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Abstract: In China, peanut sprouts are popular among consumers as functional vegetables. This
study reports the change in total phenolic content (TPC), total flavonoid content (TFC), monomeric
anthocyanin content (MAC), vitamin C, trans-resveratrol content, antioxidant capacities, and phenolic
profile of three different varieties of peanut during 8 days of germination. The TPC, TFC, and antioxi-
dant capacity of peanut samples were reduced and then increased with an increase in germination
time. TFC values were highly correlated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric
reducing antioxidant power (FRAP) values. MAC values of peanuts were first increased and then
decreased during 8 days of germination. The TFC, DPPH, and FRAP values of germinated peanuts
were lower compared to the non-germinated peanut. Germination of peanut samples enhanced the
total phenolic acids and trans-resveratrol content, but the vitamin C content of peanut sprouts was
lower than ungerminated peanuts.

Keywords: peanut; germination; phenolic compounds; antioxidant capacities; trans-resveratrol

1. Introduction

Peanut (Arachis hypogaea Linn.) is an important legume crop that belongs to the
Fabaceae family and is widely cultivated in tropics and subtropics [1,2]. China is the largest
producer of peanuts followed by India, Nigeria, and Sudan. The overall production share
of peanuts by Asian countries is 55.9%, African countries is 34.1% followed by Americas
9.9% [3]. Peanuts are the rich source of protein (22–30%), fat (42–49%), carbohydrate
(15–21%), and fibers [2]. Peanuts are mostly reported to exhibit a significant amount of
linoleic acid (polyunsaturated fatty acid C18:2) and oleic acid (monounsaturated fatty
acid, C18:1) which reduce blood LDL-cholesterol levels, improve blood lipid profile and
reduce the incidence of cardiovascular diseases [2]. Peanuts are also regarded as a good
source of high-quality protein as it contains all essential amino acids required for normal
human growth and metabolism [1,2]. Along with all these macronutrients, peanuts also
contain a significant amount of micronutrients such as vitamins, phenolics, flavonoids,
and tocopherols which are responsible for antioxidant, antimicrobial, anti-cancer, and
anti-inflammatory properties [2,4–7].

Peanuts are appreciated by consumers of all age groups around the globe due to their
unique taste, health benefits, availability, and affordability compared to other nuts. Peanuts
are generally consumed as snacks after roasting, drying, and frying. Peanuts are widely
used for preparing peanut butter, soup thickener and are also used as a major source of
vegetable oils [2,5,8]. Germinated peanuts have also been used in the human diet as a
functional food for several centuries. In recent years, peanut sprouts became available in
several supermarkets in China as a healthy food [8].

Antioxidants 2021, 10, 1714. https://doi.org/10.3390/antiox10111714 https://www.mdpi.com/journal/antioxidants

https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0003-4541-965X
https://orcid.org/0000-0003-0739-3735
https://doi.org/10.3390/antiox10111714
https://doi.org/10.3390/antiox10111714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/antiox10111714
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox10111714?type=check_update&version=3


Antioxidants 2021, 10, 1714 2 of 19

During seed hydration and sprouting, several complex biochemical changes occur
in seeds [1]. Several factors are reported to affect peanut sprouting, namely cultivation
method, time, and temperature. The water cultivation of peanut sprouts improved its
ratio of oleic acid and linoleic acid content that is responsible for the reduction in the
cholesterol level [9]. Researchers have also reported that the soil culture method may
reduce the quality of peanut sprouts since this method had an apparent influence on
peanut’s radicle elongation [10]. The temperature was reported as another major factor that
exhibits a significant influence on the growth of peanut sprouts. Previous research revealed
a significant increase in height and fresh weight of peanut sprouts with an increase in the
temperature. In addition, 30 ◦C was mentioned as an optimum temperature to achieve the
best emergence rate for peanuts [11].

Peanut sprouts are reported to be a rich source of several phytochemicals, vitamins,
minerals, and proteins [12]. These micronutrients and macronutrients are essential for
human health. The peanut sprouts are also reported to be a rich source of flavonoids
and phenolic compounds such as resveratrol, arachidin-1, and piceatannol which are
responsible for several health benefits, such as the prevention of diabetes and various
cancers [1,12,13]. These phenolic compounds, secondary metabolites produced in plants,
are responsible for antioxidant activity, disease prevention and also exhibit several health-
promoting properties [14–16]. These compounds also exhibit several biological functions
such as anti-inflammatory activity, antiplatelet activity, and estrogenic activity [17–19]. In
addition, flavonoids and phenolic compounds are also reported to exhibit beneficial effects
in the treatment of neurodegenerative diseases and ischemia [19]. Recently, peanut sprout
extracts supplementation was reported to improve abdominal obesity and overall health
indices of overweight and obese women [13]. In addition, peanut sprout extracts were also
mentioned to exhibit neuroprotective activities against the oxidative stress in SK-N-SH
cells induced by paraquat [20]. Another study on Kalasin 2 cultivar peanut sprout crude
extract revealed high anti-inflammatory effects that were related to its polyphenolic content
and antioxidant properties [17].

Previously, the resveratrol contents of peanut sprouts were enhanced approximately
five times on day 9 of germination compared to day 1. In addition, sucrose, glucose,
and total free amino acid content were increased significantly whereas crude protein
content of peanuts was decreased. An extensive degradation in large sodium dodecyl
sulfate-polyacrylamide gel electrophoresis protein molecules of peanut sprouts was also
observed after 9 days of germination [12]. Another study on the chemical composition
of peanut sprouts revealed a significant increase in total phenolics, thiamine, folic acid,
proline, methionine, aspartic acid, minerals, and water content followed by short-term
germination [8]. Researchers have found the highest phenolic content (40.67± 2.62 µg gallic
acid/g DW), DPPH free radical scavenging activity (DPPH) (80.51 ± 1.47 mmol Trolox/g
DW), and ferric reducing antioxidant capacity (FRAP) (171.33 ± 8.59 mmol ascorbic acid/g
DW) in the Kalasin1 cultivar of peanut after three days of germination. Whereas the
highest resveratrol content (6.44 ± 1.26 µg/g DW) was observed in Kalasin 2 sprouts
on the second day of germination [1]. The available studies have explored either total
phenolics, antioxidant activity using a particular assay, or certain bioactive compounds.
However, no report is available on the detailed study of phytochemical compositions and
antioxidant profiles of different varieties of peanut during germination. Thus, this study
was conducted with an objective to study the change in moisture content, total phenolic
content, total flavonoid content, monomeric anthocyanin content (MAC), vitamin C content,
trans-resveratrol, individual phenolic acid compounds, and antioxidant activities assessed
by employing ferric reducing antioxidant power (FRAP) assay, 2-diphenyl-1-picrylhydrazyl
(DPPH) assay and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay of
different varieties of peanuts collected from China at 0, 2, 4, 6 and 8 day of germination.
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2. Materials and Methods
2.1. Peanut Samples

Three different peanut varieties from Shandong province, China were explored in this
study. Details regarding the name of variety, type or physical appearance of peanut variety,
year of cropping, and source are mentioned in Table S1 and Figure 1. The peanut samples
of all these three varieties were cleaned to remove any broken and crushed peanuts. The
peanut samples were stored at 4 ◦C in dark until further analysis.

