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Purpose: Thyroid eye disease (TED) is an autoimmune condition with an array of clinical manifestations,
which can be complicated by compressive optic neuropathy. It is important to identify patients with TED early to
ensure close monitoring and treatment to prevent potential permanent disability or vision loss. Deep learning
artificial intelligence (AI) algorithms have been utilized in ophthalmology and in other fields of medicine to detect
disease. This study aims to introduce a deep learning model to evaluate orbital computed tomography (CT)
images for the presence of TED and potential compressive optic neuropathy.

Design: Retrospective review and deep learning algorithm modeling.
Subjects: Patients with TED with dedicated orbital CT scans and with an examination by an oculoplastic

surgeon over a 10-year period at a single academic institution. Patients with no TED and normal CTs were used
as normal controls. Those with other diagnoses, such as tumors or other inflammatory processes, were excluded.

Methods: Orbital CTs were preprocessed and adopted for the Visual Geometry Group-16 network to
distinguish patients with no TED, mild TED, and severe TED with compressive optic neuropathy. The primary
model included training and testing of all 3 conditions. Binary model performance was also evaluated. An ocu-
loplastic surgeon was also similarly tested with single and serial images for comparison.

Main Outcome Measures: Accuracy of deep learning model discernment of region of interest for CT scans
to distinguish TED versus normal control, as well as TED with clinical signs of optic neuropathy.

Results: A total of 1187 photos from 141 patients were used to develop the AI model. The primary model
trained on patients with no TED, mild TED, and severe TED had 89.5% accuracy (area under the curve: range,
0.96e0.99) in distinguishing patients with these clinical categories. In comparison, testing of an oculoplastic
surgeon in these 3 categories showed decreased accuracy (70.0% accuracy in serial image testing).

Conclusions: The deep learning model developed in the study can accurately detect TED and further detect
TED with clinical signs of optic neuropathy based on orbital CT. The model proved superior compared with
human expert grading. With further optimization and validation, this TED deep learning model could help guide
frontline health care providers in the detection of TED and help stratify the urgency of a referral to an oculoplastic
surgeon and endocrinologist.
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Thyroid eye disease (TED) is an autoimmune condition that,
if delayed in diagnosis and management, can result in sig-
nificant morbidity including pain, diplopia, disfigurement,
and vision loss. Timely diagnosis, therefore, is paramount in
preventing permanent sequelae. However, the diagnosis of
TED is not always straightforward, as there exists a wide
range of clinical manifestations, requiring a variety of clinical
and functional tests interpreted by a specialist to diagnose and
categorize the severity of disease. As a result, many patients
present with late or severe stages of the disease.
ª 2023 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
Machine learning algorithms have been used in medicine
for efficient automated screening. These artificial intelligence
(AI) models are based on recognizing patterns in various
visual data sets including fundus photography,1e3 external
photography of the periocular structures,4 magnetic
resonance imaging (MRI),5 and computed tomography
(CT). Artificial intelligence has also been incorporated in
diagnosing orbital diseases, such as blowout fractures,
orbital cavernous venous malformations, and TED.6e9

Computed tomography scans of the face and head are
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commonly ordered by an array of nonophthalmology pro-
viders and performed for a wide variety of indications, and
therefore represent an opportunity for TED detection.

Various neural network-based methods have shown early
promise for TED screening and detection.5,10 However,
there are limitations of the existing literature that prevent
generalizability to patients in the United States and ability
to scale the model for widespread use. Additionally,
important clinical parameters such as compressive optic
neuropathy were not included in these models.

To aid in earlier and more accurate detection of TED, the
authors hereby seek to develop an accurate, efficient deep
learning model to evaluate CT scans for the presence of
TED. The ideal model will be able to triage the detected
disease by severity, and particularly assess for the presence
of compressive optic neuropathy.

Methods

A retrospective cohort study at Massachusetts Eye and Ear, a ter-
tiary ophthalmic institution, over a 10-year period (August 2011 to
2021) was performed. The Massachusetts General Brigham insti-
tutional review board approved this retrospective study and waived
the required written informed consent. The study was conducted
following the ethical standards outlined in the Declaration of
Helsinki and conducted in compliance with the Health Insurance
Portability and Accountability Act.

