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Amyotrophic lateral sclerosis (ALS), a multicomplex neurodegenerative disease, has multiple underlying pathological factors and
can induce other neuromuscular diseases, leading to muscle atrophy and respiratory failure. Currently, there is no effective drug
for treating patients with ALS. Herbal medicine, used to treat various diseases, has multitarget effects and does not usually induce
side effects. Each bioactive component in such herbal combinations can exert a mechanism of action to increase therapeutic
efficacy. Herein, we investigated the efficacy of an herbal formula, comprising Achyranthes bidentata Blume, Eucommia
ulmoides Oliver, and Paeonia lactiflora Pallas, in suppressing the pathological mechanism of ALS in male hSOD1*** mice.
Herbal formula extract (HFE) (1 mg/g) were orally administered once daily for six weeks, starting at eight weeks of age, in
hSOD19%** transgenic mice. To evaluate the effects of HFE, we performed footprint behavioral tests, western blotting, and
immunohistochemistry to detect protein expression and quantitative PCR to detect mRNA levels in the muscles and spinal
cord of hSOD1%*A mice. HFE-treated hSOD1%”** mice showed increased anti-inflammation, antioxidation, and regulation of
autophagy in the muscles and spinal cord. Thus, HEF can be therapeutic candidates for inhibiting disease progression in
patients with ALS. This study has some limitations. Although this experiment was performed only in male hSOD1%** mice,
studies that investigate the efficacy of HEF in various ALS models including female mice, such as mice modeling TAR DNA-
binding protein 43 (TDP43) and ORF 72 on chromosome 9 (C90rf72) ALS, are required before it can be established that HEF
are therapeutic candidates for patients with ALS.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative
disease with various underlying pathological factors, includ-
ing genetic and environmental factors that induce other
neuromuscular diseases, leading to muscle atrophy and
respiratory failure. The known pathological mechanisms
of ALS are mitochondrial dysfunction, oxidative stress,
and neuroinflammation in the glial cells [1]. Activated
astrocytes and microglia release proinflammatory cytokines
and toxic factors that contribute to neurotoxicity [2], and
energy metabolism plays a key role in driving the onset

and progression of ALS [3]. In preclinical studies, drugs
have targeted these mechanisms for treating ALS; however,
most drugs targeting a single process have been unsuccess-
ful in clinical trials [4]. Therefore, there is an urgent need
for an effective cure for ALS. Patients with ALS and their
families have a poor quality of life. Moreover, only a few
drugs, such as riluzole and edaravone, can delay death by
3-4 months. ALS results from several pathological dysfunc-
tions, including metabolic dysfunction in the spinal cord
and muscle, and therefore, new therapies and drug discov-
eries should be aimed at multiple targets in the muscles and
spinal cord [5, 6].
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Herbal medicines have been used to treat various
diseases because they rarely induce side effects and have
multitarget effects [7]. In ALS, conventional drugs, such
as riluzole and edaravone, which are mostly ineffective
and cause side effects, do not greatly prolong the survival
of patients; therefore, herbal medicines have been evalu-
ated for use in patients with ALS [8]. Each component
of this herbal combination may use a different mechanism
of action, thus increasing therapeutic efficacy. According
to our previous study, treatment with Bojungikgi-tang
showed neuroprotective effects and delayed disease pro-
gression in an ALS animal model [9]. Achyranthes biden-
tata Blume strengthens bones and muscles and protects
against N-methyl-D-aspartate-induced excitotoxicity in
hippocampal neurons [10] and nerve crush injury in mice
[11]. Eucommia ulmoides Oliver improves metabolic func-
tions by decreasing ATP levels and increasing the use of
ketone bodies and glucose in the skeletal muscle [12].
Paeonia lactiflora Pallas exerts protective, analgesic, anti-
inflammatory, and immunomodulatory effects in vitro
and in vivo [13]. Since ALS is a complex disease caused
by muscle dysfunction and loss of motor neurons, we
examined the effects of an herbal medicine formula
containing A. bidentata Blume, E. ulmoides Oliver, and
P. lactiflora Pallas to harness the multitarget advantage
of herbal medicine on tibialis anterior (T'A), gastrocnemius
(GC), and spinal cord (SP) of hSOD1%*** mice. In this
study, we demonstrated that HFE treatment exhibited
anti-inflammatory and antioxidative effects and enhanced
autopha dysfunction in the TA, GC, and SP of
hSOD1“”** mice, suggesting that multitargeted treatment
with HFE regulates the ALS-inducing pathological
mechanism.