Figure 1. Samples of peanuts from different varieties were used in the study. 1. Silihong, 2. Silihei, 3. Xiaobaisha.

2.2. Chemical Reagents

2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic
acid) (ABTS), (+)-catechin, 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), 2, 6-dichloroindophenol, L-
ascorbic acid were procured from Shanghai Yuanye Biological Technology Co., Ltd. (Shang-
hai, China). Folin–Ciocalteu reagent was purchased from Shanghai Sanjie Biotechnology
Co., Ltd. (Shanghai, China). Sodium carbonate, acetonitrile, methanol (high-performance
chromatography grade), methanol (analytical grade), acetic acid, and trifluoroacetic acid
(TFA) was supplied by Tianjin Nuoke Technology Development Co., Ltd. (Tianjin, China).
Whereas, meta-phosphoric acid, citric acid, and sodium hydroxide (NaOH) were purchased
from Damao Chemical Reagent Co., Ltd. (Tianjin, China).

2.3. Germination and Sample Preparation

The peanut seeds were germinated in the dark according to a previously described
method [21]. Briefly, the peanut samples were soaked in tap water for 24 h, followed by
spreading on a gauze-covered plate. The gauze was watered twice a day. After 2 days, the
germinated peanut seeds were transferred into the seedling raising plates filled with water.
The seeding-raising plates were put into a seed germinator at 30 ◦C (Model: FYZ-280,
Zhejiang Jiangnan Instrument Factory, Ningbo, China). The water in seedling raising plates
was changed twice a day. The peanut sprout samples were obtained at days 0, 2, 4, 6, and
8, respectively. After harvesting, the germinated peanut samples from each group were
ground for 1 min using a blender (XBLL-25, Shanghai Shuaijia Electronic Technology Co.,
Ltd., Shanghai, China). Finally, the ground samples were freeze-dried using a freeze-dryer
(Labconco Corporation, Kansas City, MO, USA) and stored at −80 ◦C until further analysis.

2.4. Determination of Moisture Content

The moisture content of peanut samples (3 g) was determined by employing a rapid
moisture analyzer (LHS20-HR, Shanghai Tianmei Tianping Instrument Co., Ltd., Shanghai,
China) in triplicate.
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2.5. Determination of Total Phenolic Content (TPC)

All the peanut samples were extracted according to a previously described method [22].
Briefly, 0.5 g of peanut sample was extracted twice with 5 mL of extraction solvent (ace-
tone/water/acetic acid, 70:29.5:0.5, v/v/v). For extraction, samples were shaken for 4 h
followed by incubation at room temperature in dark for 16 h followed by centrifugation at
6000 rpm for 2 min. The resultant extract was stored at 4 ◦C for further analysis.

Total phenolic content (TPC) of peanut samples was determined using Folin-Ciocalteu
assay [23]. Gallic acid was applied as an external standard for TPC determination. Briefly,
50 µL of sample extract was mixed with distilled water (3 mL), Folin-Ciocalteu reagent
(250 µL), and of 7% Na2CO3 solution (750 µL). The absorbance of the resultant reaction
mixture was observed at 765 nm by a UV–visible spectrophotometer (UT-1901, Beijing
Purkinje General Instrument Co., Ltd., Beijing, China) after 1 h of incubation in dark. The
TPC values of peanut samples were expressed as milligram gallic acid equivalents per
gram of dried sample (mg GAE/g DW).

2.6. Determination of Total Flavonoid Content (TFC)

TFC content of peanut samples was determined by employing the aluminum chloride
colorimetric method [18]. Briefly, sample extract (250 µL) was mixed with distilled water
(1250 µL), followed by the addition of 5% Na2NO3 solution (75 µL). After 6 min, 10%
AlCl3·6H2O (150 µL) was added to the reaction mixture. After 5 min, 500 µL of 1 M
NaOH and 275 µL of distilled water were added. The absorbance of the reaction mixture
was measured at 510 nm. The TFC values of peanut samples were expressed as mg of
(+)-catechin equivalents per g of dried sample (mg CAE/g DW).

2.7. Determination of Monomeric Anthocyanin Content (MAC)

MAC values of peanut samples were determined by employing a previously men-
tioned pH differential method [24]. The peanut sample extracts were diluted with pH
1.0 buffer and with pH 4.5 buffer. After 15 min, the absorbance of reaction mixtures was
measured using a UV-Vis spectrophotometer at both 700 nm and 510 nm. The antho-
cyanin pigment concentration of peanut samples was expressed as cyanidin-3-glucoside
equivalents (w/w%).

2.8. Determination of DPPH Free Radical Scavenging Activity (DPPH)

DPPH value of peanut samples was determined by employing a previously described
colorimetric method using Trolox as a standard [23]. The peanut sample extract (0.2 mL)
was mixed with DPPH reagent (3.8 mL) and vortexed. The reaction mixture was incubated
for 30 min in dark at room temperature. The absorbance of the resultant reaction mixture
was recorded at 517 nm and results were expressed as Trolox equivalents per g of dried
samples (µmol TE/g DW).

2.9. Determination of ABTS Free Radical Scavenging Activity (ABTS)

ABTS free radical scavenging activity of peanut samples was accessed by employing
a previously described method [25]. Trolox was used as an external standard for the
determination of ABTS values of samples under investigation. Briefly, the sample extracts
(20 µL) were mixed with ABTS reagent (1 mL) and the absorbance of the resultant reaction
mixture was recorded at 734 nm against an ethanol blank. The results were expressed as
µmol of Trolox equivalents per gram of the dried samples (µmol TE/g DW).

2.10. Determination of Ferric Reducing Antioxidant Capacity (FRAP)

Ferric reducing antioxidant capacity (FRAP) of sample extracts was determined by
using a previously reported colorimetric assay [26]. FeSO4 was employed as an external
standard. Briefly, 100 µL of sample extracts were mixed with 300 µL distilled water and
FRAP reagent (acetate buffer, TPTZ, FeCl3 solution, and distilled water). After 4 min, the
absorbance of the reaction mixture was recorded at 593 nm and FRAP values of peanut
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samples were expressed as mmol of Fe2+ equivalent (FE2+) per 100 g of dried sample (mmol
FE2+/100 g DW).

2.11. Determination of Vitamin C Content

The peanut samples were mixed with 8 mL of 3% metaphosphoric acid and stirred at
high speed for 2 min using a turbo mixer followed by centrifugation at 8500 rpm for 5 min.
The supernatant was collected in 50 mL volumetric flasks. The buffer extract was diluted to
1/5 of the original concentration using citrate phosphate buffer. Then, after the addition of
2.5 mL of indoxyl solution, the absorbance of the reaction mixture was directly observed by
the spectrophotometer (Shanghai Jinke Electronic Technology Co., Ltd., Shanghai, China).
The excess of ascorbic acid was then added to complete discoloration of the dye, again
as observed with the spectrophotometer, which was regarded as the blank. Finally, the
vitamin C content was obtained by subtracting the blank value from the absorbance read
at 520 nm and comparing it with the standard curve [27].