Subjects were patients aged > 18 years with a CT scan of the
orbit who had a complete examination by an oculoplastic surgeon
within 3 months of the scan being performed. Patients with a
clinical diagnosis of TED were included. Patients with no TED or
other orbital conditions who underwent CT orbits were included as
normal controls. Patients were excluded if they had another orbital
diagnosis, such as orbital tumors, fractures, or other inflammatory
processes, and patients with any prior orbital surgery (e.g., orbital
decompressions) were excluded. Demographics, clinical history,
clinical examination from the oculoplastic surgeons’ examination
that was closest in time to the CT, and ancillary testing, including
automated perimetry and laboratory testing, were abstracted from
the electronic medical record.

Based on retrospective chart review, patients were categorized
into 3 groups: normal, mild TED (no optic neuropathy), and severe
TED (with optic neuropathy). Each orbit was categorized separately
due to the asymmetric nature of TED. The orbits were categorized
based on clinical diagnosis, as measured and recorded in the chart by
the oculoplastic surgeon, in conjunction with laboratory results and
ancillary testing. Currently, the gold standard diagnosis of TED is
based on clinical examination and therefore this was used for cate-
gorization. As TED is a heterogenous disease, the distinguishing
factor between mild and severe TED was the presence of optic
neuropathy. Mild TED was defined as an orbit with clinical signs of
TED but without any clinical signs of optic neuropathy. Severe TED
was defined as orbits with clinical signs of TED concurrent with
signs of compressive optic neuropathy, including any one of the
following: dyschromatopsia, Humphrey visual field changes in
patterns consistent with TED,11 relative afferent pupillary defect, and
optic nerve head changes. These clinical categories were deemed the
ground truth for deep learning model training.

Data Preprocessing

To assess the deep learning model’s functionality in screening for
thyroid eye disease and compressive optic neuropathy based on a
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single discrete image, the unprocessed images were obtained by
manually cropping around the orbital region of interest. Right and
left orbits were analyzed individually. The TED data set was then
preprocessed for optimization in the deep learning model. The
original 2-dimensional images were varied sizes, where the image
width varied from 102 to 428 pixels and the image height varied
from 75 to 410 pixels (Fig 1A). To accommodate all image
samples and fit the input of the adopted deep learning model in
this work, the images were resized to 256 � 256 and further
transformed to the 3-channel Red Green Blue image (Fig 1B).
The 2-dimensional region of interest images were split into 3
predetermined categories (normal, mild TED, and severe TED).

Model Training and Evaluation

The deep learning method for TED status prediction was trained
based on the Visual Geometry Group (VGG)-16 network,11 which
classified the TED samples into 4 different experimental settings:
(1) VGG-16 trained for normal, mild, and severe samples; (2)
VGG-16 trained only for normal and mild samples; (3) VGG-16
trained only for normal and severe samples; and (4) VGG-16
trained only for mild and severe samples. For each experiment,
80% of the data were randomly sampled for training the model and
the remaining 20% of image samples were held for testing the
model prediction performance.

As shown in Figure 1C, the model took a 3-channel Red Green
Blue image of size 256 � 256 � 3 as input, which subsequently
went through 5 convolutional blocks to extract features. The first
and second blocks each contained 2 convolutional layers followed
by a max-pooling layer which aims to reduce the size of feature
map. The next 3 convolutional blocks each contained 3 convolu-
tional layers in a sequence followed by a max-pooling layer. The
feature maps output from the fifth convolutional block was finally
flattened in a feature vector which was used for TED status pre-
diction after a densely connected layer together with a dropout
layer. Note that the dense layer could output a 3-dimensional
vector or a single scalar value, depending on the experimental
settings. For example, when training the model to classify normal,
mild, and severe samples all together (i.e., the 3-class prediction
setting), the final output was a 3-dimensional vector which can be
transformed to the respective class probabilities through a SoftMax
function transformation. However, when training the model to
classify 2 classes (i.e., the binary-class prediction setting, e.g.,
normal vs. mild, normal vs. severe, and mild vs. severe), the final
output was a single scalar to indicate the binary prediction prob-
ability through a sigmoid function transformation.

To stabilize and enhance the model training, the pretrained
VGG-16 model was trained on the ImageNet data set to initialize
the model.12 The model on the TED data set was fine-tuned with a
total number of 100 epochs and a mini-batch size of 8. The Root
Mean Square Propagation (RMSProp)13 was adopted to optimize a
categorical cross-entropy loss for the 3-class prediction setting,14

and a binary cross-entropy loss for the binary-class prediction.15

For all model training settings, the learning rate was set as 0.00001.
For each category, the deep learning model screens and decides

based on the salient features of the input image. Figure 2 illustrates
examples with the Grad-CAM (Gradient-weighted Class Activa-
tion Mapping) technique which demonstrates the salient features
learned by the adopted deep learning model.

