bound by CTCF, namely the percentage

of CTCF interaction (Fig 4b and 4c).

Additionally, we added a baseline which identified all Micro-C contacts whose central

sequence bound by CTCF without filtering the attribution scores, and obtained the percent-

ages of interactions whose both anchors were bound by CTCF, which were shown as ‘all’ in

Fig 4c. We observed that the percentage of potential CTCF interactions increased with the

chromatin contact distance. However, the increasing rate was significantly lower than the

increasing rates of the percentages of CTCF interactions stratified by attribution scores, which

could be observed from the other four groups filtered by attribution scores in the same figure.

Within short-range interactions, the percentages of CTCF interactions were significantly

lower than those within long-range interactions. However, as the contact distance increased,

long-range CTCF interactions were more essential to CTCF binding prediction. When pre-

dicting the binding sites of CTCF, if ECHO assigned a high attribution score to a>30 kb

Micro-C contact, then CTCF also bound the other anchor of the contact with a very high prob-

ability (Fig 4c). Moreover, this pattern still existed when we changed the threshold of attribu-

tions scores to 0.3, 0.5, and 0.7. The distance range matched well with the common CTCF-

mediated chromatin looping, indicating that ECHO not only captured the relationships

between loops and CTCF interactions but also enhanced the prediction of CTCF binding sites

by identifying its potential interacting domains.

Fig 3. ECHO’s performance when it is coupled with different types of contact maps. Two types of contact maps (200-bp Micro-C contact maps and

up-sampled 200-bp Hi-C contact maps) are compared here. The p-values from paired t-tests indicate that Micro-C contact maps provide more precise

high resolution chromatin contact information for chromatin feature prediction. The x-axis shows the contact map types and the total numbers of

chromatin contacts used by ECHO (resulting from two contact value cut-off thresholds). The median AUROC and AUPR scores are provided above

the median lines.

https://doi.org/10.1371/journal.pcbi.1010162.g003
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Furthermore, to test whether the attribution scores related with chromatin features could

reflect cell-type specific Micro-C patterns, we calculated the attribution scores on the chroma-

tin contacts related with the chromatin features in H1 cell line whose Micro-C contact map

existed, and compared them with the contact map used by ECHO. Since not all of the chroma-

tin contacts were related to chromatin features to be predicted by ECHO, we did not expect to

recover the comprehensive Micro-C patterns from the attribution scores. The attribution

scores showed more similarity with the chromatin contact maps in some regions than the oth-

ers. Here, we gave two example regions in S9 Fig. In one genomic region, the attribution scores

resembled the original chromatin contact matrices, but in the other region, the attribution

scores and the contact matrices showed less similarity.

Fig 4. Details of attribution methods and validations of attributions on Micro-C contacts. (a) Workflow of attribution methods. If sequences u and

v are the spatial neighbors of the central sequence i, sequences i−1 and i + 1 are i’s sequential neighbors, then in the forward propagation, sequence

layers f are applied to extract hidden representation ϕ(i) for each sequence. Next, two binary sampling matrices, PðiÞc and PðiÞs , are input to multiply with ϕ
to form two feature matrices, XðiÞc and XðiÞs . The two feature matrices are fed into graph layers (gc and gs) and one prediction layer p to compute a

predicted chromatin feature vector ŷ ðiÞ. Next we take the gradient of the specific label l on i with respect to the inputs (two sampling matrices, the

central sequence and neighbor sequences) independently, the attribution scores of each input which indicate the contributions to the central sequence

i’s label l, are calculated by gradient × input [21]. The attributions on the two sampling matrices, ½SðiÞc �l and ½SðiÞs �l , are first compressed into two vectors,

½VðiÞc �l and ½VðiÞs �l , and then taken the maximum to become the i-th row in the interaction importance matrix. In addition, the attribution scores ½Sði� 1Þ�
ðiÞ
l

of the sequence i−1 for label l on sequence i are computed. (b) Logarithm plots to show the total numbers of Micro-C contacts whose central sequence

side bound by CTCF. Micro-C contacts are separated into four groups according to the contact distances: 5−10 kb, 10−30 kb, 30−100 kb, and 100− kb.

In each group, the contacts with CTCF related attribution scores greater than 0.1, 0.3, 0.5, and 0.7 are selected, and group ‘all’ is a baseline where

contacts are not filtered by attribution scores. (c) Bar-plots to show the percentage of CTCF interactions, which is calculated as the number of contacts

whose two sides were bound by CTCF over the total number of contacts whose central sequence was bound by CTCF.