2.12. Determination of Trans-Resveratrol

The trans-resveratrol content of peanut samples was determined according to a pre-
viously mentioned procedure [28]. The sample was extracted with 80% ethanol in an
ultrasonic bath for two hours. The sample was filtered to collect supernatant followed by
vacuum drying. The dried supernatant was redissolved in 3 mL of acetonitrile and then
filtered through a 3 µm syringe filter into an HPLC (High-Performance Liquid Chromatog-
raphy) vial.

The HPLC analysis of resultant extract was performed using RP-HPLC system (Waters
Associates, Milford, MA, USA) equipped with a C18 column (Zorbax Stablebond Analytical
SB-C18 column, 4.6 mm × 250 mm, 5 µm). The ultrapure water containing 0.05% acetic
acid was employed as mobile phase A and HPLC-grade acetonitrile was used as mobile
phase B. An isocratic elution with mobile phase A 78% and B 22% was employed at a flow
rate of 0.9 mL/min for 12 min at room temperature. The column temperature was set at
30◦C, sample injection volume was 10 µL and the wavelength of the detector was recorded
at 306 nm. The trans-resveratrol contents were expressed as micrograms of phenolic acid
per gram of dried sample (ng/g DW).

2.13. Determination of Phenolic Acid

Briefly, the peanut sample was extracted twice with 10 mL of extraction solvent
(methanol/water/acetic acid/butylated hydroxytoluene (BHT) = 85:15:0.5:0.2) by shaking
at 300 rpm for 4 h at room temperature followed by centrifugation at 6000 rpm for 20 min.
After centrifugation, the supernatant was filtered through Whatman#1 filter paper and
concentrated at 45 ◦C under vacuum to remove the extraction solvent. Then, the dried
residue was re-dissolved in 2.5 mL of 25% methanol. Finally, this methanol sample solution
was filtered through a 0.2 µm PVDF syringe filter in an HPLC vial.

The quantitative analysis of phenolic acids was performed by employing HPLC accord-
ing to a previously described method [22]. A Waters Associates (Milford, MA, USA) chro-
matography system equipped with a model 418 LC spectrophotometer, a model 720 system
controller, a model 7125 loading sample injector, and a model 6000A solvent delivery sys-
tem was used. A Zorbax Stablebond Analytical SB-C18 column (4.6 mm × 250 mm, 5 µm)
from Agilent Technologies, Rising Sun, MD, USA at 40 ◦C was used for separation of
phenolic acids. Twenty microliters of the sample extract were employed, and the detector
was set at 270 nm.

A linear elution gradient of 0.1% TFA (solvent A) and methanol (solvent B) was
employed. Solvent A was decreased from 95% at 0 min to 0% at 76 min at a flow rate of
0.7 mL/min and the sample injection volume was 20 µL. The stock solution of phenolic
acids mixture was prepared in 25% methanol followed by the dilution to appropriate
concentrations. The calibration curves of phenolic acids were obtained by plotting different
concentrations of a particular phenolic acid versus corresponding peak areas. The phenolic
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acids in the peanut samples were identified by comparing their retention time and UV
spectra with the retention time and UV spectra of standard phenolic acid peaks. The
phenolic acid contents were expressed as micrograms of phenolic acid per gram of dried
sample (µg/g DW).

2.14. Statistical Analysis

All experiments were conducted in triplicates and the data were presented as mean
± standard deviation. The significant differences (p < 0.05) among the mean values of
different samples were analyzed by performing the Duncan test using IBM SPSS Statistics
version 25 (IBM Corporation, New York, NY, USA).

3. Results
3.1. Radicle Length of Different Varieties of Peanuts during Germination

The changes in radicle length of peanuts at days 0, 2, 4, 6, and 8 are presented in
Figure 2. The three kinds of peanuts investigated in the present study followed a similar
growth trend (Figures 2 and S1). Peanut Silihong grows slightly faster than the other two
kinds of peanut. The length of radicle in the case of peanut Silihong reached 5.3 cm on day
8 while the length of peanut Silihei and Xiaobaisha was measured as 5.0 cm and 5.2 cm,
respectively. A rapid increase in the radicle length was observed from day 4 to day 6 of
germination. The elongation rate for Silihong, Silihei, and Xiaobaisha was observed to
be 200%, 170%, and 136%, respectively. It was also observed that on germination days
6 to 8, the elongation rate was 77%, 85%, and 100% for Silihong, Silihei, and Xiaobaisha,
respectively which was significantly lower compared to as observed on days 4 to 6.

Figure 2. Development and length of the radicle of different varieties of peanuts of different varieties
namely, (1) Silihong, (2) Silihei, and (3) Xiaobaisha during germination.
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3.2. Moisture Content of Different Varieties of Peanuts during Germination

The data related to the moisture content of three different varieties of peanut is
presented in Table S2. The moisture content of the peanut samples was found to be
increased with an increase in germination time. The peanut variety Silihong exhibited a
higher moisture content compared to the other two peanut varieties. A rapid increase in
moisture content was observed in the case of Silihong (309%), Silihei (360%), and Xiaobaisha
(294%) from day 0 to day 2 of germination. However, the increase in moisture content
of peanut samples was slightly lower from day 2 of germination to day 8. The highest
increase in the moisture content during this period was observed in the case of Silihong
(36%) during days 2 to 4. Whereas the highest increment in the moisture content in the
Silihei variety was 32% from day 4 to 6 and 26% in the case of variety Xiaobaisha from day
6 of germination to day 8.

3.3. Total Phenolic Content (TPC) of Different Varieties of Peanuts during Germination

TPC values for three different kinds of peanut from day 0 to day 8 of the germination
are presented in Figure 3a. The peanut variety Silihei exhibits relatively high values
of TPC from day 0 to day 8 compared to the peanut variety Silihong and Xiaobaisha.
The TPC values for peanut variety Silihei was 7.84 mg GAE/g DW, while Silihong and
Xiaobaisha contain 6.22 and 6.88 mg GAE/g DW, respectively on day 0. From days 0 to
2, a significant decrease in the TPC values was observed, especially in the case of peanut
variety Xiaobaisha, where the TPC value was reduced from 6.88 to 3.56 mg GAE/g DW.
However, from day 2 of germination to day 8, an increasing trend in the TPC values of
all peanut varieties was observed except in the case of peanut variety Xiaobaisha that
exhibited 6.03 mg GAE/g DW of TPC on day 6 of germination and 5.8 mg GAE/g DW of
TPC on day 8 of the germination.

Figure 3. Kinetic changes (a) TPC, (b) TFC, (c) MAC, (d) vitamin C of peanut during germination. Data marked with the
same letters were not statistically significant (p > 0.05).
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The highest increment in the TPC values of three different varieties of peanuts was
observed at different stages of germination. In the case of peanut variety Silihong, the
maximum increase in the TPC value (31.7%) was observed from day 6 of germination
to day 8. However, in the case of peanut variety Xiaobaisha, the maximum increase in
the TPC value (50.8%) was observed from day 2 of germination to day 4 of germination.
The increasing trend of TPC value of peanut variety Silihei was relatively stable and the
maximum increase in TPC value (9.8%) was observed from day 2 to day 4 of germination.
Overall, the TPC values of peanut variety Silihong and Silihei on day 8 of germination
were higher compared to the non-germinated peanuts and the percentage increment in
case of variety Silihong and Silihei on day 8 was observed to be about 17.7% and 5.2%.

