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For drug resistance patients, removal of a portion of the brain as a cause of epileptic seizures is a surgical remedy. However, before surgery,
the detailed analysis of the epilepsy localization area is an essential and logical step. +e Electroencephalogram (EEG) signals from these
areas are distinct and are referred to as focal, while the EEG signals fromother normal areas are known as nonfocal.+e visual inspection of
multiple channels for detecting the focal EEG signal is time-consuming and prone to human error. To address this challenge, we propose a
novelmethod based on differential operator andTunableQ-factorwavelet transform (TQWT) to distinguish the focal and nonfocal signals.
For this purpose, first, the EEG signal was differenced and then decomposed by TQWT. Second, several entropy-based features were
derived from the TQWTsubbands. +ird, the efficacy of the six binary feature selection algorithms, binary bat algorithm (BBA), binary
differential evolution (BDE) algorithm, firefly algorithm (FA), genetic algorithm (GA), grey wolf optimization (GWO), and particle swarm
optimization (PSO), was evaluated. In the end, the selected features were fed to several machine learning and neural network classifiers.We
observed that the PSO with neural networks provides an effective solution for the application of focal EEG signal detection.+e proposed
framework resulted in an average classification accuracy of 97.68%, a sensitivity of 97.26%, and a specificity of 98.11% in a tenfold cross-
validation strategy, which is higher than the state of the art used in the public Bern-Barcelona EEG database.

1. Introduction

1.1. Background. Epilepsy is a disease of the central nervous
system in which the brain is abnormally active [1–3]. Epi-
lepsy, in other words, is a neurological disorder that causes

seizures, abnormal sensations, and sometimes loss of con-
sciousness [4]. Epilepsy patients experience recurrent sei-
zures due to elevated electrical activity in the brain, which
disrupts the connection between the brain synapses. Al-
though seizure symptoms might affect any part of the body,
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electrical disorders related to all of them occur in the brain.
+e biggest challenge in neuroscience is understanding the
behavior of epilepsy and its effect on the brain. Determining
the type of seizure, the location of the attack, how it spreads,
the amount of brain that is affected, and how long it lasts
plays an important role.

Around 50 million of the world’s population, most of
whom living in developing countries, suffer from epilepsy
[5]. Neurologists classify epilepsy into two categories, partial
or focal and generalized epilepsy. If epilepsy attachments
occur in limited areas of the brain, this is called focal epi-
lepsy, and if the whole brain is involved, this is called general
seizure (see Figure 1).

Epilepsy can afflict anyone at any age, but it can be cured
by using antiepilepsy medications. +e results of the anti-
epilepsy drugs are promising, but 25% of patients do not
respond well to antiepilepsy drugs [6]. 20% of patients with
generalized epilepsy and 60% of patients with focal epilepsy
are not treated by antiepilepsy drugs. Surgery is a treatment
option for patients with focal epilepsy who are not
responding well to antiepilepsy drugs. In such cases, a
physician eliminates brain areas that are the source of the
epilepsy attack. However, a significant step before surgery is
to localize these areas of the brain. Although positron
emission tomography (PET) scan [7], single-photon emis-
sion computed tomography (SPECT) scan [8], and magnetic
resonance imaging (MRI) [9] can localize focal areas of the
brain, the main problem is the inaccessibility of this
equipment in most of the developing countries.

Electroencephalogram (EEG) signals measure the elec-
trical activity of brain synapses. +e EEG signals are com-
monly used by physicians to diagnose brain disorders or
activities. +e physician may localize the focal areas of the
brain by visual inspection of the EEG signal. In focal epilepsy
patients, EEG signals recorded from the focal areas of the
brain are distinct and are known as the focal EEG signals. In
contrast to focal signals, nonfocal signals are recorded from
other parts of the brain (see Figure 1). Visual inspection of
multiple channels for detecting the focal EEG signal is time-
consuming and vulnerable to human error. +erefore, a
computer diagnostic system is required for the accurate
detection of focal signals.

1.2.PreviousWorks. Several machine learningmethods have
been developed in the literature based on linear and non-
linear features for the classification of focal and nonfocal
EEG signals. Any machine learning method has three main
steps: (1) feature extraction, (2) feature selection, and (3)
classification. We can categorize previous works according
to these three steps.

+e linear and nonlinear features have been extracted
from the EEG signal from the time domain, frequency
domain, and time-frequency domain.

In [10] delay permutation entropy and in [11–13] a
combination of linear and nonlinear features have been
extracted from EEG signals in the time domain. In other
words, these features have been extracted directly from EEG
signals.+e features extracted from the EEG signal spectrum

are frequency-domain features such as [14] in which the
EEG signal spectrum was computed by Fourier transform
(FT) and mean frequency and root mean square were
extracted as discrimination features.

Many time-frequency methods like empirical mode
decomposition (EMD) [15–17], s-transform [18], discrete
wavelet transform (DWT) [19–21], EMD-DWT [6], em-
pirical wavelet transform (EWT) [22–24], flexible analytic
wavelet transform (FAWT) [25, 26], Fourier-Bessel series
expansion domain empirical wavelet transform filter bank
(FBSE-EWT) [27], Fourier-Bessel series expansion based
flexible time-frequency coverage wavelet transform (FBSE-
fTF-cwt) [28], slidingmode-singular spectrum analysis (SM-
SSA) [29], variational mode decomposition (VMD) [30],
and VMD-DWT [31] have been used for decomposing EEG
signals. Most of the extracted features from the time-fre-
quency representation of EEG signals are entropy-based
features that indicate appropriate entropies in the classifi-
cation of focal and nonfocal EEG signals.

Sample entropy [15, 16], Shannon entropy [6, 16, 19],
Renyi’s entropy [6, 16, 19], approximate entropy [16], phase
entropies [16, 19], log energy (LE) entropy [6, 17, 24–26, 32],
Stein’s unbiased risk estimate (SURE) entropy [17, 24, 25],
Tsallis wavelet entropy [19], fuzzy entropy [19, 26, 31], and
permutation entropy [19] have been extracted previously
from EEG signals coefficients as discrimination feature for
classification of focal and nonfocal EEG signals.

Normal

Partial Seizure

Generalized Seizure

Electroencephalogram (EEG) signal

Figure 1: Comparison of the normal brain with partial (focal)
seizure and generalized seizure brains and their EEG signals.
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After extracting the features, the significant features
must be selected and fed to classifiers.+e feature selection is
an important step for designing machine learning applica-
tions since if the number of features fed to the classifier is
very high, the complexity of the system increases; on the
contrary, if the number of features is very low, the accuracy
(ACC) of the system decreases and the machine is unable to
decide correctly. Almost all of the previously proposed
machine learning methods in focal and nonfocal signal
classification application use p value for selecting significant
features [6, 11, 13, 14, 16, 17, 19, 22, 23, 25, 26, 31, 33–35], in
such a way that features with p values less than 0.05 were
significant and could be used as an input to classifiers.
Although this traditional method can select significant
features, it cannot be used as a significant feature selection
tool when all of the extracted features have a p value less than
0.05. In this case, search heuristic approaches can be used as
a feature selection method. In other words, these approaches
optimize the number of feature vector arrays for resulting in
the best classification performance. In this work, we used six
binary optimization methods for selecting significant fea-
tures, namely, binary bat algorithm (BBA), binary differ-
ential evolution (BDE) algorithm, firefly algorithm (FA),
genetic algorithm (GA), grey wolf optimizer (GWO), and
particle swarm optimization (PSO).

Support vector machine (SVM) and K-nearest neighbor
(KNN) algorithms are two well-known classifiers used
previously for the classification of focal and nonfocal EEG
signals. Although the performance of these two algorithms
for focal detection was acceptable, resulting in best classi-
fication performance, it is better to check the performance of
the feed-forward neural network (FFNN), cascade-forward
neural network (CFNN), generalized regression neural
network (GRNN), and recurrent neural network (RNN)
classifiers for focal detection application.