https://doi.org/10.1371/journal.pcbi.1010162.g004
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Identifying TF binding motifs and collaborative binding mechanisms

among TFs

Previous chromatin feature prediction models like Enformer [23] and Basenji [11] did not

focus on capturing TF collaborative binding. Although collaborative binding mechanisms

could be potentially captured by the attention strategy used by Enformer and the dilated con-

volution strategy used by Basenji, the collaborative binding activities that could be potentially

recovered by these models were limited within their receptive fields (e.g., up to 100kb in Enfor-

mer). Another prediction model SATORI could capture collaborative binding but it was lim-

ited to a small region (within 1kb distance). By contrast, ECHO leveraged Micro-C contact

maps and could identify collaborative bindings guided by chromatin contact maps, without a

range limit. The collaborative binding mechanisms were reflected by the attribution scores cal-

culated on both the central sequence and its neighbor sequences related to chromatin features

on the central sequence. We first found that the highly attributed regions on the central

sequences matched known binding motifs from JASPAR [24] (S10 Fig). Furthermore, some

high attribution score regions in the neighbor sequences which contributed to chromatin fea-

ture prediction on the central sequence, also matched known motifs from JASPAR. Therefore,

the correlated high attribution score regions on both central and neighbor sequences

might reflect TF collaborative binding (S10 Fig, and the first example showing collaborative

binding patterns with a distance of 190kb). In addition, TF binding motifs can be identified

from attribution scores of corresponding TF binding sequences by using TF-MoDISco [25]

(S10 Fig).

The TF collaborative binding mechanisms were further investigated by combining attribu-

tions on DNA sequences and Micro-C contacts. For example, a contact between two candidate

cis-regulatory elements (cCREs) from ENCODE [26] at chr 2: 28,810,975−28,811,136 and chr

2: 28,821,422−28,821,694 received an attribution score of 1.0 for CTCF labels. By attributing

the TFs binding on the central sequence to both the cCREs, we found that the high attribution

score regions on the two cCREs matched with the CTCF motif from JASPAR (Fig 5). This

indicated that ECHO learned both the CTCF motifs and the CTCF interaction patterns, and

the CTCF on neighbor sequence’s side cCRE contributed to the binding of CTCF on the cen-

tral sequence’s side cCRE.

We also found a candidate enhancer-promoter interaction between chr 2: 113,627,160

−113,627,340 and chr 2: 113,602,125−113,602,462 receiving an attribution score 0.925 related

with CTCF binding (Fig 5b). By calculating the attribution scores for TFs binding on the cen-

tral sequence, we identified an ELF1 motif on the central sequence side’s cCRE and three TF

binding motifs on the neighbor sequence side’s cCRE, which contributed to TFs binding on

the central sequence. First, we identified the binding motif of ZBTB3 which frequently appears

in the proximity to CTCF [27], from the neighbor sequence’s attribution scores, but we found

that ZBTB3 was not selected in our TF profiles (i.e., ZBTB3 was not predicted). Since

sequence-based models such as DeepCNN could only attribute the predicted binding TFs to

its central sequence, this motif might not be detected from DeepCNN’s attribution scores. To

test if DeepCNN could detect this motif, we directly attributed the sequence which contained

the ZBTB3 motif based on its predicted binding TFs by using DeepCNN, and the ZBTB3 bind-

ing motif was not detected from the attribution scores as expected. Therefore, DeepCNN’s

attribution scores could miss some binding motifs of unpredicted TFs, but ECHO might detect

these binding motifs in the neighbor sequences by identifying important regions which con-

tributed to TF binding prediction on the central sequence. Furthermore, the NRF1 motifs

identified by ECHO and DeepCNN were not in the same location, but the attribution scores

assigned by ECHO matched the NRF1 motif better than DeepCNN (see Fig 5b and the high

PLOS COMPUTATIONAL BIOLOGY Characterizing collaborative transcription regulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010162 June 6, 2022 11 / 25

https://doi.org/10.1371/journal.pcbi.1010162


attribution score regions highlighted in rectangles for ECHO and highlighted in ovals for

DeepCNN).

Discovering sequence patterns in the neighborhood contributing to

chromatin features on the central sequences

In this experiment, we investigated whether specific sequence patterns in the spatial neighbor-

hood existed and contributed to the related chromatin features on the central sequences. From

the previous results, ECHO outperformed sequence-based models on multiple individual

chromatin feature prediction (Fig 1c). Sequence-based models performed worse, particularly

on TFs without known motifs, since they failed to extract patterns from the central sequences.

However, ECHO, by leveraging neighborhood information, improved the prediction accuracy

more significantly on TFs without known motifs than TFs with known motifs (Fig 6c, S11 and

S12 Figs). Thus, we believed that ECHO’s improvement in chromatin feature prediction

largely came from leveraging neighbor sequences.

Fig 5. Visualization of attribution scores on chromatin contacts, central sequences, and neighbor sequences. The hESC Micro-C contact map is

visualized in the UCSC genome browser [28]. The green arrow represents a Mirco-C contact pointing to the central sequence side. The attribution

scores of the Micro-C contacts for CTCF are provided. The candidate cis-regulatory elements (cCREs) within both anchors of the contact are shown as

small colored rectangles, which are attributed for TFs binding on the central sequence. High attribution score regions are plotted in the black rectangles.

The binding motifs from JASPAR are marked with ?. As a comparison, the attribution scores of cCREs on the neighbor sequence sides contributing to

TFs binding on the neighbor sequences are computed using the baseline DeepCNN, which are shown in the large blue blocks. The corresponding high

attribution score regions are plotted in ovals. (a) The high attribution score regions on both the two cCREs match known CTCF motifs from JASPAR.