3.4. Total Flavonoid Content (TFC) of Different Varieties of Peanuts during Germination

The TFC values for three varieties of peanut are presented in Error! Reference source
not found. It was observed that the peanut variety Xiaobaisha exhibit the highest value for
TFC (2.43 mg CAE/g DW) on day 0 followed by peanut variety Silihong (1.97 mg CAE/g
DW) and Silihei (1.82 mg CAE/g DW). A significant decrease in the TFC values of all three
varieties of peanuts was observed from day 0 to day 2 of germination. The maximum
decrease in the TFC value (228.3%) was observed in the case of peanut variety Xiaobaisha
on day 2 of germination followed by peanut variety Silihei (171.6%) and Silihong (137.3%)
from day 0 to day 4 of germination. Furthermore, an increment in TFC values of peanut
variety Xiaobaisha and Silihong was observed on day 4 of germination, however, peanut
variety Silihei presented a decrease in the TFC value on day 4.

The TFC values of germinated peanut samples were less compared to the non-
germinated samples and the decreasing percentage for peanut variety Silihong, Silihei, and
Xiaobaisha from day 0 to day 8 was observed to be 64.2%, 97.8%, and 164.1%, respectively.

3.5. Monomeric Anthocyanin Content (MAC) of Different Varieties of Peanuts during Germination

The MAC value of three varieties of peanut during germination is presented in Error!
Reference source not found. A significant increase in the MAC values of all varieties of
peanuts was observed from day 0 to day 4 of the germination followed by a decrease in
MAC values from 4 to day 8 of germination. Overall, the increasing MAC value trend in
all peanut varieties is similar. However, from day 4 to 8, the decreasing trend of MAC
value is different in all three varieties. On day 6, all the three peanut varieties presented in
significantly different values for MAC, and on day 8 minimum decrease in the MAC value
was presented by peanut variety Xiaobaisha followed by Silihong and Silihei.

The highest values of MAC for Silihong (0.050%), Silihei (0.041%), and Xiaobaisha
(0.037%) were observed on day 4, day 4, and day 6 of germination, respectively. The maximum
increase percentage of MAC values for Silihong (127.3%), Silihei (86.4%), and Xiaobaisha
(164.3%) were on day 4 or 6 of germination compared to the non-germinated samples.

3.6. DPPH Free Radical Scavenging Activity (DPPH) of Different Varieties of Peanuts
during Germination

The change in the DPPH values of peanuts of three different varieties from day 0 to
day 8 of germination is presented in Figure 4. Overall, a sharp decrease in the DPPH value
of peanut samples was observed initially on day 2. However, on day 8 of germination,
a slight increase in DPPH values was observed and the percentage increase in DPPH
value was observed to be 43.1%, 33.3%, and 13.8% for Silihong, Silihei, and Xiaobaisha,
respectively. On day 0, peanut variety Xiaobaisha had the highest value for DPPH assay
(26.60 µmol TE/g DW) followed by Silihong (18.63 µmol TE/g DW) and Silihei (18.50 µmol
TE/g DW). It was noted that the DPPH values of peanut variety Xiaobaisha decreased
until day 6 and increased on day 8 of germination. However, the DPPH value of Silihong
and Silihei was increased from day 6 to day 8. On the 8th day of germination, the highest
DPPH value was found in the peanut variety Silihong (8.30 µmol TE/g DW) followed by
Xiaobaisha (7.75 µmol TE/g DW) and Silihei (7.01 µmol TE/g DW). Overall, the germinated
peanut samples of all varieties presented a lower DPPH value compared to the raw peanut
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samples and the decreasing percentage from day 0 to day 8 was about 124.5% for Silihong,
163.9% for Silihei, and 243.2% for Xiaobaisha.

Figure 4. Kinetic changes of (a) DPPH free radical scavenging activity, (b) ABTS radical scavenging activity, (c) ferric
reducing antioxidant capacity (FRAP) of peanut during germination. Data marked with the same letters were not statistically
significant (p > 0.05).

3.7. ABTS Free Radical Scavenging Activity (ABTS) of Different Varieties of Peanuts during Germination

The ABTS free radical scavenging activity for different varieties of peanuts from day 0
to day 8 of germination was presented in Figure 4b. Initially, an abrupt decrease in ABTS
values of all peanut samples was observed from day 0 to day 2 followed by an increase in
ABTS values from day 2 to day 8 of germination. From day 2 to day 8 of germination, the
ABTS value of peanut variety Silihei was observed to be significantly higher compared to
peanut varieties Silihong and Xiaobaisha. On the 8th day of germination, the peanut variety
Silihong (55.11 µmol TE/g DW) and Silihei (63.59 µmol TE/g DW) presented higher values
for ABTS compared to day 0, which were 46.28 µmol TE/g DW for Silihong and 53.28 µmol
TE/g DW for Silihei and the percentage increase on day 8 was 19.1% for Silihong and
18.2% for Silihei compared with day 0. Unlike Silihong and Silihei, the ABTS value of
Xiaobaisha on the last germinated day (50.14 µmol TE/g DW) was slightly lower than the
non-germinated peanut sample (52.59 µmol TE/g DW).

The highest percentage increase in the ABTS values for three different varieties of
peanuts was observed at different germination times. The highest percentage increase in
peanut variety Silihong was observed on day 6 to day 8 (31.7%), whereas for peanut variety
Silihei, the highest percentage increase was observed on days 4 to 6 (16.4%) and in case of
Xiaobaisha, the highest percentage increase was observed on day 2 to 4 (30.9%).
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3.8. Ferric Reducing Antioxidant Capacity (FRAP) of Different Varieties of Peanuts during Germination

The FRAP values for non-germinated and germinated peanut samples of three differ-
ent varieties were presented in Figure 4c. The FRAP values for all varieties of peanuts were
decreased from day 0 to 4 and further increased from day 4 to day 8 of germination. At the
beginning of germination, peanut variety Xiaobaisha presented the highest value for FRAP
assay (3.82 mmol Fe2+/100g DW) while on the last day of germination, its FRAP value
(1.65 mmol Fe2+/100g DW) was observed to be lower than the FRAP values of peanut
variety Silihong (2.3 mmol Fe2+/100g DW) and Silihei (1.9 mmol Fe2+/100g DW). Overall,
the lowest FRAP values were observed on day 4 with Silihong presenting 1.33 mmol
Fe2+/100g DW, Silihei presenting 1.27 mmol Fe2+/100g DW and Xiaobaisha exhibiting
1.26 mmol Fe2+/100g DW.

The maximum percentage decrease was observed from day 0 to day 2 of germination
to be 112.7% for Silihong, 150.8% for Silihei, and 191.6% for Xiaobaisha. All peanut samples
had a rapid decline and then a slight increase in FRAP values during the whole period
of germination. The maximum increase in the FRAP values of three varieties of peanut
was observed on day 8, and the percentage increase was 42.2% in the case of Silihong,
49.6% in the case of Silihei, and 40.0% in the case of Xiaobaisha compared with day 4 of
germination. However, the FRAP values on day 8 were significantly lower compared to
the non-germinated peanut sample, and the percentage decrease for Silihong, Silihei, and
Xiaobaisha was observed to be 24.3%, 71.6%, and 131.5%, respectively.