1.3. Contribution. EEG signal is nonstationary and complex
[36–41]. Tunable Q-factor wavelet transform (TQWT) has
been proposed for analyzing the nonstationary, nonlinear,
and oscillatory signals [42].

Although TQWTwas previously used for focal detection,
the final results reported were not significantly proper [33]
and involved intense calculations [34]. In this study, TQWT
is used as a processing tool to decompose the focal and
nonfocal EEG signals. +e motivation stems from the
successful deployment of TQWT in other biomedical signal
processing applications such as detecting epileptic seizures
[34, 43–49] and alcoholism [50] by EEG signals, detecting
coronary artery disease [51] by heart rate variability (HRV)
signals, heart valve [52, 53] and septal defects disorders
[54, 55], aortic andmitral disorders [56, 57] by cardiac sound
signals [58], detecting hand movements [59] and amyo-
trophic lateral sclerosis (ALS) disorder [60] by electro-
myogram (EMG) signals, and sleep apnea [61] by
electrocardiogram (ECG) signals that indicate the ability of
TQWT in biosignal processing application.

We can change the TQWT parameters to get optimal
conditions that have resulted in the best classification

performance. Recently, the authors showed the significant
effect of differential operation in the classification of focal
and nonfocal signals [23, 32]. Moreover, in previous studies,
the results of entropy-based features were promising for
both focal and nonfocal EEG classifications [6, 17, 33, 34].
For these reasons, the influence of entropy-based features on
different EEG signals in the TQWTdomain was focused on
the present study. +erefore, the differences in EEG signal
decomposed into several subbands using TQWT and en-
tropy-based features including LE entropy, Log L2-norm
(LL2) entropy, SURE entropy, and threshold (TH) entropy
have been studied. In most of the previous works, Kruskal-
Wallis statistical (KWS) test was used as a feature selection;
but, in this work, various algorithms including BBA, BDE,
FA, GA, GWO, and PSO are evaluated as feature selection
techniques to reduce the number of input feature vector
arrays which lead the classifier’s calculation to be much
simpler. Furthermore, the selected features are tested with
six classifiers, KNN, SVM, FFNN, CFNN, GRNN, and RNN,
classifiers in tenfold cross-validation strategy.

To the best of the authors’ knowledge, the entropies of
TQWTsubbands of differenced EEG signals and BBA, BDE,
FA, GA, GWO, and PSO algorithms as feature selection, as
well as FFNN, CFNN, GRNN, and RNN classifiers, have not
been previously employed for the focal and nonfocal EEG
signals classification.

1.4.Organization. +e paper is organized as follows: Section
2 explains the proposed method which consists of the de-
scription of the used databases, differential operator, TQWT,
entropy-based features, feature selection, and classification
algorithms. +e results and discussion are presented in
Sections 3 and 4, respectively. Finally, the conclusion of the
article is represented in Section 5.

2. Proposed Method

In this study, TQWTextracts subbands of EEG signals after
differencing and four entropy-based features are computed
from subbands for discrimination between focal and non-
focal EEG signals. Feature vector arrays are reduced by
feature selection techniques and fed to classifiers. +e block
diagram of the proposed method is shown in Figure 2.

2.1. Used Database. In this research, the Bern-Barcelona
EEG dataset has been used for the evaluation of the proposed
method [62]. +e EEG signals of this dataset were recorded
from five focal epilepsy patients who are candidates for brain
surgery. +is dataset consists of 3750 focal and 3750 non-
focal EEG signals. +e sampling frequency was 512 and the
duration of each signal is 20 seconds, so each signal has
10240 samples. Each signal has two columns, namely, “X”
and “Y,” which have been recorded from adjacent channels.
In this work, “X–Y” is used for noise reduction and inter-
ference effects [6, 17]. Figure 3 shows a sample of “X,” “Y,”
and “X-Y” signals for focal and nonfocal groups. In this
study, all signals containing more than 41.6 hours of EEG
data in the Bern-Barcelona database are used.
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2.2. Differential Operator. By assuming that
A[n] � [a1, a2, . . . , an] is a sequence with length n, the
differential operator is defined as follows:

Adiffe � a2 − a1, a3 − a2, . . . , an − an−1 , (1)

where Adiffe(n) denotes differential of A (n) with n− 1
samples.

2.3. Tunable Q-Factor Wavelet Transform. Tunable Q-factor
wavelet transform has been proposed in [42] for analyzing
complex and oscillatory signals like EEG. However, the
traditional DWT is one of the most commonly used tools in
signal analysis applications, but it has several defects in-
cluding the fixed number of oscillations in the mother
wavelet, the fixed oversampling rate, and the fixed band-
widths of the filter bank [61]. +e TQWT is a proficient

transform that overcomes the mentioned limitations for
analyzing oscillatory signals by providing the tunability of
theQ-factor [42].+emain input variables to this transform,
which can be easily adjusted, include the number of de-
composition levels denoted as (J), Q-factor represented asQ,
and the total oversampling rate of r. Q represents the
number of wavelet oscillations and r denotes the overlap
between frequency responses. An increase in Q makes all
frequency responses narrower, allowing more decomposi-
tion levels to span the same frequency range. An increase in r
with a constant Q increases the degree of overlap between
adjacent frequency responses, increasing the number of
decomposition levels required for covering the same fre-
quency range [59]. +e low-pass and high-pass filters with
αfs and βfs as the scaling parameters associated with the
input signal s [n] having a sampling rate of fs and different
decomposition levels are given as follows:

EEG Signals

Preprocessing

x(n) = “X-Y” A(n)= x(n)–x(n–1)

Differential
operator

Signal Decomposition
by TQWT

Features
Extraction

Features
Selection

Classification
Focal

Non-Focal

SVMKNNBDABBA

FA GA

GWO PSO

FFNN CFNN

GRNN RNN

LL2
entropy

LE
entropy

SURE
entropy

TH
entropy

Q-factor = 3
Over-sampling rate = 3

Decomposition levels = 26

Figure 2: +e block diagram of the proposed method.
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F0(ω) �

1, |ω|<(1 − β)π,

θ
ω +(β − 1)π
α + β − 1

 , (1 − β)π ≤ |ω|< απ,

0, απ ≤ |ω|≤ π,

F1(ω) �

0, |ω|<(1 − β)π,

θ
απ − ω
α + β − 1

 , (1 − β)π ≤ |ω|< απ,

1, απ ≤ |ω|≤ π,
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where θ(ω) represents the 2π-periodic power-comple-
mentary function selected as the frequency response of the
Daubechies filter with two vanishing moments. Mean-
while,θ(ω) is defined by the following equation:

θ(ω) � 0.5(1 + cos(ω))(2 − cos(ω))
1/2

|ω|≤ π. (3)

A filter bank that was used to perform decomposition
can also be used to reconstruct the original input signal with
the selected subbands. r and Q-factor in terms of the pa-
rameters of the filter bank, that is, α and β [42], can be
formulated as follows:

r �
β

1 − α
,

Q �
fc

BW
�
2 − β
β

,

(4)

where fc and BW denote the center frequency and band-
width of the subband J, respectively.

2.4. Entropy-Based Features. Nowadays, entropy is one of
the most widely used tools in signal processing applications.
In telecommunication, entropy measures the value of missed
data, whereas, in physics, entropymatures the uncertainty or
degree of disorder in a chaotic system. Generally, entropy
can measure the complexity in a nonlinear system like the
brain. In this study, LE entropy, LL2 entropy, SURE entropy,
and TH entropy were extracted from EEG signal subbands as
the discrimination feature between focal and nonfocal
signals.

Let S[n] � [s1, s2, s3, . . . , sn] be the wavelet time series
sequence corresponding to TQWT subbands.

+en, the LE [6, 17], LL2 [35], SURE [17, 24], and TH
[17] entropies of S[n] can be defined as

LL2 � log 
n

i�1
si



2⎛⎝ ⎞⎠,

LE � 

n

i�1
log2 s

2
i ,

SURE � n − # i such that si


≤ ε  + 

n

i�1
min s

2
i , ε2 ,

THEn si(  �
1, Si


> ε,

0, else where.