Comparison to Human Expert

To assess the model’s abilities against human graders, a subset of
images across the 3 categories were randomly selected from the data
set. The images were randomized and presented to an oculoplastic



Figure 1. Data preprocessing and Visual Geometry Group (VGG)-16 model training. A, A sample of original 2-dimensional orbital computed tomography
(CT) images of orbital CTs is demonstrated here, with varying image width and height. B, The images were resized to 256 � 256 and further transformed to
the 3-channel Red Green Blue image. C, The adopted deep learning framework for thyroid eye disease status prediction based on the VGG-16 network. The
size of the feature map at each layer is shown on the top of each block, e.g., for the convolutional block # 1, 256 � 256 � 64 means the size of feature map is
256 � 256 and the adopted number of convolutional filters is 64.
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surgeon (N.G.L.) who was masked to the clinical information for
grading. The grader (N.G.L.) was tasked with categorizing the im-
ages into normal, mild TED, and severe TED. The grader was tested
on discrete snapshot images, directly obtained from the image data
set, and serial cross sectional images, to simulate the real clinical
assessment process. Performance metrics were calculated based on
the number of eyes correctly identified as belonging to the normal
control, mild TED group, or the severe TED group.

Results

One hundred forty-one patients were identified who met the
criteria for inclusion in the study. Thirty-one patients were
included in the normal control group and a total of 123
patients were included in the mild and severe TED groups.
The median age of all participants was 71 years (range:
25e95 years). One hundred four (74%) patients were fe-
male, and 75% of patients identified as White. Patient de-
mographics are presented in Table 1. A total of 1187 images
were included in the data set: 373 images from 31 patients
(32 eyes) were controls, 459 images from 83 patients (84
eyes) with mild TED, and 355 images from 40 patients
(76 eyes) with severe TED. Thirteen patients were
included in both the mild and severe TED groups as they
demonstrated features of mild TED in 1 eye and severe
TED with compressive optic neuropathy in the other.

The deep learning model was trained and tested with
samples from all 3 groups (normal, mild TED, and severe
TED). The training data set (approximately 80% of total
images) consisted of 296 normal images, 375 mild TED
images, and 278 severe TED images. The testing data set
(238 images, approximately 20% of total images) consisted
of 77, 84, and 77 images from the normal control, mild
TED, and severe TED groups, respectively.

The primary model experiment was performed by
training the model on all 3 categories of images: normal,
mild TED, and severe TED. This model achieved an overall
accuracy of 89.5% (confusion matrix presented in Fig 3A).
The receiver operating characteristic curve demonstrates the
area under the curve (AUC) performance of the model at 3
classification thresholds (Fig 3B), and ranged from 0.96 to
0.99. The model misclassified 3 severe TED images as
mild TED, but no severe cases were classified as normal
(Fig 3C).

Binary modeling was performed with normal and mild
TED images. The training data set consisted of 289 images
from the normal group and 376 images from the mild
group, and the testing data set had 84 normal images and 84
mild images. Visual Geometry Group-16 achieved an
overall accuracy of 93.4% in determining the normal im-
ages and mild TED CT images with an AUC of 0.982
(Fig 4A1, 2). The model misclassified 9 mild TED images
as normal.

Binary modeling for normal and severe TED groups only
had a training data set with 297 images from the normal
group and 285 images from the severe TED group, and a
3



Figure 2. Salient feature maps. Feature importance map of representative salient features learned by the adopted deep learning model for all 3 groups
(normal [left panel], mild thyroid eye disease [TED] [middle panel], and severe TED [right panel]).
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testing data set with 76 images from the normal group and
70 images from the severe TED group. The overall accuracy
was 97.9% in distinguishing between normal and severe
TED, and the AUC was determined to be 0.993 (Fig 4B1,
2). The model misclassified 2 severe TED images as normal.
Table 1. Patient D

Demographic

Groups All Participants

Total, N 141 (1187 images)

Age (yrs) Median (range) 71 (25e95)
Sex, n (%) Female 104 (74)

Male 37 (26)
Race, n (%) White 115 (81)

Asian 11 (8)
Black 8 (6)
Others 7 (5)

TED ¼ thyroid eye disease.
*Thirteen patients were included in both the mild and severe TED groups bec
TED) and the other eye had mild TED.