3.9. Vitamin C Content of Different Varieties of Peanuts during Germination

As shown in Figure 3d, the vitamin C content of three types of peanuts follows
the same trend. Initially, a significant decrease in vitamin C was observed followed by
an increase in vitamin C content from day 6 to day 8 of germination. On the 8th day of
germination, the vitamin C content of peanut variety Silihong was 0.197 mg/g DW, whereas
the vitamin C content of Silihei was 0.142 mg/g DW and Xiaobaisha was 0.065 mg/g DW.
During the first two days of germination, the vitamin C content of all three varieties of
peanuts was decreased. Among them, Xiaobaisha variety presented a sharp decline in
vitamin C (0.015 mg/g DW) followed by Silihong (0.073 mg/g DW). However, in the case
of peanut variety Silihei, the decrease in vitamin C content was quite low and continued
until the 6th day of germination (0.111 mg/g DW). From the 4th to the 8th day, peanut
variety Silihong presented the highest increase (46%) in vitamin C followed by Silihei
and Xiaobaisha. It was interesting to note that the vitamin C content of peanut variety
Xiaobaisha was almost stable at 0.07 mg/g DW after day 2 of germination.

3.10. Trans-Resveratrol of Different Varieties of Peanuts during Germination

The change in the trans-resveratrol content of different varieties of peanuts from day 0
to day 8 of the germination is presented in Table 1. Figure S2a,b present the standard curve
of trans-resveratrol and typical peanut sample. All three peanut varieties had an overall
increasing trend in the trans-resveratrol content from day 0 to day 8 of the germination.
Table 1 reports the peanut variety, Silihei had higher values for trans-resveratrol content.
On the 8th day of germination, peanut variety Silihei had 631 ng/g DW of trans-resveratrol
that was higher compared to the trans-resveratrol content of peanut variety Silihong
(415.93 ng/g DW) and Xiaobaisha (194.90 ng/g DW). The trans-resveratrol content of
peanut variety Silihei has increased abruptly during germination with a growth percentage
of 3070%. In the case of peanut variety Silihong and Xiaobaisha, a significant increment in
the trans-resveratrol content was observed from day 2 to day 4 of the germination with an
increasing percentage of 298.85% and 129.34%, respectively. The trans-resveratrol content
of peanut variety Silihong and Xiaobaisha was further decreased from day 6 to day 8 of
germination by 222.58 ng/g DW and 86.84 ng/g DW, respectively.
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Table 1. Trans-Resveratrol content of different kinds of peanuts during sprouting.

Varieties Germination Time (Days) Trans-Resveratrol (ng/g)

0 26.52 ± 3.19 c

2 117.36 ± 11.94 c

Silihong 4 468.10 ± 72.17 b

6 638.51 ± 113.35 a

8 415.93 ± 27.00 b

0 19.91 ± 5.57 b

2 42.64 ± 1.57 b

Silihei 4 59.34 ± 5.35 b

6 487.23 ± 49.29 a

8 631.14 ± 185.92 a

0 40.08 ± 2.44 d

2 52.18 ± 1.85 cd

Xiaobaisha 4 119.67 ± 13.82 c

6 281.74 ± 77.82 a

8 194.90 ± 43.26 b

Data are expressed as mean ± standard deviation (n = 3) on a dry weight basis. Different letters within a row (a–d) represent the statistically
significant differences (p < 0.05) between the mean values.

3.11. Phenolic acid Profile of Different Varieties of Peanuts during Germination

Ten different phenolic acids were quantified in three different varieties of peanuts
during germination (Figure S2c,d). Gallic acid was sharply increased in Silihong from
day 0 to day 2 of germination from around 4.58 µg/g DW to around 32.15 µg/g DW,
and then at days 4 and 6, gallic acid content was 25.54 and 28.99 µg/g DW and a slight
increase in gallic acid (38.44 µg/g DW) were further observed at day 8 (Table 2). However,
in the case of Silihei and Xiaobaisha, gallic acid content varied slightly at day 0 to 4
of germination and increased sharply from day 6 to day 8 of germination. The gallic
acid content of Silihei was varied from 13.95 to 38.44 µg/g DW, while the gallic acid
concentration was varied from 21.14 to 39.78 µg/g DW in the case of Xiaobaisha. The
protocatechuic acid in all varieties of peanuts followed the same trend. A slight variation
in protocatechuic acid concentration was observed from day 0 to day 4 of germination
followed by a rapid increase on day 6 of germination. Overall, the Silihong variety ha
trend from 3.72 to 4.01 µg/g DW. An increase in the protocatechualdehyde content was
observed in the case of Xiaobaisha variety from 0.91 to 1.95 µg/g DW. On the contrary,
the protocatechualdehyde content was reduced from 4.05 to 0.71 µg/g DW in the case
of peanut variety Silihei. The p-hydroxybenzoic acid of three varieties of peanuts under
investigation presented an increasing trend during germination.

From day 0 to day 6 of germination, gentisic acid of the Silihong variety was decreased
from 23.95 to 10.56 µg/g DW, however, a slight increase (11.01 µg/g) was observed on day 8
(Table 2). In contrast, a continuous increase in the gentisic acid level was observed in the
case of Silihei and Xiaobaishao except on day 4 of germination. A significant increase
in chlorogenic acid was observed in the case of all three varieties under investigation.
However, for Silihei, the chlorogenic acid was decreased significantly (7.29 µg/g) from day
2 to day 4 of germination. The syringic acid content of all the peanut varieties was higher on
day 0. However, a significant decrease in the syringic acid was observed with an increase
in the germination time of all the varieties. The p-coumaric acid and syringaldehyde of all
varieties were increased from days 0 to 8. In the case of Silihong, the p-coumaric acid and
syringaldehyde were increased continuously during the whole duration of germination
from 6.82 to 38.73 µg/g DW. However, significant variations in p-coumaric acid and
syringaldehyde content were observed in the case of Silihei and Xiaobaisha from day 0
to day 8 of the germination. The ferulic acid content of all the peanut varieties followed
almost a similar trend during germination. In all the peanut varieties, the ferulic acid
content was increased steadily from day 2 of germination and then decreased on days 6, 8,
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and 6 of germination, respectively. In the case of Xiaobaisha, the sinapic acid content was
increased from 15.46 to 32.58 µg/g DW from day 0 to day 8. However, in the case of Silihei,
the sinapic acid content was varied from 5.55 to 12.07 µg/g DW from day 0 to day 6 and
in the case of Silihong, its values varied from 4.55 to 6.90 µg/g DW from day 6 to day 8
of germination.

Table 2. Phenolic acid profile of different peanut samples during germination.