⎧⎨

⎩

(5)

So,

THEn � # i such that si


> ε , (6)

where si and ε are the ith represented samples of the signal and
positive threshold, respectively. In this work, the value of ε is
selected to be 0.2 in both SURE and TH entropies. Also, the
entropy MATLAB function is used for the calculation of LE,
LL2, SURE, and TH entropies. +us, the entropy-based
features can be extracted from the TQWT subbands.

2.5. Feature Selection

2.5.1. Binary Bat Algorithm. A bat emits a sound and follows
an echo that is reflected from the objects in the environment
to prevent obstacles, discover prey, and locate their nests in
the darkness [63]. Inspired by this behavior of bats, the bat
algorithm was proposed.+is algorithm uses artificial bats to
find an optimal solution in an objective function. +e binary
bat algorithm (BBA) is a discrete version of the bat algorithm
presented by Nakamura et al. [64]. In the BBA, the search
space is limited to an n-dimensional Boolean hypercube, in
which any bat may move at nodes and corners of the lattice.
To select features, each feature is described by a binary bat
position vector [63]. +erefore, the value of 0 indicates the
absence of a feature, and the value of 1 indicates the presence
of a feature. For a target function
f(x), x � (x1, x2, . . . , xn), the bat population starts with
the positionxi, velocity vi, and pulse frequency fi. Suppose
that xjis the current global best solution in the dimension j,
and βϵ[0, 1] is a random number. So, the velocity and
position of the ith bat are updated as follows:

fi � fmin + fmin − fmax( β,

v
i
j(t) � v

i
j(t − 1) + x

j
− x

j
(t − 1)fi,

x
i
j(t) � x

i
j(t − 1) + v

i
j(t).

(7)

At first, the pulse rate ri, the loudness Ai, and the
maximum number of iterations T are initialized. +en, at
each iteration, these parameters will be updated using the
three following equations:

xnew � xold + εA(t), (8)

Ai(t + 1) � αAi(t), (9)

ri(t + 1) � ri(0) 1 − e
−ct

 , (10)

where we have variable ε ϵ [−1, 1] and α, β are two con-
stants. In each iteration, for each bat, the sigmoid function is
applied using
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S v
i
j  �

1
1 + e

−v(i/j)
, (11)

and the position is updated as follows:

x
i
j �

1, ifρ≤ S v
i
j ,

0, otherwise,

⎧⎨

⎩ (12)

where xi
j(t) and vi

j(t) show the position and velocity of
particle i at iteration t in dimension j and ρ ∼ U(0, 1). In our
study, the BBA is iterated 40 times by using four bats and
setting α � β � 1.

2.5.2. Differential Evolution Algorithm. +e differential
evolution algorithm is a heuristic population-based random
search scheme for global optimization. Many objective
functions are nondifferentiable, discrete, nonlinear, noisy,
flat, multidimensional, constrained, or stochastic. Differ-
ential evolution algorithm can be exploited to solve such
problems. Basic operations such as selection, crossover, and
mutation are the basis of the difference algorithm [65]. +e
binary differential evolution (BDE) algorithm was intro-
duced by Pampara et al. [66], and the trigonometric function
is utilized to produce 0 − 1 string to map floating-point
variables into binary numbers. For the feature selection
issues, the primary vector is operated as a candidate feature
subset and the feature subset is changed with the mutation
and the crossover actions. +e distance between interclass
and intraclass samples is computed as the target function to
rate the quality of the feature subset.

Suppose that the initial population P0 � X0 for
i � 1, . . . , N consists of N randomly selected individual
solutions. In the mutation process, three vectors Xr1, Xr2,
and Xr3 are randomly selected from each population for
each vector Xi, such that r1 ≠ r2 ≠ r3 ≠ i. Xr1 is called a base
vector.Xr2 andXr3 individuals determine whether the jth bit
of Xr3 is flipped (Vi,j � 1 − Xi,j) or not. A crossover be-
tween the mutant Vi and its parent Xi determines the trial
vector Ui. +erefore, the difference vector is calculated as
[65, 67]

Difference vectorid �
0, if Xr1d � Xr2d,

Xr1d, otherwise.
 (13)

+e mutant vector is then computed as follows:

Vid �
1, if difference vectorid � 1,

Xr3d, otherwise,
 (14)

where i and d are the vector order and search space di-
mension, respectively. Moreover, the trial vector U is pro-
duced as follows:

Uid �
Vid, if (rand≤CR) or d � and,

Xid, otherwise,
 (15)

where X is the vector, rand is a random number in [1, D],
and CR is a constant crossover rate in [0, 1]. In the selection
phase, if the fitness of the trial vector is better than the
current vector, it will be substituted for the next generation.

In the current study, the maximum number of iterations is
fixed to 100, the number of vectors is set to ten, and CR� 0.9.
Besides, the total number of features in the particle is set as
many as all features in the dataset.

2.5.3. Firefly Algorithm. +e firefly algorithm (FA) is in-
spired by the flashing behavior of fireflies [68]. Fireflies
attract the opposite-sex counterparts by exploiting this
flashing behavior. However, in the mathematical model of
the FA, the fireflies are unisex, and each firefly may attract
other fireflies.+e charm of a firefly is equal to its brightness,
and, for both fireflies, the brighter one will attract the other.
+erefore, the firefly with less brightness flies towards a
brighter one. +e brightness intensity is inversely propor-
tional to the distance. +e distance between any two fireflies
(i and j) at xi and xj is calculated by the Cartesian distance as
follows [68]:

rij � xj − xi

�����

����� �

���



D

k�1




xik − xjk 
2

, (16)

where D is the dimension. +e attractiveness of a firefly
decreases exponentially as the distance increases. In the FA,
the primary form of attractiveness function β(r) is given by

β(r) � β0e
−cr2

. (17)

Here r and β(r) indicate the distance and the attrac-
tiveness at r between two fireflies, respectively. +e original
brightness (β0) is the attractiveness at r � 0 and c is a fixed
light absorption coefficient. +e movement of a firefly i is
specified as follows:

Xi � Xi + β(r) Xbest – Xi(  + α
rand
2

 . (18)

+e second term is owing to the attraction; Xbest is the
location of the most attractive firefly. Besides, the third term
is randomization with α and rand is U[0, 1]. When the
firefly i moves towards firefly j, the position of firefly i is
changed from a binary number to a floating-point number.
+erefore, the sigmoid function maps the position in [0, 1].

S xik(  �
1

1 + e
−xik

. (19)

+en the position of firefly i is updated as follows:

xid �
1, if ρid ≤ S xid( ,

0, otherwise,
 (20)

where xid represents each bit of the dimension vector Xi and
ρid is U[0, 1]. +is guarantees that each bit will be either 0 or
1 [69]. In our study, the FA is iterated 100 times by using six
fireflies and setting α � 0.5 and c � 0.

2.5.4. Genetic Algorithm. +e genetic algorithm (GA) is a
heuristic search algorithm inspired by Darwin’s theory of
evolution [70]. GA starts with a set of solutions
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(chromosomes) called population. A new population is
initiated by using these chromosomes. +is is motivated by
the hope that the new population will be superior to the
former one. +e chromosomes have been chosen based on
their fitness to create new chromosomes (offspring).
Crossover and mutation are the two leading operators of
GA. +ere are different crossover approaches, such as
roulette wheels, tournaments, and rank, which pick genes
from parent chromosomes and create new offspring. After
crossover, a mutation occurs to prevent falling into the local
optimum. Mutations change the new offspring randomly.
+is is iterated until the population size or improvement of
the best solution is met [71]. Figure 4 summarizes the GA
steps.