4

Lastly, the binary model was trained on mild TED and
severe TED only. The training data set included 366 images
from the mild TED group and 285 images from the severe
TED group, and the testing data set included 93 images from
the mild group and 70 images from the severe group. The
emographics

Normal Mild TED Severe TED

31 (373 images) 83* (459 images) 40* (355 images)

61 (31e91) 74 (25e90) 65 (32e95)
22 (71) 65 (78) 27 (68)
9 (29) 18 (22) 13 (32)
23 (74) 63 (76) 31 (78)
2 (6) 8 (10) 3 (8)
3 (10) 6 (7) 1 (2)
3 (10) 6 (10) 5 (12)

ause 1 eye demonstrated features of compressive optic neuropathy (severe



Figure 3. Results of primary model. A, The results of the testing of the
primary model trained on all 3 categories are shown, with the confusion
matrix indicating an accuracy of 89.5%. B, The receiver operating char-
acteristic (ROC) curve demonstrates the 3 curves in a category vs. rest
model (normal vs. mild and severe; mild vs. normal and severe; and severe
vs. normal and mild) with an area under the curve (AUC) ranging from
0.96 to 0.99. C, The 3 images of severe thyroid eye disease (TED) that the
model misclassified as mild TED.
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overall accuracy was 93.8% in distinguishing mild TED and
severe TED, and the AUC was determined to be 0.985
(Fig 4C1, 2). The model misclassified 7 severe TED images
as mild TED. A bootstrapped t test was used to compare the
performance between the different models. The primary
model’s accuracy was found to be significantly greater than
that of the 3 binary models (P < 0.001).

For comparison with human graders, a subset of 373
images (31.4%) from 90 orbits across the 3 groups were
randomly selected for screening. The accuracy of the ocu-
loplastic surgeon on discrete single images was 43.8%.
Subsequent evaluation mimicking realistic clinical
assessment with serial region of interest images per orbit
had a prediction accuracy of 70.0% (Fig 5). In serial image
testing, the oculoplastic surgeon incorrectly identified 2
normal patients as mild TED and 1 normal patient as
severe TED. Notably, the oculoplastic surgeon never
misdiagnosed normal controls as mild or severe TED.
Discussion

This study presents a deep learning model that can accu-
rately distinguish orbital CTs from patients with normal,
mild TED, and severe TED with optic neuropathy. The
primary model can distinguish between all 3 categories with
89.5% accuracy and AUC of 0.96 to 0.99. Binary testing
showed improved accuracy, with normal versus mild TED
yielding 93.4% accuracy (AUC, 0.982); normal versus se-
vere TED yielding 97.9% accuracy (AUC, 0.993), and mild
versus severe TED yielding 94% accuracy (AUC, 0.985). It
was also shown to be more accurate in distinguishing all 3
categories compared with a human expert review of
imaging.

Deep learning models for TED have demonstrated early
promise with various strategies for radiographic images.5,10

These have included novel neural networks as well as those
built on existing pretrained machine learning algorithms.
One such study by Lee et al10 compared their own neural
network model with GoogleNet Inception, Deep Residual
Learning (ResNet), VGG, and oculoplastic surgeons, with
successful demonstration of the potential effectiveness of
AI. Variations of ResNet and VGG methods have also
been applied to TED patients who underwent MRI with
success in distinguishing active versus inactive phases of
disease.5 Some models employ inputting multiple pieces
of clinical data, visual fields, and orbital imaging.16 Other
studies have tried to delineate specific radiographic
hallmarks of TED, usually focusing on the extraocular
muscles.17,18 These and similar studies evaluating distinct
radiographic characteristics of TED may also aid future
machine learning algorithms and increase yield. Visual
Geometry Group-16 has been widely used in medical im-
aging. It has a relatively simple architecture, making the
model easier to understand, implement, and modify. It can
effectively learn and generalize complex patterns, which is
crucial in medical imaging when the model needs to
recognize subtle and complex patterns within the images.
Visual Geometry Group-16 is also beneficial for smaller
data sets, and a larger model has a higher risk of overfitting
small data sets.19 Therefore, VGG-16 was used for this
model development.