Varieties Phenolic Acid (µg/g)
Germination Time (Days)

0 2 4 6 8

Silihong

Gallic acid 4.58 ± 0.38 c 32.15 ± 2.17 ab 25.54 ± 2.49 b 28.99 ± 2.75 b 38.44 ± 3.54 a

Protocatechuic acid 0.93 ± 0.13 cd 0.53 ± 0.11 d 1.41 ± 0.22 bc 4.23 ± 0.58 a 2.02 ± 0.18 b

Protocatechualdehyde 3.72 ± 0.23 b 4.50 ± 0.00 a 1.82 ± 0.05 c 0.99 ± 0.15 d 4.01 ± 0.38 ab

p-hydroxybenzoic acid 1.52 ± 0.08 b 2.48 ± 0.23 b 0.74 ± 0.07 b 9.06 ± 2.22 a 9.29 ± 0.02 a

Gentisic acid 23.95 ± 1.10 a 15.07 ± 1.40 b 13.88 ± 1.19 bc 10.56 ± 1.95 c 11.01 ± 0.68 c

Chlorogenic acid 19.46 ± 1.69 c 30.80 ± 2.41 c 59.04 ± 3.78 c 105.24 ± 19.93 b 144.43 ± 8.80 a

Syringic acid 5.87 ± 0.01 a 1.16 ± 0.21 c 0.61 ± 0.21 c 2.46 ± 0.68 b 3.09 ± 0.02 b

p-Coumaric acid +
Syringaldehyde 6.82 ± 0.20 d 14.99 ± 1.51 c 19.68 ± 2.23 b 21.02 ± 0.14 b 38.73 ± 2.09 a

Ferulic acid 1.36 ± 0.21 e 3.51 ± 0.26 d 7.95 ± 0.55 b 6.21 ± 0.34 c 9.47 ± 0.19 a

Sinapic acid 4.77 ± 0.47 b 6.80 ± 0.48 a 4.96 ± 0.26 b 4.55 ± 0.70 b 6.90 ± 0.12 a

Silihei

Gallic acid 5.47 ± 1.60 a 8.13 ± 1.42 b 8.53 ± 2.25 b 13.95 ± 1.31 b 30.87 ± 9.79 b

Protocatechuic acid 0.66 ± 0.22 b 0.51 ± 0.08 b 0.40 ± 0.16 b 3.71 ± 0.19 a 6.36 ± 0.59 a

Protocatechualdehyde 4.05 ± 1.00 a 3.76 ± 0.01 a 0.76 ± 0.11 b 0.68 ± 0.21 b 0.71 ± 0.13 b

p-hydroxybenzoic acid 0.36 ± 0.09 d 1.10 ± 0.08 c 1.11 ± 0.26 c 2.09 ± 0.17 b 5.13 ± 0.46 a

Gentisic acid 26.11 ± 7.21 bc 35.23 ± 2.71 ab 20.30 ± 6.07 c 35.99 ± 4.59 ab 42.48 ± 6.23 a

Chlorogenic acid 10.52 ± 1.89 c 26.61 ± 10.40 c 19.32 ± 3.80 c 61.45 ± 8.39 b 111.05 ± 11.75 a

Syringic acid 2.26 ± 0.45 a 0.74 ± 0.10 c 0.63 ± 0.12 c 1.14 ± 0.01 bc 1.71 ± 0.16 ab

p-Coumaric acid +
Syringaldehyde 3.84 ± 0.90 c 16.52 ± 1.36 bc 26.21 ± 9.02 b 74.14 ± 8.28 a 60.26 ± 8.17 a

Ferulic acid 1.67 ± 0.18 d 3.45 ± 0.23 cd 5.92 ± 2.22 c 14.47 ± 1.56 a 10.30 ± 1.20 b

Sinapic acid 5.55 ± 1.26 c 10.51 ± 2.19 ab 6.46 ± 2.42 bc 12.07 ± 1.55 a 9.82 ± 1.25 ab c

Xiaobaisha

Gallic acid 0.66 ± 0.08 d 29.24 ± 0.86 b 24.68 ± 3.15 bc 21.14 ± 1.00 c 39.78 ± 4.44 a

Protocatechuic acid 1.45 ± 0.44 c 0.69 ± 0.12 c 0.61 ± 0.01 c 5.70 ± 0.51 b 8.20 ± 0.93 a

Protocatechualdehyde 0.91 ± 0.12 c 4.16 ± 1.03 a 2.99 ± 0.43 ab 2.42 ± 0.32 bc 1.95 ± 0.54 bc

p-hydroxybenzoic acid 2.51 ± 1.02 b 1.26 ± 0.14 b 0.41 ± 0.03 b 5.63 ± 2.16 a 8.31 ± 0.09 a

Gentisic acid 35.40 ± 9.80 a 39.30 ± 5.03 a 52.96 ± 5.11 a 40.52 ± 4.68 a 39.87 ± 9.24 a

Chlorogenic acid 19.63 ± 4.97 c 30.38 ± 8.18 c 84.05 ± 6.33 b 106.60 ± 11.84 b 186.65 ± 38.04 a

Syringic acid 5.31 ± 0.87 a 1.46 ± 0.39 b 0.13 ± 0.03 c 0.83 ± 0.15 bc 1.90 ± 0.26 b

p-Coumaric acid +
Syringaldehyde 15.00 ± 0.45 c 9.07 ± 0.94 c 14.28 ± 0.49 c 31.18 ± 3.71 b 53.36 ± 8.63 a

Ferulic acid 1.16 ± 0.17 c 3.07 ± 0.27 b 5.04 ± 0.28 a 6.15 ± 0.77 a 6.07 ± 0.59 a

Sinapic acid 15.46 ± 1.67 b 18.50 ± 5.16 b 38.92 ± 5.71 a 28.35 ± 2.15 ab 32.58 ± 8.35 a

Data are expressed as mean ± standard deviation (n = 3) on a dry weight basis. Different letters within a row (a–e) represent the statistically
significant differences (p < 0.05) between the mean values.

4. Discussion
4.1. Effects of Germination Time on Radicles Length of Different Varieties of Peanuts

As shown in Figures 2 and S1, it was observed that the length of peanut radicle is
increased slowly from day 2 to 4, as well as from day 6 to 8. However, a rapid increase in
peanut radicle was observed from day 4 to day 6 of germination. This observation is in
concordance with a previous study that mentions the elongation rate of radicle length at
30 ◦C follows a “slow-quick-slow” pattern [29]. In addition, the growth trend followed by
peanut radicle in this study was in line with another study, that reported the fastest growth
of peanut radicle from day 4 to day 6 of germination at 30 ◦C [30].

4.2. Effects of Germination on the Moisture Content of Different Varieties of Peanuts

According to Table S2, the maximum increase in moisture percentage of peanut
samples was observed on day 2 of germination. An increase in the moisture content of
peanut samples in the early stage of germination is attributed to the swelling of hydrophilic
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colloids in peanuts. At this stage, proteins, enzymes, other macromolecules, and organelles
in the embryos successively underwent hydration activation [31].

According to a previous study, the increment in the moisture content of seed during
the germination process can be divided into three phases namely, swelling water absorp-
tion phase, slow water absorption phase, and growth water absorption phase [32]. The
percentage variation in the moisture content of peanut samples exhibits a “quick-slow-
quick” tendency. As shown in Table S2, a rapid increase in the moisture content of different
varieties of peanut samples was observed from day 0 to day 2 of germination. Whereas
an increment in the moisture content of peanut samples was slow from day 2 to day 8 as
the peanut samples were still in the slow water absorption phase. It was also observed
that the moisture content increment is stable from day 2 to day 8 of germination. A similar
trend was also reported in a previous study in which the average moisture content for
three varieties of peanuts on day 8 of germination was about 83.3% [33].