GA has four basic parameters: the number of chro-
mosomes (N), the maximum number of generations (T), the
crossover rate (CR) probability, and the probability of
mutation rate (MR). CR determines how many times the
crossover needs to be done. If there is no crossover, the
offspring is just a copy of the parents. If there is a crossover,
some parts of the parent’s chromosome form the offspring
[70, 71]. Mutation probability indicates how many times the
parts of the chromosome mutate. If there is no mutation, the
offspring will be transplanted without any change. If a
mutation is exploited, a part of the chromosome will be
modified. We use mutations to prevent the GA from
crashing in the extreme, but it does not need to happen very
often because the GA turns into a random search. Here, we
used GA to select the best features using ten chromosomes
and 100 generations. Besides, CR and MR probabilities are
initialized to 0.8 and 0.01, respectively, and the number of
genes is the total number of features in the dataset.

2.5.5. Grey Wolf Optimization. Grey wolf optimization
(GWO) is a recent population-based optimization approach,
which simulates the hunting process of grey wolves in nature
[72]. Grey wolves more often prefer to live and hunt in a
pack with an average of 5∼12 wolves and pursue stringent t
rules in a hierarchy. +e most influential wolf in decision-
making is named alpha (α), which leads the whole pack.+e
betas (β), probably the best nominees for the alpha, are
subordinates of alpha which support it in decision-making
or other activities and reinforce its decisions among other
lower-level wolves. +e omega is the next level of the beta in
a hierarchy.+e omega (ω)wolves play the role of scapegoat.
+ey must surrender to all dominant wolves. +ey are the
last wolves permitted to feed. If a wolf in the pack does not
belong to any group, it is called a delta (δ) wolf. Deltas need
to submit alpha and beta, but they dominate the omega
[67, 72].

In GWO, each wolf updates its position according to the
distance from the updated prey position as the best three
solutions of alpha, beta, and omega. +e distance between
each wolf and the prey (D)

���→
is defined as

D
→

� C
→

. X
→

P(t) − X
→

(t)


,

C
→

� 2. r2
→

,

(21)

where C
→

is the coefficient vector and X
→

P(t) and X
→

(t)

indicate the position vectors of the prey and a wolf, re-
spectively. Also, t shows the current iteration and r2

→ is a
random vector in the [0, 1] interval.

D
→

� C
→

. X
→

P(t) − X
→

(t)


,

C
→

� 2. r2
→

.

(22)

A prey’s location is determined by

X
→

(t + 1) � X
→

P(t) − A
→

.D
→

,

A
→

� 2 a
→

.r1
→

− a
→

,
(23)

where A
→

is a coefficient vector, r2
→ is a random vector in the

interval [0, 1], and the members of a
→ are linearly decreased

from 2 to 0 during the optimization phase. In addition, the
position of wolves is updated as follows:

Dα
�→

� C1
�→

· Xα
�→

− X
→

,

Dβ
�→

� C2
�→

Xβ
�→

− X
→

,

Dδ
�→

� C3
�→

Xδ
�→

− X
→

,

X1
�→

� Xα
�→

− A1
�→

. Dα( 
����→

,

X2
�→

� Xβ
�→

− A2
�→

. Dβ 
����→

,

X3
�→

� Xδ
�→

− A3
�→

. Dδ( 
����→

,

X
→

(t + 1) �
X1
�→

+ X2
�→

+ X3
�→

3
.

(24)
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Fitness
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Mating
Crossover

Mutation

Parents
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Mating Pool

Figure 4: Illustration of GA steps.
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Wolves update their positions to the actual values in
the potential search space limited explicitly by the
problem constraints. Nevertheless, for some issues, var-
iables and search space are restricted explicitly to binary
values [0, 1]. Feature selection is a binary issue and a
feature subset is shown as a binary vector and each
member in the vector specifies a single feature. A value of
1 for each feature represents that it is selected, and vice
versa. +erefore, in binary GWO, variables and search
space are mapped from real values to binary values using
the sigmoid function [72].

v
d
sol(t) � A

d
1 .D

d
sol,

T v
d
sol(t)  �

1
1 + e

−10 vd/sol(t)
− 0.5

.

(25)

+erefore, for a solution x and dimension d, we have [72]

x
new
d �

1, x
old
d + T v

d
sol(t) ≥ 1,

0, otherwise.

⎧⎨

⎩ (26)

In our study, the binary GWO algorithm is iterated 100
times by using ten wolves.

2.5.6. Particle Swarm Optimization. Binary particle swarm
optimization (PSO) [73] is the discrete version of the PSO
algorithm [74] which solves optimization problems based on
the social behavior of animals such as the mass movement of
birds and fish. Every single solution in the PSO is assumed as
a particle. Every particle tries to find the best position over
time. It adapts its position with regard to its own experience
and the experiences of its neighbors consisting of the current
velocity and position and the best prior position experienced
by it and its neighbors. +is process is performed repeatedly
until a predetermined minimum error is reached or up to a
certain number of repetitions and so on [67]. +e last po-
sition of ant particle i that previously had good fitness is
stored as the best person (pbesti), and the best particle po-
sition that has the best fitness among the population is stored
as the best global (gbesti), where r1 and r2 are random values
in the range of (0, 1) and c1 and c2 are cognitive and social
parameters, respectively.

In binary PSO, particle positions are modeled into the bit
string to limit the velocity in the range [0, 1]. Furthermore,
the velocity of a particle is defined as the probability that a
particle might change its state to one. Traditional binary PSO
and most of its variants use different probability functions to
cope with discrete optimization problems. +e input pa-
rameters of binary PSO are the number of iterations (T), the
number of particles (N), cognitive learning factor (c1), the
social learning factor (c2), the maximum bound on inertia
weight (ωMax), the minimum bound on inertia weight
(ωMin), the maximum velocity (VMax), and the total features
in a particle. Also, ω is called the inertial weight and it plays
the tuning role in global and local searches. In case that d is
the dimension, the position and velocity vectors of the ith
particle are defined as Xi � (x1, x2, . . . , xid) and
Vi � (v1, v2, . . . , vid).

+e equation to update the velocity of each particle is as
follows:

v
new
id � v

old
id + c1r1 pbest id − x

old
id  + c2r2 gbest id − x

old
id .

(27)

By using the sigmoid function, the position will be
updated according to the following equations:

S vid(  �
1

1 + e
−vid

, (28)

x
new
id �

1, if ρid ≤ S v
new
id( ,

0, otherwise,
 (29)

where ρid is U[0, 1].
In the current study, the maximum iterations are kept to

100, the total particle in population is set to ten, and the total
number of features in the particle is set as many as all
features in the dataset. Cognitive and social factors
(c1 and c2) are assigned the value of 2. Also, ωMin, ωMax, and
VMax are initialized by 0.4, 0.9, and 6, respectively.

2.6. Classification. After selecting the significant features,
these are fed to the classifiers for evaluating the performance
of the proposed framework. In the present study, the results
of classifiers are reported by deploying a tenfold cross-
validation strategy 2541654, which is used to divide the
dataset into ten equal subsets. After that, at any time, one
subset will be used as test data and the remaining nine
subsets will be used as training data for the classifiers. In
other words, any EEG signal of the dataset is used nine times
as training data and once as test data.

+e label of test data is clear, so there are four conditions
for any test data after the classification [39–41, 75]:

True positive (TP): if a test signal with a focal label is
correctly classified in the focal group
True negative (TN): if a test signal with a nonfocal label
is correctly classified in the nonfocal group
False positive (FP): if a test signal with a nonfocal label
is incorrectly classified in the focal group
False negative (FN): if a test signal with a focal label is
incorrectly classified in the nonfocal group

+e following equations are used to evaluate the classifier
ACC, sensitivity (SEN), and specificity (SPE) [4, 23, 75]:

ACC �
TTP + TTN

TTP + TTN + TFP + TFN
× 100,

SEN �
TTP

TTP + TFN
× 100,

SPE �
TTN

TTN + TFP
× 100,

(30)

where TTP, TTN, TFP, and TFN are the total numbers of TP,
TN, FP, and FN after ten times training and testing classifier.
ACC shows the ability of the classifier to discriminate F and
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NF signals. Also, SEN shows the ability of classifiers in the
detection of focal EEG signals. On other hand, SPE shows
the ability of classifiers in the detection of nonfocal EEG
signals.