Limitations in the existing literature includes models
having difficulty distinguishing normal controls from pa-
tients with mild TED, the need for large numbers of images
per patient, significant manual/clinical input, and selection
bias due regional data sets usually from tertiary academic
hospitals and challenges with obtaining “normal” CT scans
for control patients. Additionally, there is a lack of AI for
radiographic detection of TED studies performed in the
United States. This may limit the generalizability of the
previously developed AI models to patients in the United
5



Figure 4. Results of binary model. The results of the binary models are shown, with the confusion matrixes presented in the top panels and the receiver
operating characteristic in the bottom panels. The model trained on normal vs. mild thyroid eye disease (TED) is shown on the left panel (A1, 2), normal
vs. severe TED in the middle panel (B1, 2), and mild vs. severe TED in the right panel (C1, 2, with accuracies of 93.4%, 97.9%, and 93.8% respectively,
and areas under the curve (AUCs) of 0.982, 0.993, and 0.985 respectively.
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States due to potential demographic and equipment
differences.

This study demonstrated great accuracy in distinguishing
between normal scans, mild TED with no optic neuropathy,
and severe TED with optic neuropathy on orbital CTs
(AUC, 0.96e0.99). This is the only model in the literature,
Figure 5. Results of serial image testing of an oculoplastic surgeon. The
results of serial image testing of an oculoplastic surgeon demonstrate an
overall accuracy of 0.7. There were no mild or severe cases of thyroid eye
disease that were mistaken as normal.

6

to the authors’ knowledge, that can distinguish between
these 3 categories. Binary testing also performed well, with
normal versus mild (accuracy, 0.982; AUC, 93.4), normal
versus severe (accuracy, 0.993; AUC, 97.9), and mild versus
severe (accuracy, 0.985; AUC, 93.8). Two models in the
literature that used CT scans to distinguish normal CTs from
TED reported AUCs of 0.9198 and 0.946,18 but did not
include analysis on the severity of the disease. One model
performed binary testing utilizing CTs to distinguish
normal versus mild and normal versus severe TED, with
AUC of 0.826 and 0.930 and accuracy of 0.895 and
0.979, respectively.10 Another model utilized MRI images
rather than CT and distinguished active versus inactive
TED (accuracy: 0.863 and 0.855, AUC, 0.922).5 Overall,
compared with other studies in the literature, this model is
more accurate and also can accurately distinguish normal,
mild TED with no optic neuropathy from severe TED
with optic neuropathy, which is critically important for
triaging urgent referrals to oculoplastic surgeons.5,8,10,18

Additionally, unlike some models which utilize
MRIs,5,20 this screening model utilizes orbital CTs which is
an imaging modality that is more accessible and less
expensive. One model uses external photographs as the
imaging modality,4,21 but orbital imaging is ideal for
training AI compared with other data sets because there is
less background noise, leading to greater potential
detection accuracy.6 However, CTs do have a cost and
expose the patient to ionizing radiation which may limit
its widespread use as a screening tool. However, by
detecting TED, and in particular TED with optic
neuropathy, early, expedited referrals may allow patients
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to initiate lifestyle modifications and potential
pharmacologic or surgical treatments sooner, potentially
decreasing morbidity and irreversible vision loss.

The primary model had an accuracy of 89.5%, which is
slightly lower than the accuracy of the binary models.
However, the primary model never underclassified a severe
TED patient with optic neuropathy as a normal scan, and
only misclassified 3 severe TED patients as mild TED. The
binary models had greater overall accuracy compared with
the primary model, but had several underclassifications (9
mild as normal; 2 severe as normal; and 7 severe as mild).
An ideal screening model that can be clinically applied
should have both high sensitivity and specificity, but also
importantly never underclassify conditions to ensure a
clinically grave condition is not missed. Although the bi-
nary models are more accurate, the primary model is more
clinically impactful as it appeared to never miss a severe
TED case in the testing phase. Interestingly, the human
expert grader, although less accurate overall than the
models, never underclassified a mild or severe TED as a
normal scan.

Post hoc review of the model-generated salient features
maps was notable for the model’s ability to generally identify
key features that oculoplastic surgeons and radiologists re-
view, such as the muscles and optic nerves. However, some
salient feature maps were found to highlight other areas such
as neighboring sinuses, which may account for some of the
inaccuracies of the models. Post hoc review of the mis-
classified scans did not identify a clear pattern for mis-
classifications. It is difficult to know what the model may
focus on in an image down to a pixel level that a human
grader may or may not be attuned to. Future directions could
include refining the model’s ability to detect specific com-
ponents without the orbit to analyze or having the model
auto-segment the orbit and isolate features such as the mus-
cles, optic nerve, or orbital fat to improve overall accuracy.