4.3. Effects of Germination on Total Phenolic Content (TPC) of Different Varieties of Peanuts

During germination, TPC values of the three varieties of peanut exhibit an increasing
trend. TPC values for peanut varieties Silihong and Silihei were higher on the last day of
germination as compared to the non-germinated peanut (Figure 3a). This observation is
in complete agreement with a previous study that also mentioned an increase in the TPC
values after seed germination [13].

In addition, during days 0 to 2 of germination, the TPC values of all the peanut
samples exhibited a decrease. The soaking treatment softened the tissue structure of seeds
facilitating the release of polyphenols from cell wall polysaccharides that in turn increase
the TPC value. However, the action of polyphenol oxidase led to the degradation of
certain free polyphenols by oxidation that further cause a decrease in the TPC value of seed
samples [34].

The trend observed in the TPC variation of peanut samples was similar to a previous
study. However, the TPC values of non-germinated peanuts in previous reports were
different from the TPC value of non-germinated peanut samples. The peanut kernel
explored in a previous study was reported to contain 1.53 mg GAE/g of TPC [21]. Whereas,
in another study, the TPC value for non-germinated peanut samples was about 0.92 mg
GAE/g [35]. However, in the present study, the TPC value of non-germinated peanuts
was relatively higher. The reason behind the higher values of TPC in the present study
might be due to the variation in the peanut variety and extraction method. The variation in
the biochemical composition of a plant sample collected from the different geographical
regions is well reported previously [16].

4.4. Effects of Germination on Total Flavonoid Content (TFC) of Different Varieties of Peanuts

As shown in Figure 3b, a significant decrease in the TFC values was observed at the
beginning of germination followed by a slight increase during the middle of germination.
A similar trend in the TFC values of peanuts was also reported previously during germina-
tion [21]. The increase in the TFC values of peanuts during germination was previously
reported to be due to the synthesis of new flavonoid compounds during the process of
germination [36]. The TFC values of peanut samples on the last day of germination were
lower than the non-germinated peanut.

Previous reports also stated that the antioxidant activity of peanuts is mainly due to
the presence of colorless pigments mostly flavonoids compared to the colored pigments
anthocyanins [4]. Peanuts are the storehouse of several flavonoids such as anthocyanin and
catechins namely, epigallocatechin, epicatechin, catechin gallate, and epicatechin gallate.
Anthocyanin as well as catechins can dissolve in water. This contributes towards the
loss of flavonoids during germination due to water absorption which occurs at that stage.
Flavonoids can also be decomposed by light and oxygen. Therefore, in the present study,
the lower TFC value observed in the germinated peanut samples was attributed to the
water absorption, light, or oxidation during germination [37,38]. Previously, the TFC value
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of non-germinated peanut was mentioned as 1.0 mg CAE/g [21] that was slightly lower
compared to the TFC value of the non-germinated peanut samples in this study. This
variation in TFC values among these two studies may be again attributed to different
varieties of peanuts investigated and differences in the extraction methods employed.

4.5. Effects of Germination on Monomeric Anthocyanin Content (MAC) of Different Varieties
of Peanuts

As shown in Figure 3c, the highest MAC values were observed around the 4th day
of germination. An increasing trend in the MAC value was observed at the beginning
and decreased in the last of germination. From day 0 to day 6 of germination, the MAC
values of peanut varieties, Silihong and Silihei were higher compared to the peanut variety
Xiaobaisha. The seed coat color of Xiaobaisha was light red whereas the seed coat of
Silihong exhibit bright red color and Silihei exhibits a black color that may be the reason
behind the lower MAC values of Xiaobaisha compared to the Silihong and Silihei. A
previous study on peanuts also mentioned that the samples with darker seed coats exhibit
higher values for MAC compared to the peanuts with lighter seed coats [4].

At an early stage of germination, peanut seeds were reported to synthesize antho-
cyanin with several factors including light, pH, temperature, enzymes, and reactive oxygen
species found to be responsible for the reduction of anthocyanins during the mid-point
of germination [39]. In addition, anthocyanins are water-soluble flavonoids and several
enzymes activated during germination, together with result in a decrease in anthocyanin
content due to leaching and oxidation [40]. Also, anthocyanins are sensitive to light and
need to be protected from light. According to a previous study, the optimal pH for antho-
cyanin was about 2 to 3 [41]. Therefore, the higher pH in cultivation water, light, and water
absorption was considered responsible for the loss of anthocyanin during germination.

4.6. Effects of Germination on Antioxidant Capacities of Different Varieties of Peanuts

As shown in Figure 4, the antioxidant capacities of peanut samples of different varieties
present a similar trend during germination. Briefly, a significant decrease in the antioxidant
capacities of peanut samples was observed followed by an increment till the 8th day of
germination. The antioxidant capacities of peanut samples are contributed mainly by
the phenolic and flavonoid compounds present in the seed coat and cotyledon [4]. At
the early stage of peanut germination, phenolic compounds in the seed coat responsible
for its pigmentation were lost due to soaking and germination, which in turn reduces
the antioxidant ability of peanut samples [42]. During the middle of germination, the
antioxidant capacities of peanut sprouts start increasing due to the synthesis of phenolic
compounds. The findings of the present study are in agreement with a previous study that
reported a similar trend in antioxidant capacities of peanut sprout during germination [1].

The DPPH and FRAP values of the germinated peanut samples were lesser on day 8
compared to the non-germinated peanut (Figure 4a,c). The different results of antioxidant
capacities determined by employing various assays may be due to the variation in the un-
derlying principle of these assays. The antioxidant capacities of peanut samples assessed by
using ABTS assay (Figure 4b) were higher compared to the antioxidant capacity determined
by the DPPH assay (Figure 4a). This variation is due to the high stability of DPPH radicals
that result in lower reactivity of DPPH radicals. As mentioned in a previous publication,
the reaction kinetics of DPPH and ABTS cations are different, which can result in higher
values of ABTS assay compared to the values attained by employing DPPH assay [43]. In
addition to the variation in peanut variety, most of the previous studies have used ethanol
and methanol as a solvent to extract phenolics of peanut sprouts [13,14,35], while in the
present study, acetone was applied for the extraction of phenolics. Extraction solvents and
extraction methods were also reported to affect the final concentration of phenolics and
antioxidant capacities of extracts. It was also mentioned that different solvent has to be
applied along with different extraction methods for efficient extraction of phenolic and
better assessment of antioxidant capacity [6]. In addition, the reduction of TFC during
germination might affect the antioxidant capacities of peanut sprouts since flavonoids
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contribute significantly towards the antioxidant activities. Many soluble flavonoids such as
catechins, isoflavones, and anthocyanin are reported presenting antioxidant capacities. The
lower antioxidant capacities of germinated peanuts may be attributed to the decomposition
of these flavonoid compounds during the germination period. Additionally, different
cultivation methods and different varieties of peanut samples also presented different an-
tioxidant capacities. A similar finding was also reported previously presenting variations
in the antioxidant capacities of peanuts of different varieties [44].