In this work, six classifiers, namely, KNN, SVM, FFNN,
CFNN, GRNN, and RNN, are used for classifying the EEG
signals in focal and nonfocal groups. In the following
subsections, we describe these used classifiers.

2.6.1. K-Nearest Neighbor (KNN). +e well-known K-
nearest neighbors (KNN) algorithm is a supervised classifier
with very easy implementation [6, 13, 23]. In the KNN
algorithm, every test data is classified with K-closed
neighbors. +at way, test data belongs to the group which
has more members in K-closed neighbor. +e number of K
and distance computation methods are the two main pa-
rameters of the KNN classifier. In this work, city-block
distance with various numbers of K ranging from 1 to 9 with
a step equal to 1 was used to attain the best results.

2.6.2. Support Vector Machine (SVM). Nowadays, the
support vector machine (SVM) algorithm is becoming one
of the most widely used classifiers in biomedical machine
learning applications. +e SVM algorithm maps the features
in a high dimensional space by kernel function and con-
structs an optimum hyperplane for separating the classes
[6, 12, 14, 22]. In the new higher-dimension space, features
in each class are near together and are far away from the
other class. In this work, the radial basis function (RBF) is
used as kernel [13] and the sigma values of RBF vary from 0.1
to 1.5 by the step size of 0.1 to attain the best results.

2.6.3. Feed-ForwardNeural Network (FFNN). In feed-forward
neural networks (FFNN), neurons are arranged in multiple
layers and signals are forwarded from input to output. When
an error occurs, these neurons are returned to the previous
layer and weights are adjusted again to reduce the error
chances. In this study, we use the tan-sigmoid transfer
function, a single hidden layer with ten empirically chosen
neurons, and the Levenberg-Marquardt algorithm for fast
training [37, 39–41].

2.6.4. Cascade-Forward Neural Network (CFNN). In cas-
cade-forward neural networks (CFNN), neurons are inter-
linked with previous and subsequent layers of neurons [76].
For example, a three-layer CFNN represents the direct
connections between layer one and layer two, between layer
two and layer three, and between layer one and layer three;
that is, neurons are directly and indirectly connected in the
input and output layers. +ese additional connections help
to achieve a better learning speed for the required rela-
tionship. Like FFNN, in CFNN, we have utilized the tan-
sigmoid transfer function, one hidden layer with ten neurons
selected by a hit and trial manner, and Levenberg-Marquardt
method for quick learning.

2.6.5. Generalized Regression Neural Network (GRNN).
+e general regression neural network (GRNN) is a single-
pass neural network that uses a Gaussian activation function
in the hidden layer. GRNN consists of input, hidden,
summation, and division layers. +e classification accuracy
of GRNN is largely dependent on the accurate value of the
spread factor. In this study, the spread factor is fixed to 1
after several experiments for the classification of focal and
nonfocal EEG signals [1, 77, 78].

2.6.6. Recurrent Neural Network (RNN). In recurrent neural
networks (RNN), neurons can flow in a circle because this
network has one or more feedback links. +e characteristics
of RNN allow the system to process temporarily and rec-
ognize the trends. In this study, we are implementing Elman
recurrent neural network, which is the prevalent form of
RNN. For quick training of the model, the Levenberg-
Marquardt method and single hidden layer with ten em-
pirically selected neurons are utilized [77].

3. Results

3.1. Preprocessing. Each signal of the Bern-Barcelona dataset
has two different time series which are “X” and “Y.” For
noise reduction, “X-Y” is recommended as an input signal in
the previous studies [6, 11, 17, 34]. For this reason, we have
also used the “X-Y” time series as an input signal. In [23, 32],
the effect of differential operators in focal and nonfocal EEG
signal detection has been discussed and suggested to use
different features. For that, we have applied the differential
operator to the “X-Y” time series before the TQWT
decomposition.

3.2. Selection of TQWT Parameters. +e accuracy of a
classifier and involved intense calculations are directly de-
pendent on the selection of optimal values of Q, r, and J of
TQWT transform. In other words, the selection of the
optimal value of these parameters is an important step before
signal decomposition. We used three steps for setting the
parameters of TQWT. In the first step, Q, r, and J are as-
sumed to be fixed for choosing the best classifier. In the
second step, J is assumed to be fixed for setting the optimum
values ofQ and r parameters. In the third step, by having the
optimum values of Q and r, the optimum value of J is found.

First Step. For choosing the optimal values of TQWT pa-
rameters, the values ofQ and rwere set to 2 and the value of J
was selected to be 5. +en entropy-based features were
extracted from subbands and fed to KNN, SVM, FFNN,
CFNN, RNN, and GRNN classifiers. +e ten-fold cross-
validation strategy has been employed during the training
and testing of the classifiers. Figure 5 shows the resulting
classification ACC by these features for various classifiers.

Second Step. In this step, Q is varied from 2 to 10, r is varied
from 2 to 5, and the value of J is kept fixed, which is 5. +en,
the entropy-based features are extracted from subbands and
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fed to the CFNN classifier. Figure 6 illustrates the resulting
ACC for various numbers of Q and r.

It is evident from Figure 4 that the deployment of TQWT
along with the CFNN classifier resulted in the highest
classification ACC when the values of both Q and r were 3.

�ird Step. By fixing Q and r to 3, the maximum decom-
position level of TQWT is 35; so, we checked the resulting
classification ACC for J from 5 to 35 and illustrated the
results in Figure 7.

Figure 7 depicts that the ACC of the CFNN classifier is
improved by increasing the decomposition level and max-
imum ACC is achieved when the value of J is 26. Finally, the
optimum values of Q, r, and J are found to be 3, 3, and 26,
respectively, which lead up to the best classification per-
formance. It should be noted that, by selecting J to be 26,
input EEG signals are decomposed to 27 subbands, 1 ap-
proximation and 26 details, in such a way that subband1 to
subband26 are detail1 to detail26 and subband27 is ap-
proximation 26.

Furthermore, by using the selected optimum values for
Q, r, and J parameters, Figure 8 shows the designed TQWT
filter bank in the frequency domain and Figure 9 shows the
decomposed TQWT subbands.

3.3. Feature Extraction. +emean and standard deviation of
extracted entropy-based features for focal and nonfocal EEG
signals are written in Table 1. It is clear that the values of
entropy-based features for the focal group in all subbands
except for details 1, 2, and 3 are lesser than those of the
nonfocal group. Also, the standard deviation of extracting
entropy-based features in the focal group was less than that
of the nonfocal group. Since the entropy is a parameter for
the quantification of chaotic behavior of signal, we can say
that lower mean and standard deviation value of entropies in
the focal group indicates less random (more rhythmic)
behaviors of the focal EEG signals in comparison to nonfocal
EEG signals.

3.4. Feature Selection and Classification. +e statistically
significant features for focal signal detection have been
obtained using a p value in previous studies
[6, 11, 13–17, 19, 22, 23, 32–34]. In mentioned studies, the
features with a p value of less than 0.05 were selected as
significant features. Generally, a lesser p value indicates a
better ability to extract features in binary classification. We
deployed the KWS test to compute the p value of extracted
entropy-based features from TQWT subbands, and the
“Kruskal-Wallis” MATLAB function is used for computa-
tion purposes.

It is obvious from Table 1 that all of the extracted en-
tropy-based features show good discrimination between
focal and nonfocal signals and the p value for all features is
less than 0.05. In other words, we can use all of the entropy-
based features in the classification of focal and nonfocal EEG
signals. So, these features were fed to KNN, SVM, FFNN,
CFNN, RNN, GRNN, and RNN classifiers. +e resulting
ACC, SEN, and SPE and the comparison of classifier per-
formances for all of the extracted entropy-based features are
given in Table 2.+ough by using the entropy-based features
a good average classification ACC of 94.77% has been
achieved by exploiting CFNN classifier, the feature vector
has 108 arrays (i.e., four entropy features extracted from 27
subbands) which lead the proposed method to be more
complex. For this reason, we tested various optimization
algorithms as a feature selection method for decreasing the
arrays of the input feature vector to reduce the complexity of
the proposed method.