(b) The regions within the red rectangles match binding motifs of TFs not included in our collected data. The attribution scores of the neighbor

sequence’s cCREs computed by ECHO identify ZBTB3 which was not identified by DeepCNN. The attribution scores from ECHO detected NRF1’s

motif, which is more proximate than the one identified by DeepCNN.

https://doi.org/10.1371/journal.pcbi.1010162.g005
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This motivated us to capture specific patterns contained in the neighbor sequences and

helpful to TF binding. We first calculated attribution scores of chromatin contacts for investi-

gated TFs. Then we selected the highly attributed contacts whose central sequence sides were

these TFs’ binding sites, and these binding events could be successfully predicted by ECHO.

Next, two hundred neighbor sequences from the other anchor of these chromatin contacts

were sampled. Next, common sequence patterns were identified from the attribution scores

with respect to TFs binding on the central sequences by TF-MoDISco [25].

Fig 6. Model performance improvement compared to DeepCNN and visualization of sequence patterns in the neighborhood of investigated

chromatin features. (a) ECHO predicts RBFOX2 and SMAD5 more accurately on all the collected cell lines than the baseline DeepCNN. The patterns

generated by TF-MoDISco [25] using the selected neighbor sequences’ attribution scores for the corresponding TFs binding on central sequences,

which are compared with known binding motifs from JASPAR [24]. (b) ECHO outperforms DeepCNN on GM12878 H3K4me3 prediction and the

important patterns in the neighborhood are visualized. 400 neighbor sequences which have high attribution score contacts with successfully predicted

GM12878 H3K4me3 sites are selected. The attribution scores of the neighbor sequences are input to TF-MoDISco to identify frequent patterns. Top

four patterns are given, and some of them match several TFs’ binding motifs from JASPAR. (c) 100 TFs with the cell lines which achieve greatest

improvement on AUROC compared to DeepCNN.

https://doi.org/10.1371/journal.pcbi.1010162.g006
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Examples were given to validate our assumptions (Fig 6a). We first found that ECHO pre-

dicted SMAD5 more precisely on all the collected cell lines. Then a FOS:JUN related pattern

and a CAGGTG pattern were identified in its neighborhood. Corresponding evidences were

found that SMADs had a low affinity for DNA, so they relied heavily on co-factors for the tran-

scriptional regulation [29]. For ZEB1 whose binding motif contains CAGGTG pattern, it

bound to coactivator p300 and was highly correlated with SMAD binding by promoting the

formation of a p300–Smad transcriptional complex [30]. Additional evidence was found that

SMAD interacted with AP-1 [31] whose binding site was identified as 5’-TGA G/C TCA-3’,

and FOS:JUN is a subunit of AP-1.

We further explore whether these significant patterns existed around histone marks. We

identified sequence patterns regarding H3K4me3 on cell line GM12878. For all the central

sequences predicted to be H3K4me3 in GM12878, we identified four hundred neighbor

sequences from important contacts, and their attribution scores were studied by TF-MoDISco.

In the end, important patterns were identified and validated by current biological knowledge

(Fig 6b). One of the pattern, ATGGCGG, matched parts of CTCF and YY1 motifs, and both

YY1-binding and CTCF-YY1 co-binding regions were known to be enriched by H3K4me3

[32]. Another pattern matched NFYA motif from JASPAR, which agreed with the fact that the

presence of H3K4me3 depended on NF-Y [33].

Discussion

Our model predicts chromatin features from DNA sequences in the light of high-resolution

3D chromatin organization, which differs from previous sequence-based deep learning models

which only utilize DNA sequences. As a result, ECHO significantly outperforms sequence-

based models on chromatin feature prediction in terms of AUROC and AUPR scores. The

improvement is consistent in terms of the specific sequence-based model ECHO builds on and

the specific chromatin feature to be predicted. ECHO also outperforms the only graph-based

chromatin feature prediction model in the literature, ChromeGCN [34], which demonstrates

that convolution over sampled neighborhood strategy in ECHO is important.

Whereas ECHO and ChromeGCN [13] explicitly leverage chromatin contacts, DNA inter-

actions are implicitly captured by SATORI [12], Basenji [11], Enformer [23]. SATORI captures

TF-TF interactions by combining CNN with self-attention mechanisms. SATORI first finds

interactions between positions on DNA sequences with attention matrices, then position inter-

actions are converted to CNN filter interactions and finally translated to TF interactions. How-

ever, SATORI captures interactions within the short input DNA sequence and cannot capture

long-range interactions. Basenji and Enformer allow long DNA sequences as input to capture

long-range interactions and predict signal track data. Basenji adopts dilated convolution to

increase receptive field size which enables to deal with 131 kb long DNA sequences. Enformer

uses self-attention to capture long-range interactions and allows longer input sequences than