4.7. Correlation Analyses between Phenolic Content and Antioxidant Activities of Peanut
during Germination

As shown in Table S3, the antioxidant capacities of peanut samples were related to
their phenolic compounds. For example, the results of TPC values for three varieties of
peanut showed a positive and significant correlation (r = 0.956, p < 0.01) with ABTS values.
It is also observed that the TFC values of peanuts also exhibited significant and positive
correlation (p < 0.01) with DPPH (r = 0.964) and FRAP values (r = 0.962). Therefore, the
lower result of DPPH and FRAP in germinated peanuts may be due to the decrease in
TFC values during germination. From Table S3, MAC values found to exhibit a negative
correlation (p < 0.01) with DPPH (r = −0.678) and FRAP (r = −0.700) values. The reason
behind this finding may be the variation in the trend followed by MAC values and DPPH
as well as FRAP values during germination. The MAC values of peanut samples were
increased initially and then decreased while the values for antioxidant capacities were
decreased first and then increased.

4.8. Effects of Germination on Vitamin C Content of Different Varieties of Peanuts

The deficiency of vitamin C causes the scurvy disease is and an essential nutrient for
the synthesis of collagen. Vitamin C is also an excellent antioxidant in the food system
that helps to retain the active state of several bioactive compounds. In addition, vitamin
C is predominantly employed as a marker for nutritional quality in fruits, vegetables
along with their processed products [45]. In present study, initially, the vitamin C content
of peanut samples was reduced sharply and then increased significantly till the 8th day
of germination. Previously, the initial vitamin C content of lupin seeds was mentioned
as 1.5 mg/100 g DM and further increased by 866% on the 9th day of germination [46].
Vitamin C was also found to be increased during germination on day 8 in the case of mung
bean from 11.69 mg/100 g DW to 285 mg/100 g DW [45]. Although the peanut is also a
kind of bean and variation in its vitamin C content is completely different compared to
other legumes previously explored. Another study on peanuts has reported a significant
decrease in the vitamin C content of peanut sprouts on the 5th day of germination [8].
A similar trend is also observed in Figure 3d. An initial decrease and further increase
in vitamin C content in peanut samples were during the germination process. Thus, the
peanut sprouts from three different varieties are a rich source of vitamin C.

4.9. Effects of Germination Time on Trans-Resveratrol Content of Different Varieties of Peanuts

Resveratrol is a major phenolic compound present in peanuts and peanut-related foods.
It belongs to the stilbene group and is synthesized by the resveratrol synthase. Resveratrol
exhibits potent antioxidant, anti-inflammatory, cardioprotective, neuroprotective, glucose,
and lipid regulatory properties. Thus, it can protect from several life-threatening diseases
such as cancer, liver disease, obesity, diabetes, cardiovascular diseases, Alzheimer’s disease,
and Parkinson’s disease [1]. In the present study, the trans-resveratrol content of different
varieties of peanuts increased with an increase in the germination time. Similar results
were also reported in a previous study conducted to develop functional vegetables from
peanut sprouts [12]. In the present study, the trans-resveratrol content of the peanut variety
Silihei was increased drastically from day 4 to day 6 compared to the other two varieties of
peanuts (Table 1). The present study also reported different levels of resveratrol content in
different varieties of peanut in non-germinated and germinated peanuts [1].
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Variations in the trans-resveratrol content may be related to the possible variation in
the stilbene synthase, fungal invasion, and mechanical damage that may together affect the
resveratrol concentration in different varieties of peanuts during germination [47,48].

4.10. Effects of Germination on Phenolic Acid Profile of Different Varieties of Peanuts

In the case of legumes, phenolic acids are mainly concentrated in the seed coat,
followed by the original kernel and cotyledons. However, no relationship was observed
between TPC, TFC, condensed tannin content, antioxidant activity, and seed coat color of
peanuts. Whereas anthocyanin content exhibit a strong correlation with the seed coat color
of peanuts [49]. In terms of peanuts, total phenolic acids are mainly concentrated in its skin
and hull [37]. Overall, the total content of phenolic acids will increase with the increase in
the days of germination. A previous study also mentioned the qualitative and quantitative
variation in the phenolic composition depends on the type of legume and germination
condition [50].

Phenolic acids are also reported to hinder the growth and development of a crop by
inhibiting seed germination due to the inhibition of key enzymes required for seed germina-
tion [51]. Among the 10 phenolic acids investigated in the present study (Figure S2c,d and
Table 2), some phenolic acids such as gallic acid, p-coumaric acid, and ferulic acid were also
reported to exhibit strong inhibitory activity on seed germination [52]. p-Hydroxybenzoic
acid, vanillic acid, and coumaric acid also exhibit a significant impact on peanut germina-
tion. This effect is related to the type and concentration of a particular phenolic acid. The
variation in the phenolic profile of peanuts during germination is in strong agreement with
previous studies on other legumes [50,53].

5. Conclusions

Consumer demand for quality food has triggered food scientists to explore novel food
products such as peanut sprouts that are appreciated by Chinese societies as a functional
vegetables. The moisture content of peanuts followed a “fast-slow-fast” trend during
8 days of germination. The TPC, TFC, and antioxidant capacities of peanuts exhibit
a significant decrease after short-term germination followed by a significant increase
from the middle of germination. Except for the ABTS value, the antioxidant capacities
of germinated peanut samples were lower compared to non-germinated peanuts. The
reduction in the antioxidant capacities may be attributed to the loss of TFC as evident
from the significant positive correlation between TFC and antioxidant capacities. The
variation in the antioxidant capacities by using three different assays may be attributed to
the difference in the basic principles of these three methods. Although the TFC content for
germinated peanut was lower compared to the raw peanut TPC and MAC values were
enhanced during germination. The vitamin C content of peanuts presents a rapid decrease
followed by a significant increase with an increase in germination time. A significant
increase in the trans-resveratrol content was observed in the case of all peanut varieties
with an increase in the germination time. Peanut varieties are a rich source of phenolic
acids and germinated peanuts present significant variation in the phenolic acids with
an increase in the germination time. A significant increment in gallic acid, p-coumaric
acid, and ferulic acid may inhibit the growth of peanut sprouts. Certain phenolic acids of
particular peanut varieties were observed to be reduced with an increase in the germination
time. Overall, peanut variety Silihei exhibits the highest amount of resveratrol (8 days),
p-coumaric acid + syringaldehyde (6 day), ferulic acid (6 day), TPC (8 day), vitamin C
(0 day), and ABTS value (8 day) during germination. Whereas the highest amount of gallic
acid (8 days), protocatechuic acid (8 days), protocatechualdehyde (2 days), gentisic acid
(4 days), chlorogenic acid (8 days), sinapic acid (4 days), TFC (0 days), DPPH value (0 days)
and FRAP value (0 days) was observed in Xiaobaisha during germination. The peanut
variety Silihong contains the highest amount of p-hydroxybenzoic acid (8 days), Syringic
acid (0 days), and MAC (4 days) during germination. However, the reason behind their
degradation of phytochemicals and the associated mechanism is still unknown. Various



Antioxidants 2021, 10, 1714 17 of 19

tools and techniques of molecular biology can be employed to explore the degradation
mechanism of phenolic acids and to further explore the involvement of key genes and key
enzymes in the degradation of phenolic acids. In the future, the impact of germination time
on other active compounds of germinated peanuts, such as fatty acids needs to be explored.
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