+e resulting classification ACC, SEN, and SPE for
classifiers with the feature selected by the BBA algorithm are
written in Table 3. It is clear from Table 3 that the classifier
performance for selected features of the BBA algorithm has
increased in comparison to when all entropy-based features
are fed to classifiers, although the feature vector has less
arrays. So, the BBA algorithm cannot improve the perfor-
mance of the proposed method. It should be noted that the

KNN SVM FFNN CFNN GRNN RNN
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Figure 5: Resulting ACC for classifiers by fixing Q� r� 2 and J� 5.
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TQWT parameters.
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feature vector in FFNN classifier which resulted in 90.62%
classification ACC has 34 arrays. In other words, the BBA
algorithm discards 74 features (i.e., BBA algorithmmade the
feature vector 79.92% smaller). +e feature vector arrays
selected by the BBA algorithm and fed to FFNN classifier
were the LE entropy of details 7, 9, 11, 12, 14, 16, and 18, the
LL2 entropy of details 5, 7, 11, 17, 18, 19, 20, and 23, ap-
proximation 26, the SURE entropy of details 6, 7, 9, 14, 15,
16, 19, 20, 22, and 26, and the TH entropy of 3, 4, 13, 14, 15,
16, 24, and 26.

In the same way, the selected entropy-based features by
the BDE algorithm are fed to classifiers. +e performance of
the classifiers with these selected features is given in Table 4.
+e resulting classification ACC, SEN, and SPE for selected
features by the BDE algorithm are slightly different from the
resulting classification ACC, SEN, and SPE for all entropy-
based features. On the other hand, 93.81% ACC resulted in
the CFNN classifier by 93 selected features, which indicated
that BDE cannot significantly reduce the complexity of the
proposed method. In other words, the BDE algorithm with
CFNN fitness function just discards 15 features (i.e., BDE
algorithm made the feature vector 16.2% smaller). +e BDE
algorithm with CFNN fitness function used from all en-
tropy-based features for classification, except LE entropy of
details 1, 2, 3, 5, 7, 8, 12, and 16, the LL2 entropy of detail 2,
the SURE entropy of details 22 and 24, the TH entropy of
details 4, 19, and 22, and approximation 26.

Furthermore, the performances of classifiers for selected
features by the FA algorithm are given in Table 5. It can be
understood that the results of classifiers with selected fea-
tures by the FA algorithm are not very different from those
in classification ACC, SEN, and SPE for all entropy-based
features. In Table 5, the FFNN classifier resulted in 93.02%
classification ACC, which is slightly higher than those of the
other classifiers. On the other hand, the FA algorithm se-
lected 52 features with the FFNN fitness function. +e FA
discards 56 features (i.e., FA algorithm made the feature
vector 60.48% smaller) which leads the proposed method to
be simpler. +e selected features by FA algorithm with
FFNN fitness function which made input feature vector
arrays were LE entropy of details 6, 9, 11, 14, 15, 17, 18, 19,
22, 23, and 24 and approximation 27, LL2 entropy of details
4, 6, 8, 9, 10, 11, 12, 16, 17, 24, and 26 and approximation 27,

SURE entropy of details 1, 2, 3, 4, 7, 8, 9, 11, 17, 22, 24, and 25
and approximation 27, and TH entropy of details 1, 2, 3, 4, 5,
6, 8, 9, 11, 15, 18, 20, 22, and 24 and approximation 26.

+e performance of classifiers with selected features by
GA is summarized in Table 6.+e highest classification ACC
for selected entropy-based features by using GA and CFNN
classifier is 93.53%. GA with CFNN fitness function selected
57 features, which means the GA discards 51 features (i.e.,
GA made the feature vector 55.08% smaller). +e selected
features by GA with CFNN fitness function were LE entropy
of details 6, 9, 10, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25,
and 26 and approximation 27, LL2 entropy of details 1, 2, 4,
8, 9, 10, 11, 17, 18, 19, 20, 23, and 25, SURE entropy of details
1, 2, 3, 4, 5, 8, 10, 11, 15, 18, 19, and 20, and TH entropy of
details 1, 2, 4, 7, 9, 10, 12, 13, 16, 17, 21, 23, 25, and 26 and
approximation 26, which made the input feature vector
arrays.

+e classifier’s performance for selected entropy-based
features by the GWO algorithm is given in Table 7. It is clear
from Table 7 that the selected entropy-based features by the
GWO algorithm with the CFNN classifier resulted in 93.45%
classification ACC which is higher than those of other
classifiers. +e GWO algorithm with the CFNN fitness
function selected 88 entropy-based features. In other words,
the feature vector has 88 arrays and the GWO algorithm
discards 20 features (i.e., GWO algorithm made the feature
vector 21.60% smaller). +e discarded features by GWO
algorithm with CFNN were LE entropy of details 1, 2, 3, 5, 7,
and 8, LL2 entropy of details 7, 11, 12, 18, 22, and 26 and
approximation 26, SURE entropy of details 12 and 22, and
TH entropy of details 15, 20, 22, 25, and 26.

+e resulting classification ACC, SEN, and SPE for se-
lected features by the PSO algorithm are shown in Table 8. It
is evident from Table 8 that selected entropy-based features
by the PSO algorithm improved the performance of the
classifier. +e best performance resulted from the CFNN
classifier, which achieved a perfect average classification
ACC of 97.68% for 63 entropy-based features selected by the
PSO algorithm with CFNN fitness function. +e selected
entropy-based features by PSO algorithm with CFNN fitness
function were LE entropy of details 4, 7, 9, 10, 11, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, and 24 and approximation 26, LL2

Table 2: Performance of classifiers for all entropy-based features.

KNN SVM FFNN CFNN GRNN RNN
ACC (%) 92.44 89.74 93.88 94.77 90.72 93.62
SEN (%) 95.21 93.17 92.92 93.61 89.55 92.36
SPE (%) 89.68 86.32 94.87 96 91.95 94.96

Table 3: Performance of classifiers for selected entropy-based
features by the BBA algorithm.

KNN SVM FFNN CFNN GRNN RNN
ACC (%) 84.58 82.34 90.62 90.54 79.32 90.18
SEN (%) 85.7 84.34 89.03 88.93 79.46 89.06
SPE (%) 83.46 80.34 92.35 92.29 79.17 91.37

Table 4: Performance of classifiers for selected entropy-based
features by the BDE algorithm.

KNN SVM FFNN CFNN GRNN RNN
ACC (%) 93.28 89.80 93.12 93.81 91.88 93.69
SEN (%) 95.41 92.85 91.73 92.54 90.67 92.65
SPE (%) 91.14 86.74 94.59 95.16 93.15 94.78

Table 5: Performance of classifiers for selected entropy-based
features by FA algorithm.

KNN SVM FFNN CFNN GRNN RNN
ACC (%) 92.94 87.98 93.02 92.66 91.42 90.28
SEN (%) 94.96 91.17 92.38 92.05 90.61 88.92
SPE (%) 90.93 84.8 93.69 93.16 92.27 91.73
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entropy of details 3, 5, 6, 8, 9, 10, 11, 12, 15, 16, 20, 21, 22, 25,
and 26 and approximation 26, SURE entropy of details 1, 2,
4, 7, 8, 9, 10, 12, 14, 18, 19, 20, 22, 24, and 26, and TH entropy
of details 1, 5, 6, 9, 11, 13, 14, 15, 16, 17, 18, 21, 22, 23, and 24.
+e PSO algorithm discarded 45 features (i.e., PSO algo-
rithm made the feature vector 48.60% smaller). A com-
parison between the performances of classifiers and feature
selection methods is illustrated in Figure 10.