Basenji. Unlike Enformer and Basenji, ChromeGCN and ECHO leverage 3D chromatin orga-

nization which aggregate the regulatory information from the chromatin spatial neighbors

without a range limit, so that ChromeGCN and ECHO identify important chromatin contacts

contributing to chromatin feature prediction by attributing these chromatin contacts. Further-

more, ECHO identifies collaborative bindings by discovering sequence patterns on both the

central sequences and the spatial neighbor sequences, while capturing collaborative bindings is

not a focus of Enformer and Basenji. Moreover, ECHO uses Micro-C rather than Hi-C used

by ChromeGCN, which better captures fine-scale chromatin contacts and is more desirable to

capture interactions between chromatin features. The methodologies used in ChromeGCN

and ECHO are also quite different, ChromeGCN converts the entire DNA sequence into the
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graph structure by leveraging Hi-C contact maps, and uses a gated graph convolution network

(GCN) to aggregate the neighborhood information while the gated function determines

whether to use the aggregated neighborhood information. Nonetheless, ECHO further trans-

forms the graph structure data from higher-resolution contact maps to grid structure and

applies 1D convolutions to learn the neighborhood aggregation patterns.

Our work also systematically characterizes the contributions of the spatial and sequential

genomic neighborhood towards predicting the chromatin features of a central sequence. Dif-

ferent from previous sequence-based prediction models which only calculate attribution scores

on each central sequence for its own chromatin features, and also different from ChromeGCN

which only computes the attribution scores on the Hi-C contacts excluding DNA sequences,

ECHO attributes the chromatin feature prediction to both chromatin contacts and DNA

sequences (including central sequences and their neighbors). Moreover, ECHO, which mainly

consists of convolutional layers, is more interpretable compared to ChromeGCN. Some popu-

lar interpretation methods, such as gradient-based attribution methods and visualizing first

convolutional layers, may not perform well on ChromeGCN for the following reasons. First,

the full batch training in ChromeGCN is computationally prohibitive to compute the gradients

end-to-end. Other typical gradient-based attribution methods, such as DeepLIFT [21] and

layer-wise relevance propagation (LRP) [35], may not perform well, since original DeepLIFT

cannot handle gating functions in ChromeGCN and LRP can fail with Sigmoid activation

function [34]. In addition, the motifs learned from the first convolutional layer are the same as

motifs learned from sequence-based models, since pre-training sequence-based models freezes

the first convolutional layer in ChromeGCN.

Another contribution in our work is that ECHO with neighborhood sampling enables to

deal with large-scale graphs and datasets [16]. The data used by ECHO includes 200-bp high-

resolution Micro-C contact maps with more than 77 million contacts, and more than 2.9 mil-

lion input DNA sequences, and 2,583 chromatin features.

One of the limitations in our work is that some valuable chromatin contacts may be over-

looked in ECHO’s neighborhood sampling procedures. For each central sequence, ECHO

samples a number of neighbor sequences according to the contact strength. When one central

sequence has multiple neighbor sequences, some important Micro-C contacts with weaker

contact strength may be left out. Another limitation is that we only merge two Micro-C contact

maps (hESC and HFF) to provide chromatin contact information, but the chromatin features

are from multiple cell lines. Although many chromatin structures are preserved across differ-

ent cell types, we suspect some of the chromatin contacts related to transcription regulation

are cell type-specific. Therefore, we anticipate ECHO performs better when additional Micro-

C data sets become available in the future.

Methods

Different from previous chromatin feature prediction models, including DeepSEA [7], DanQ

[8], DeepBind [9], and Basenji [11], which ignore the important 3D chromatin organization,

our model ECHO extracts both sequential features along the DNA sequence and spatial fea-

tures from G, which explicitly describes high-resolution 3D chromatin organization. In the

graph G ¼ ðV; E;AÞ, each node v2V represents a non-overlapping DNA segment of fixed

length (i.e., 200 bp), and V covers the entire DNA sequence. Each edge e2E represents a chro-

matin contact between two DNA segments, and the strength of the chromatin contacts is cap-

tured by A. Because some of the 3D chromatin contacts are cell-type specific, we merge

several existing Micro-C contact matrices from different cell types by taking the maximum

contact value at each entry of the adjacency matrix A.
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Model description

ECHO takes a one-hot encoding representation of one DNA sequence segment x(i) as input,

and computes a vector of chromatin features ŷðiÞ with a number of neural networks layers,

including sequence layers, graph layers, and one prediction layer. Since each layer in a deep

learning model is a function mapping the layer inputs to the layer outputs, we use functions f,
g, and p to represent sequence layers, graph layers, and prediction layer, respectively. The

architectural and algorithmic details of our model are given in Fig 1a and Algorithm 1, and the

notations used in our work are summarized in S1 Table. Next, we describe each of the three

layers in detail.