The current gold standard of an objective TED diagnosis
is clinical, with a combination of clinical examination,
laboratory testing, ancillary testing, and orbital imaging
aiding in diagnosis. This model was successful in diag-
nosing TED and its severity based on previously defined
clinical categories using imaging review alone without any
clinical information. Human expert review of imaging alone
was less accurate, particularly in distinguishing between
mild TED with no optic neuropathy and severe TED with
optic neuropathy. Although this should not supplant clinical
examinations, this model holds promise for utilization in
radiographic reviews of imaging and could be integrated
with radiology to both diagnose incidental TED if a patient
is undergoing neuroimaging for another reason, or to aide in
diagnosis and triage for noneophthalmology-trained clini-
cians. Patients with an unknown diagnosis may present to a
primary care or emergency department with their eye
symptoms, eye pain, or headache. Noneophthalmology-
trained clinicians may overlook clinical features of TED and
obtain a CT orbit for further evaluation. Additionally, un-
familiarity with TED and its disease process can lead non-
ophthalmology clinicians to be uncertain with the tempo of
referral to ophthalmology. Although it would be costly and
inefficient to routinely screen patients with thyroid problems
with a CT, oculoplastic surgeons are limited in the United
States and globally. Although oculoplastic examination is
likely a more comprehensive and directed approach to car-
ing for patients with TED, this CT model has potential to be
utilized in settings where an oculoplastics evaluation is
difficult to access.

The strength of this study is the inclusion of a large
cohort of patients with paired clinical data that allows for
correlation of CTs to clinical examination and the presence
of compressive optic neuropathy. However, there are several
limitations to consider. The study cohort was biased toward
abnormal CTs. Healthy patients without any clinical ab-
normalities do not routinely undergo orbital CTs. Those
with prior trauma, tumors, or other forms of orbital
inflammation were also excluded, and therefore the number
of radiographically normal control scans was limited.
However, although the total number of normal patients
included was low, the total number of image slices used was
comparable in number to the other categories (373 images
slices for normal; 459 for mild; 355 for severe). Addition-
ally, the scans may not represent a truly normal distribution
of the population as there was likely a higher index of
suspicion for an orbital process if the patient was under-
going a scan in the first place. However, it does represent
clinical practice, where a CT may be obtained for vague
orbital pain or proptosis to evaluate for TED, but ultimately
results as normal. Additionally, the study did not include
patients with enlarged extraocular muscles due to other
etiologies. This limits the predictive value of this model in
clinical practice, as a clinical examination is still warranted
to correlate with the AI model findings. Future studies
include expanding the model to distinguish TED from other
TED mimickers and differential diagnoses, as well as inte-
grating other clinical information, such as patient de-
mographics, laboratory data, reported symptoms, or clinical
examination findings to optimize the model’s accuracy. This
study is also limited due to sample bias, as an ideal model
would be trained on a broad and diverse demographic and
validated across different cohorts and regions as orbital
anatomy varies across ethnicities. Due to the location of the
hospital in the New England area, the demographic is
skewed toward White. However, other AI models utilizing
orbital images for detection of TED that have been devel-
oped thus far have been predominantly based on Asian
populations (Japan,18 South Korea,10 and China5,8). This
model helps to expand and diversify the models that are
already present in the literature.

Future directions for this particular research, and health
care-related machine learning models in general, include
expanding this system into an explainable machine learning
model. Explainable machine learning models provide
human-interpretable explanations for the model de-
cisions.22,23 Although this model provided salient feature
maps, it was not always clear that what the model was
emphasizing was what the human expert deemed to be
clinically relevant. A model that can be more widely
implanted clinically should be both accurate but also
provide prediction uncertainty with transparent prediction-
uncertainty metrics, and thus explainable machine learning
models are critical for health care implentation.22 Future
7
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directions may also include auto-segmentation of images
which may provide higher quality and more consistently
formatted images for model development and testing.

Thyroid eye disease is a disfiguring, and potentially
vision-threatening, condition. Timely diagnosis and referral
to oculoplastics for further treatment and management is
critical. Our AI model presents an accurate prediction
8

algorithm that can effectively distinguish between normal
patients and those with TED. Furthermore, it can distinguish
patients with TED who have clinical signs of compressive
optic neuropathy. With further optimization and validation,
this model can be used to help guide frontline providers in
the detection of TED and stratify the urgency of referrals to
oculoplastic surgeons and endocrinologists.
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