From Tables 2–8 and Figure 11, we can say that PSO is a
significant feature selection method and FFNN, CFNN, and
RNN classifiers are more appropriate than the other feature
selection methods and classifiers for focal EEG signal de-
tection application, respectively. We should note that al-
though the KWS test resulted in acceptable classification
performance in comparison to most of the feature selection
methods, it did not increase the feature vector arrays and
used all extracted entropy-based features.

+e receiver operating characteristic (ROC) value for
the classifiers for each feature section algorithm is shown in
Figure 11. It is clear from Figure 11 that the area under the
curve of the PSO algorithm is significantly higher than
those of the other feature selection algorithms. +e com-
putational time of the algorithm for all signals of the Bern-
Barcelona EEG dataset including preprocessing and dif-
ferencing, the generation of TQWT filter bank, subband
separation, and extraction of LE, LL2, SURE, and TH
entropies as features using i5-M480 CPU (2.67 GHz), 6 GB
RAM, and MATLAB 2014a is 215.6 seconds (i.e., 0.0287
seconds for any input signal) which indicates the robust-
ness of the proposed method. +e Bern-Barcelona dataset
has more than 41.6 hours of EEG signals and the CFNN
classifier required only 0.17 s for the classification of an
input test signal.+e algorithm time can be further reduced
by using a powerful machine and another computationally
efficient software package.

4. Discussion

+e correct classification of focal and nonfocal EEG signals is
directly linked to minimizing the surgical complications for
the patients who are immune to antiepileptic drugs. In the
present study, we proposed a computer-based method for
the correct classification of focal and nonfocal EEG signals.
+e Bern-Barcelona dataset was used for the evaluation of
the proposed method. Each file of the Bern-Barcelona
dataset has two signals, namely, “X” and “Y,” recorded from
adjacent channels. In the proposed framework, the “X-Y”
signal is applied on differencing operator and decomposed
using TQWT in optimal condition by setting Q, r, and J to 3,
3, and 26, respectively. LE, LL2, SURE, ad TH entropies are
extracted from TQWT subbands as features. +e perfor-
mance of several feature selection and classification methods
is checked among which PSO algorithm and CFNN classifier
are chosen as the feature selection and classification
methods. A proposed framework achieved an average
classification ACC of 97.68%, SEN of 97.26%, and SPE of
98.11% in a ten-fold cross-validation strategy. Boxplots of
selected features by PSO algorithm with CFNN fitness
function are shown in Figure 12.

We found that proposed entropy-based features are
significantly good parameters in the classification of focal
and nonfocal EEG signals since their corresponding p value
was less than 0.05 for all subbands as depicted in Table 1.
Furthermore, the lower mean and standard deviation values
of entropies in the focal group indicate less randomness of
the focal EEG signals in comparison to nonfocal EEG signals
as reported in previous studies [6, 10, 11, 22, 23, 25, 33, 34].
We showed that the performance of heuristic algorithms in
the reduction of feature vector arrays is better than the KWS
test, although features selected by some heuristic algorithms
resulted in lesser classification ACC.

We compared the performance of the proposed method
with those of the state-of-the-art methods which used the
same dataset as ours and details are demonstrated in Table 9.
In [10], delay permutation entropy with different delay lags
has been extracted as discrimination features from EEG
signals and applied to the SVM classifier which resulted in
classification ACC of 84% and 75% for 50 and 750 EEG
signals, respectively. +ey found that the value of delay
permutation entropy for focal EEG signals is significantly
more than that of the nonfocal EEG signals. In [15], sample
entropy and variance of instantaneous frequencies of in-
trinsic mode functions (IMFs) have been computed as a
feature and fed to the least-square SVM (LS-SVM). +e
authors therein obtained 85% classification ACC for 50 EEG
signals.

In [16], average Shannon entropy, average Renyi’s en-
tropy, average approximate entropy, average sample en-
tropy, and average phase entropy of IMFs were computed as
features which resulted in 87% classification ACC for 50
EEG signals. +ey computed the p value for extracting
features and found that the entropies for IMFs can be used as
a useful parameter for focal EEG signal detection. In similar
research [17], nonlinearity of EEG signals has been mea-
sured by centered correntropy, information potential, and

Table 6: Performance of classifiers for selected entropy-based
features by GA.

KNN SVM FFNN CFNN GRNN RNN
ACC (%) 93.33 88.14 91.42 93.53 92.21 92.93
SEN (%) 94.93 92.53 90.69 92.59 91.35 91.49
SPE (%) 91.73 83.76 92.18 94.51 93.11 94.47

Table 7: Performance of classifiers for selected entropy-based
features by the GWO algorithm.

KNN SVM FFNN CFNN GRNN RNN
ACC (%) 93.38 89.41 93.06 93.45 92.06 93.26
SEN (%) 95.54 91.01 92.43 91.66 90.87 92.19
SPE (%) 91.22 87.78 93.71 95.41 93.32 94.39

Table 8: Performance of classifiers for selected entropy-based
features by PSO algorithm.

KNN SVM FFNN CFNN GRNN RNN
ACC (%) 96.18 92.41 95.48 97.68 95.89 93.59
SEN (%) 98.68 94.08 94.31 97.26 94.93 94.25
SPE (%) 93.69 90.74 96.71 98.11 96.89 94.95

14 Journal of Healthcare Engineering



LE and SURE entropies of the IMFs as a feature and applied
to SVM classifier which resulted in 89% classification ACC
for 50 EEG signals. Also, the calculations of their method
were very intense. In [18], the spectrum of EEG signals was
obtained by S-transform and then the time-frequency

entropy of spectrum was used as a feature which resulted in
86% classification ACC for 50 EEG signals. Although the
reported classification ACC was not significantly higher, it
resulted in only one feature being used. Besides that, the
authors therein found that a spectrogram of EEG signals can
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be used as significant parameters for focal EEG signal de-
tection. In [19], Daubechies wavelet of order 4 decomposed
the EEG signals to four levels, and entropy-based features
have been extracted from DWT coefficients of EEG signals
for detecting focal EEG signals which resulted in 84%
classification ACC for 50 EEG signals. Although the re-
ported classification ACC of their method was not signifi-
cantly higher and the calculations for extracting features
were heavy, on the other hand, the authors therein proposed

a novel integrated discrimination index for focal and
nonfocal EEG signal classification based on these features. In
[20], EEG signals have been decomposed to coefficients and
nine linear features extracted from coefficients and fed to
SVM classifier which achieved 83.7% classification ACC for
3750 EEG signals. +e authors therein tested the perfor-
mance of extracting features for fifty-four mother wavelets
from seven families, namely, Haar, Daubechies, Meyer,
Coiflets, Biorthogonal, Reverse biorthogonal, and Symlets,
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Figure 12: Boxplots of selected LE (a), LL2 (b), TH (c), and SURE (d) entropies in TQWT domain by PSO with CFNN fitness function.
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and found that the performance of classifiers is not de-
pendent on the choice of wavelet family, and it is more
dependent on decomposition levels.

In [6], EMDwas used for extraction of the first two IMFs
of EEG signals; then DWT decomposed IMFs into four
levels. In other words, EEG signals have been decomposed
by EMD-DWTto ten subbands (i.e., one approximation and
four details for IMF1 and IMF2). +en Shannon and Renyi
and LE entropies of subbands were calculated as features and
fed to KNN classifier which obtained classification ACC of
90.5% and 89.40% for 50 and 3750 EEG signals, respectively.
+ey reported these results by considering 20% of EEG
signals as training data and the other 80% as testing data in
the classification process. +ey found that first IMFs (i.e.,
highest frequencies of EEG signals) and LE entropy are more
significant in the detection of focal and nonfocal EEG signal
classification. In [31], the same authors expanded the fea-
tures in the VMD-DWT domain and reported 95.2% clas-
sification ACC using the SVM classifier for 3750 EEG
signals. In [14, 22–24], EEG signals are separated into
rhythms by Fourier transform [14] and empirical wavelet
transform [22–24]. In [14], the mean frequency and root
mean square of EEG signals were derived as a feature and fed
to LS-SVM classifier which obtained 89.7% and 89.5%
classification ACC for 50 and 750 EEG signals, respectively.
+e authors therein found that frequency-based features
extracted from rhythms are usable in focal detection.