The sequence layers f are designed to extract sequence feature information

�
ðiÞ
¼ f ðxðiÞÞ ð1Þ

where i 2 {1, . . ., N} is the index of 1000-bp DNA sequences (including 400-bp flanking

regions both upstream and downstream a 200-bp central sequence) ordered by their locations

on the reference genome, and N indicates the number of input sequences. ϕ(i)2RK represents

the hidden representation of sequence i from the sequence layers f. To reduce training parame-

ters and accelerate training, we adopt a pre-train approach which is also used in ChromeGCN

[13]. Existing sequence-based models, e.g. DanQ [8] and DeepSEA [7] are first pre-trained to

learn features from sequences, and all the pre-trained layers except the last fully connected

layer in the sequence-based models are frozen as our sequence layers f.
Since the convolution kernels operate on receptive fields of fixed size and order, original

convolutions cannot be performed on a graph [14]. Therefore, between the sequence layers

and graph layers, functions SAMPLE and STACK are introduced to transform the graph struc-

ture data into grid structure data. Specifically, we first sample a fixed number of sequences

from the neighbor set and stack the hidden representations of these sequences to form a fea-

ture matrix ϕ which allows convolution operations to extract sequential and spatial features,

namely

XðiÞs ¼ STACK ðSAMPLEð�;N ðiÞ
s ÞÞ; ð2Þ

XðiÞc ¼ STACK ðSAMPLEð�;N ðiÞ
c ÞÞ: ð3Þ

Let N ðiÞ
s represent a sequential neighbor set containing the neighbors along the chromatin

fiber. Let N ðiÞ
c indicate a spatial neighbor set from the 3D chromatin structure, i.e., a union of

sequences which contact with central sequence i, and here only the first-order neighbors with

direct contacts are considered. The neighbor set is defined as the union of these two sets,

namely

N ðiÞ
¼ N ðiÞ

s [N ðiÞ
c : ð4Þ

Suppose that ks sequential neighbors from both downstream and upstream of the central

sequence i are sampled, then we stack the hidden representations of these selected sequences
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according to their location orders on the genome to generate a feature matrix

XðiÞs ¼

ð�
ði� ksÞÞ

T

ð�
ði� ksþ1Þ

Þ
T

..

.

ð�
ðiþksÞÞ

T

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

2 Rð1þ2ksÞ�K : ð5Þ

Next the spatial neighbor set is defined as

N ðiÞ
c ¼ ftjA½i; t� > tg ð6Þ

where A½i; t� is the normalized contact value between sequences i and t, and τ> 0 is a threshold

to filter out extremely small contact values and noisy contacts. Then we order the sequences

from the neighbor set N ðiÞ
c by the contact values with the central sequence i, then kc sequences

with top contact values are sampled from the set N ðiÞ
c . Similarly, a feature matrix XðiÞc 2 R

kc�K is

generated by stacking the hidden representations of sampled sequences with an order of the

contact values. If one central sequence does not have as many neighbors as expected, dummy

sequencesM02RK with features of all zeros are added to feature matrices to ensure they are of

the same size. Although the sequential neighbors are also likely to be spatial neighbors from

Micro-C contact maps, independently sampling the sequential neighbors is able to inform the

model that these neighbor sequences are the nearest potential TF binding sites to the central

sequence, which may affect the central sequences’ chromatin features along the DNA sequence.

The graph layers g perform convolution on the feature matrices XðiÞc and XðiÞs of central

sequence i as well as its neighbors to aggregate information from the neighborhood,

hðiÞs ¼ gsðX
ðiÞ
s Þ; hðiÞc ¼ gcðX

ðiÞ
c Þ; ð7Þ

where hðiÞs and hðiÞc are updated hidden representation extracted by graph layers gs and gc. The

feature matrix XðiÞc 2 R
kc�K enables 1D convolution by taking kc as the number of channels and

K as the feature size, so as the feature matrix XðiÞs . For the two types of feature matrices, their

corresponding graph layers gc and gs are applied. The structures of graph layers gc and gs are

the same except for the first layer which receives inputs in different sizes (the numbers of sam-

pled sequential and spatial neighbors are different). Both gc and gs consist of convolution layers

and a global average pooling [36] in the last layer. Each final feature map reflects one type of

sequential and spatial neighborhood information aggregation pattern.

The prediction layer p predicts chromatin features from the updated hidden representa-

tions of each input sequence,

ŷðiÞ ¼ pðhðiÞs kh
ðiÞ
c Þ; ð8Þ

where k indicates a concatenation operation. The hidden features output by the graph layers

hðiÞs and hðiÞc are concatenated as the embedding of the central sequence i, which is fed into the

prediction layer p with one fully connected layer.

Although higher-order neighborhood information is not investigated in our work, it can

also be learned by mixing powers of adjacency matrix [37]. For example, to learn the neighbor-

hood information within an n-th order, additional spatial neighbor lists ½N ðiÞ
c �
j
need to be sam-

pled from the j-th power of adjacency matrix Aj
to generate the feature matrix [X]j. Then a
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new embedding kj¼2;...;n gjcð½X
ðiÞ�
j
Þ is concatenated to the first-order node embedding where gjc

are the graph layers corresponding to j-th order neighborhood information extraction.

Algorithm 1: workflow of ECHO

Input: Graph ðV; E;AÞ. Input features xðiÞ 8i ¼ 1; � � � ; jVj. Sequence layers f.
Graph layers gc and gs. Prediction layers p. Number of sampled sequence
and first-order neighbors ks and kc. First-order neighbor list

N ðiÞ
c 8i ¼ 1; . . . ; jVj:

Output: Predicted chromatin features ŷðiÞ 8i ¼ 1; . . . ; jVj.
�
ðiÞ
 f ðxðiÞÞ 8i ¼ 1; � � � ; jVj

for i ¼ 1; . . . ; jVj do
Dummy node M0  0
XðiÞs  ½�

ði� ksÞ; � � � ; �
ðiþksÞ�

T

fi½1�; i½2�; � � � ; i½jN
ðiÞ
c j�g  sortðN ðiÞ

c Þ

if jN ðiÞ
c j < kc then

XðiÞc  ½�
ði½1� Þ
; � � � ; �

ði½jN
ðiÞ
c j�Þ
; � � � ;M0�T

else

XðiÞc  ½�
ði½1� Þ
; � � � ; �

ði½kc �Þ
�
T

end
end
hðiÞs  gsðX

ðiÞ
s Þ; hðiÞc  gcðX

ðiÞ
c Þ 8i ¼ 1; � � � ; jVj

ŷðiÞ  pðhðiÞs kh
ðiÞ
c Þ 8i ¼ 1; � � � ; jVj

Model training

For training our models, we first downloaded the human reference genome GRCh38 and

removed sequence gaps and unannotated regions. The rest of the genome was segmented into

200-bp bins. Next we collected 2,583 chromatin feature profiles including 882 TFs, 1,510 his-

tone marks and 191 DHS profiles from the Encyclopedia of DNA elements (ENCODE) [26]

and the International Human Epigenome Consortium (IHEC) [38]. The bins were labelled in

a way that if more than half of a bin was in the peak region, then the corresponding entry in its

chromatin feature vector was set to be 1, and 0 otherwise. We had over 2.9 million 200-bp seg-

ments bound with at least one TF, resulting in 585, 137,600-bp DNA sequence (20.4% of the

human reference genome). We added a 400-bp flanking region to both upstream and down-

stream of the 200-bp sequence to generate a 1000-bp sequence. As input, each sequence was

represented by a 4 × 1000 one-hot encoding matrix. These input sequences were split to a

training set, a validation set, and a testing set without overlapping. Here we chose chromo-

somes 2, 8, and 21 as the testing set, chromosomes 3 and 12 as our validation set, and the

remaining chromosomes were used to train our model.

The default pre-train model in ECHO was DeepCNN if not specified. The length of each

hidden feature vector ϕ(i) extracted by sequence layers f was 2600. The weighted adjacency

matrix A was generated by merging Micro-C contact matrices of two cell lines, HFF and hESC

as follows. We first calculated the total read counts in both the contact maps for each chromo-

some and the ratio between the two maps. Each contact value in the contact matrix with a

larger total read count was multiplied with the ratio to ensure that the two contact matrices

had the same total read count. Then we merged the normalized contact matrices by taking the

maximum contact value at each entry in the matrices. In addition, we used a threshold to filter

out noisy contacts in the adjacency matrix, i.e., all the entries with contact values <2 were

removed. Next we sampled 50 spatial neighbors and 10 sequential neighbors for each

sequence, resulting in a total number of 77M chromatin contacts used.
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ECHO and all the baseline models were trained on a NVIDIA Tesla V100 GPU with a

batch size 64 and optimized by stochastic gradient descent with a momentum of 0.9 and a

learning rate of 0.5. For the loss function, we chose a mean binary cross entropy loss

BCELoss ¼ �
1

N
1

L

XN

i¼1

XL

l¼1

yðiÞs logðŷðiÞl Þ þ ð1 � y
ðiÞ
l Þ logð1 � ŷ

ðiÞ
l Þ; ð9Þ

where N indicates the number of samples, L is the length of target chromatin feature vector,

yðiÞl and ŷðiÞl represent the l-th element in target and predicted chromatin feature vector for

sequence i, respectively.

Attribution methods

Even though our ECHO model predicts chromatin features accurately, researchers still hope

to identify DNA segments and chromatin contacts that contribute to the prediction of a spe-

cific chromatin feature. Visualizing the filters from the first convolutional layer is useful to dis-

cover DNA binding motifs, but the patterns learned by individual filters can be redundant,

and one motif pattern can be the result of cooperation among multiple filters [25]. In our

work, we adopt a gradient-based attribution method. The inputs to our model include both

DNA sequences and their interactions, and for the simplicity, we use gradient × input [21] to

calculate attribution scores on the inputs (DNA sequences and Micro-C contacts). The score

on each base pair indicates which base pair of a DNA sequence and which chromatin contacts

contribute to the prediction of a given chromatin feature. The attribution method is described

in Fig 4a and explained thoroughly in the following sections.