In [24], the nonlinearity of EEG signals rhythms in EWT
domain was computed as feature and fed to classifier in which
classification ACC of 93% and 82.6% were reported for 50 and
3750 EEG signals, respectively. In [27], a method based on the
combination of the EEG rhythms in FBSE-EWT domain and
sparse autoencoder-support vector machine is proposed for
detection of focal EEG signals which resulted in perfect clas-
sification ACC of 100%. In another method based on deep
learning [21], the time-frequency matric of EEG signal was
computed in Fourier synchrosqueezing transform domain
(FSST) and wavelet synchrosqueezing transform domain
(WSST) and fed to a deep convolutional neural network
(CNN) for the classification. +is method could achieve
classificationACCof 99%. Recently, amethod based on Taylor-
Fourier filter bank implemented with O-Splines has been
proposed to extract the EEG rhythms [5]. In [29], a method
based on decomposition of the EEG signal by sliding mode-
singular spectrum analysis (SM-SSA) with sparse autoencoder
hidden layer and radial basis function neural network (SAE-
RBFN) classifier was proposed, which resulted in maximum
classification ACC of 99.11%. In [28], mixture correntropy and
exponential energy of subbands in FBSE-fTF-cwt domain were
extracted as features and fed to a LS-SVM classifier; the authors
therein reported average classification ACC of 95.85%.

In [22, 23], two-dimensional (2D) rhythms were drawn
using phase space reconstruction [22] and second-order
difference plot [23], respectively, in which the 2D illustration

Table 9: Comparison of the achieved accuracies among different methods on the same database.

Ref. Number of EEG signals ACC (%) SEN (%) SPE (%)

[6] 50 90 91.30 91.30
3750 89.4 88.10 90.7

[10] 50 84 Not reported Not reported750 75
[15] 50 85 Not reported Not reported
[16] 50 87 90 84
[17] 50 89 Not reported Not reported
[18] 50 86 Not reported Not reported
[19] 50 84 84 84
[20] 3750 83.07 83.5 83.09
[14] 3750 89.52 Not reported Not reported

[22] 50 90 88 92
750 82.53 81.60 83.46

[11] 3750 87.93 89.97 85.89
[12] 3750 92.15 94.56 89.74
[13] 50 92.18 92.50 92.69
[33] 3750 84.67 83.86 85.46
[34] 3750 95 Not reported Not reported
[32] 3750 88.14 Not reported Not reported
[23] 50 93 100 86
[30] 750 96 94.69 93.50
[31] 3750 95.20 96.10 94.40
[25] 3750 94.41 93.25 95.57
[26] 3750 94.80 92.27 96.10

[24] 50 93 90 90
3750 82.60 82.60 79.80

[27] 3750 100 100 100
[21] 3750 99.94 99.94 99.94
[29] 3750 99.11 98.52 99.70
[28] 3750 95.58 95.47 96.24
Our method 3750 97.68 97.26 98.11
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of EEG signals of the focal group in both methods had a
more regular shape as compared to the nonfocal group
which can be due to synchronous response from the
neighboring neurons of the epileptogenic area which gives
rise to focal EEG signals. +is concept is reported in most of
the previous research with other methods
[6, 10, 11, 22, 23, 25, 33, 34] as well. In the present study, the
mean and standard deviation of entropies for focal groups
are less than those for nonfocal group, which indicate that
the behaviors of focal EEG signals are less random and more
rhythmic in comparison to the nonfocal EEG signals as
described in Section 3.4.

In [33], the multiscale entropy of TQWTcoefficients was
extracted as features from EEG signals and fed to LS-SVM
classifier which resulted in 84.67% classification ACC for
3750 EEG signals. Furthermore, in [34], K-nearest neighbor
entropy estimator, centered correntropy, and fuzzy entropy
of TQWT coefficients were extracted as features from EEG
signals and fed to LS-SVM classifier, which achieved 95%
classification ACC. In [33, 34], TQWTdecomposed the focal
and nonfocal EEG signals to 16 levels (i.e., J� 16), which
resulted in 17 subbands. In our study, EEG signals are
decomposed to 26 levels, which resulted in 27 subbands,
which are more than those in the works in [25, 26], but, in
our study, the time required for feature extraction from all
subbands is significantly less as compared to those in the
works in [25, 26] because they used multiscale entropy [33],
K-nearest neighbor entropy estimator, centered correntropy
[3, 24], and fuzzy entropy [34] which involve heavy cal-
culations, while we deployed LE, LL2, SURE, and TH en-
tropies that have very simple calculations leading our system
to be time-efficient.

It is clear that the proposed method could achieve better
classification ACC in comparison to most of the studies
[6, 10–20, 22–26, 28, 30–34] in literature, but its classifi-
cation ACC is less [21, 27, 29]. +e proposed method in [21]
needs to use two time-frequency analyses and deep learning
technique whereby the value of calculation will be higher
than that of our method. On the other hand, the proposed
frameworks in [27, 29] could achieve better classification
ACC with either lesser calculation [29] or fewer features,
which shows the superiority of these methods compared
with the proposed framework.

+e advantages of the proposed framework over pre-
vious studies are enlisted as follows:

(1) +is is the first study to compare the performances of
several feature selection algorithms and classifiers for
focal and nonfocal EEG signal classification.

(2) We have evaluated the performance of the proposed
framework by using the entire Bern-Barcelona
dataset (i.e., 3750 focal and 3750 nonfocal) while in
[13, 15–19, 23] just 100 EEG signals (i.e., 50 focal and
50 nonfocal) have been used for evaluation of their
methods.

(3) We only used four entropies for classification of focal
and nonfocal EEG signals, but in [16] six, in [19]
seven, in [20] nine, in [11] fifty-two, and in [12]

twenty-one various types of features have been
computed for classification, which makes their
studies computationally expensive.

(4) Our results are reported in a ten-fold cross-valida-
tion strategy for ensuring the reliable classification
performance of classifiers.

(5) +e proposed framework requires less than 0.2s for
classifying any input EEG signals in focal or nonfocal
groups which made our method time-efficient.

(6) In [19], results have been reported with 10% standard
deviation, while in our study, the results have around
3% standard deviation which indicates the robust-
ness of our proposed method.

(7) +e proposed method can be deployed widely before
surgery in hospitals as it is cost-effective and easily
implementable with a computer and an EEG ac-
quisition system.

(8) +e proposed method can detect focal EEG signals
accurately without human intervention and errors.

Although the proposed method has the above-men-
tioned merits over the already existing methods, the main
limitation of the present study is that the used Bern-Bar-
celona dataset has only EEG signals of five patients. In the
future, the study would be extended by using the datasets
involving a bigger number of patients.

5. Conclusion

+ephysicians can localize the brain surface before surgery by
visual inspection of EEG signals. +e correct classification of
focal and nonfocal EEG signals by physicians for a long time is
very hectic and time-consuming and may be prone to human
errors. +us, a computer-based system for distinguishing
focal and nonfocal EEG signals with significant ACC is de-
sirable. In the present study, we proposed a method based on
entropy-based features extracted from TQWT subbands.
Several feature selection, machine learning, and neural net-
work classifiers were evaluated for discrimination of focal and
nonfocal EEG signals evaluated on the Bern-Barcelona dataset
with more than 41.6 hours of EEG data. +e proposed
TQWT-based method with different entropy-based features
selected with the PSO method and classified by the CFNN
resulted in classification ACC of 97.68%, which is higher than
those of the previous methods. In the future, the performance
of the proposed method is recommended for other bio-
medical signals to detect abnormal behaviors.
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