Attribution on chromatin contacts. For each sequence i, generating its feature matrix

X(i) is a multiplication between a binary sampling matrix and the hidden representation matrix

ϕ2RN × k, XðiÞs ¼ P
ðiÞ
s � and XðiÞc ¼ P

ðiÞ
c �, where PðiÞs 2 f0; 1g

ks�N and PðiÞc 2 f0; 1g
kc�N are two

binary sampling matrices used to sample sequential and spatial neighbor sequences, respec-

tively. Both the two matrices have exactly one 1 in each row, indicating which sequence is sam-

pled. Then we use gradient × input to calculate the attribution scores of the sampling matrices

for chromatin feature l

½SðiÞc �l ¼ P
ðiÞ
c �

@ŷðiÞl
@PðiÞc

; ½SðiÞs �l ¼ P
ðiÞ
s �

@ŷðiÞl
@PðiÞs

;

where� represents the Hadamard product. ½SðiÞc �l and ½SðiÞs �l are the attribution scores of the

two binary sampling matrices for chromatin feature l. If attribution scores need to be calcu-

lated for a set of chromatin features L (e.g. same type of chromatin features from different cell

lines), we have

½SðiÞc �L ¼
X

l2L

½SðiÞc �l; ½SðiÞs �L ¼
X

l2L

½SðiÞs �l:

Then ½SðiÞc �l and ½SðiÞs �l are compressed to two interaction importance vectors ½V ðiÞc �l2R
1�N

and ½V ðiÞs �l2R
1�N by taking the one non-zero value at each row. Each non-zero element in the

vectors indicates the importance of sampling the corresponding neighbor sequence, which

shows the contact importance with central sequence i. Since one neighbor sequence may be

sampled as the sequential and spatial neighbors at the same time, we take the maximum of the

two vectors to generate one single vector which is taken as the i-th row of a sparse interaction

importance matrixMl2RN × N. An elementMl[i, j] indicates the importance of a contact

between sequence j and the central sequence i for chromatin feature l, while if sequence j is not
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sampled as i’s neighbor sequence, then the element is set 0. In the end, we take the absolute

value and normalize each row of the interaction importance matrix as

cMl ½i; j� ¼
jMl½i; j�j

maxt2f1;���;NgðjMl½i; t�jÞ
2 ½0; 1�:

Attribution on DNA sequences. In addition to calculating attribution scores of the cen-

tral sequences like sequence-based models, ECHO computes an attribution score ½SðjÞ�ðiÞl for the

neighbor sequence j2N ðiÞ
for chromatin feature l on the central sequence i (Fig 4a)

½SðjÞ�ðiÞl ¼ x
ðjÞ �

@yðiÞl
@XðiÞ

�
@XðiÞ

@xðjÞ

 !

8j 2 N ðiÞ
[ fig;

where N ðiÞ
indicates the neighbor set of the central sequence i. Similarly, to calculate the attri-

bution scores for a set of chromatin features L, we have

½SðjÞ�ðiÞL ¼
X

l2L

½SðjÞ�ðiÞl :

The high attribution score regions in the central sequence and its neighbors significantly con-

tribute to the prediction of the central sequence’s chromatin features.

Combining attribution on DNA sequences and chromatin contacts. The attribution

methods on DNA sequences and Micro-C contacts are combined to further interpret ECHO,

e.g., discovering important sequence patterns in the neighborhood. To identify such sequence

patterns for specific chromatin features, we have two requirements. The first requirement is

that the contacts which connect central sequences and the neighbor sequence need to have

high attribution scores for the investigated chromatin features. Then the second one is that the

sequence patterns are generated from high attribution score regions from those neighbor

sequences. Therefore, we first identify highly attributed chromatin contacts according to the

chromatin features investigated, and select the contacts if the investigated chromatin features

are successfully predicted on the central sequence sides. Next, each pair of central and neigh-

bor sequences connected by the contact is further attributed regarding the contributions to the

chromatin features on the central sequence. To explore the TF collabortive binding mecha-

nism, the high attribution score regions on both the central and neighbor sequences are com-

pared with known TF motifs from JASPAR [24]. To discover important sequence patterns in

the neighborhood contributing to the chromatin features on the central sequences, we collect a

number of neighbor sequences satisfying the requirements discussed above and compute their

attribution scores. Then sequence patterns are generated from these sequences with their attri-

bution scores by TF-MoDISco [25].

Supporting information

S1 Table. Notations used in our work.

(PDF)

S2 Table. Comparing the mean AUROC and AUPR scores of ECHO with the baselines.

The first three models are the baselines, the fourth model is ECHO with only spatial neighbors

sampled, and the fifth model is ECHO with only sequential neighbors sampled, and the last

threes are our proposed methods built on the corresponding baseline model with 10 sequential
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neighbors and 50 spatial neighbors sampled.

(PDF)

S3 Table. Comparing the performance of ECHO with ChromeGCN for 103 chromatin fea-

tures on GM12878 cell line.

(PDF)

S1 Fig. Comparing the prediction performance between ECHO and baselines. (a) The

mean ROC curves from ECHO and three baseline models for three types of chromatin fea-

tures, including TF, histone mark and DHS. ECHO achieves higher mean AUROC scores

than the baselines, especially on TF and histone mark. (b) The ROC curves for each chromatin

feature from ECHO and DeepCNN models. The red lines denote the median ROC curves.

(TIF)

S2 Fig. Comparing ECHO with DeepCNN on cell-type specific chromatin feature predic-

tion. The results of 200 cell lines with most collected chromatin feature profiles are provided,

the rest cell lines are shown in S3 Fig. The first column shows the improvement on mean

AUPR score for each cell line, the second column shows the improvement on mean AUC

score, the third column displays the number of collected chromatin features, and the fourth

column shows the mean AUROC scores.

(TIF)

S3 Fig. Comparing ECHO with DeepCNN on cell-type specific chromatin feature predic-

tion. The results of the rest 202 cell lines with least collected chromatin features are shown.

(TIF)

S4 Fig. Scatter plots to compare the model performances of ECHO with ChromeGCN on

GM12878 cell line.

(TIF)

S5 Fig. A box plot of average peak widths of TFs and DHSs. The mean DHS peak width is

162bp and the mean TF peak width is 383bp.

(TIF)

S6 Fig. Details of the graph layers and the prediction layer in ECHO. The architectures of

graph layers are varied considering the number of chromatin features, the input sequence size,

and whether sequential neighbors are sampled. The model architecture reported here is for

predicting 2,583 chromatin features with 50 spatial neighbors and 10 sequential neighbors per

input sequence.

(TIF)

S7 Fig. The effects of Micro-C contact distances on predicting chromatin features related

with gene activation.

(TIF)

S8 Fig. Majority of attribution scores on Micro-C contacts are attribution scores of con-

tacts within topologically associating domains (TADs). The Mirco-C contacts within the

first 10k sequences in Chromosome 8 are visualized in a circle. 0.988 of the total attribution

scores for all chromatin features are total attribution scores of contacts within TADs, and

0.982 of the contacts are in TADs. The blue dashed lines show the hESC TAD boundaries. The

black numbers on the circle index the 10k sequences, and the blue small numbers index the 22

TADs. The attribution scores of contacts for all chromatin features within each TAD are
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plotted. The color transparency of the lines represents the values of attribution score.

(TIF)

S9 Fig. Comparing original contact matrices used by ECHO and the yielded attribution

matrices. Two example regions in H1 cell line are provided. The original contact matrices are

shown in the left column and the yielded attribution matrices from ECHO are shown in the

right column. (a) A region where the attribution scores resemble the original chromatin con-

tact matrices. (b) In a region where the attribution scores are different with the contact matri-

ces, the two blue squares in the figure show the chromatin contact patterns which are not

reflected by the attribution scores. The chromatin contact matrices are symmetric whereas the

attribution score matrices are asymmetric with (i, j)−th entry denoting the importance of sam-

pling neighbor sequence j to the chromatin feature prediction on the central sequence i. Sum

of the rows are provided on the right of each matrix. Notice that the chromatin contact matri-

ces are populated for every 200bp sequence, but the attribution scores can be zero by default

for the entire row if the 200bp sequence is not used by ECHO (ECHO only used the genomic

regions with at least one TF binding events in all used cell lines, following the same strategy

used by DeepSEA) or no chromatin features in H1 cell line appear in the 200bp sequence.

(TIF)

S10 Fig. Visualization of attribution scores on DNA sequences. (a) Attribution scores of

DNA sequences for two specific TFs, JUND and CEBPB. The height of each letter (A,T,C,G)

shows the attribution score for the exact base pair. The high score regions are compared with

known motifs from the JASPAR database [24]. (b)Sequence patterns generated by TF-Mo-

DISco [25]. For each TF, the sequence patterns are generated from the attribution scores of

100 binding sites which are also successfully predicted by ECHO. These patterns match the

known binding motifs from JASPAR. (c)Attribution scores of the central sequences and the

neighbor sequences toward TF binding on central sequence. The Micro-C contact values

between central sequences (top) and neighbor sequences (bottom) are given. The high attribu-

tion score regions in the central sequence reflect TF binding motifs, whereas the high attribu-

tion score regions in the neighbor sequence contribute to the TF binding prediction on the

central sequence. The correlated high attribution score regions reveal the potential collabora-

tive binding mechanisms of TFs. For example, we observe a CTCF pattern in the central

sequence, and a CTCF pattern and a MAX::MYC pattern in the neighbor sequence. Our obser-

vation agrees with the previous study that CTCF and MAX which frequently exist at the chro-

matin loop anchors may form a complex and participate in CTCF loops [39].

(TIF)

S11 Fig. 100 TFs with the cell lines which have lowest performance improvement or per-

form even worse compared to DeepCNN. TFs without known motifs from JASPAR are

marked in blue, others are marked in red.

(TIF)

S12 Fig. Differences of AUROC scores comparing ECHO with DeepCNN for TFs in multi-

ple cell lines. We identify ten TFs for which ECHO and DeepCNN predict quite differently

among more than three cell lines. The Y-axes show the differences of AUROC scores

(AUROC from ECHO minus AUROC from DeepCNN). TFs without known motifs are

marked with ‘�’. (Left panels) TFs whose AUROC scores are significantly higher in ECHO

than DeepCNN. (Right panels) TFs whose AUROC scores are slightly higher or lower in

ECHO than DeepCNN.

(TIF)
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