2. Materials and Methods

2.1. Animals. Male B6SJL-hSOD1°*** and female B6SJL
mice were purchased from Jackson Laboratory (Bar Harbor,
ME, USA) and mated to obtain hemizygous male
hSOD1%*** mice. Hemizygous hSOD1%”** mice were
selected as described previously [9]. Two to three mice were
placed in each cage, habituated to the specific pathogen-free
cages, and maintained in the specific pathogen-free animal
facility at a temperature of 20+2°C and humidity of 50
+10%, with a 12-h:12-h light:dark cycle. Food and tap
water were provided ad libitum. Behavioral tests were per-
formed by experimenters who were blinded to the experi-
mental groups. All mouse experiments were approved by
the Institutional Animal Care and Use Committee of the
Korea Institute of Oriental Medicine (KIOM protocol# 17-
061). Male hSOD1“%** mice were randomly divided into
the following groups: nontransgenic mice (nTg), n=8;
hSOD16%34 transgenic mice (T%), n=8; and herbal formula
extract (HFE)-treated hSOD1%%%* transgenic mice (Tg
+HFE), n=8. HFE (1 mg/g) was orally administered once
daily for six weeks, starting at eight weeks of age in
hSOD19** transgenic mice. The nTg and hSOD1%%*4
transgenic mice were used as controls and were adminis-
tered distilled water (Figure 1).
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2.2. Treatment with Herbal Extract. The herbal formula
composed of A. bidentata Blume, E. ulmoides Oliver, and
P. lactiflora Pallas (1:1:1) was purchased from Kwang-
myungdang Medicinal Herbs Co. (Ulsan, Republic of
Korea). The HFE was prepared as previously described [14].

2.3. Footprint Test. A footprint test was conducted on the
day before the mice were sacrificed to measure motor
activity. The footprint test was performed as previously
described [14].

2.4. Tissue Preparation and Western Blotting. After anesthe-
tizing the mice with avertin (250 mg/kg), the tibialis anterior
(TA), gastrocnemius (GC), and spinal cord (SP) were col-
lected and homogenized in RIPA buffer (50 mM Tris-Cl
[pH7.4], 1% NP-40, 0.1% sodium dodecyl sulfate [SDS],
and 150 mM NaCl) containing a protease and phosphatase
inhibitor cocktail (Thermo Fisher Scientific, Waltham, MA,
USA). Homogenized tissues were centrifuged at 13,000 rpm
for 15min at 4°C. The total protein was quantified using a
bicinchoninic acid assay kit (Pierce, Rockford, IL, USA).

Protein samples for western blotting were heated with
SDS sample buffer. Equal amounts of total protein were sep-
arated on a 4-12% SDS-PAGE precast gel (Thermo Fisher
Scientific) and transferred onto polyvinylidene fluoride
membranes. The membranes were incubated with the spe-
cific primary antibodies for 12h at4°C. The primary anti-
bodies used were anti-f catenin (1:1,000; Cell Signaling
Technology, Danvers, MA, USA), anti-P62 (1:1,000; Cell
Signaling Technology), anti-LC3b (1:1,000; Cell Signaling
Technology), anti-GFAP (1:5,000; Agilent Technologies,
Santa Clara, CA, USA), anti-CD11b (1:1,000; Abcam,
Cambridge, MA, USA), anti-BAX (1:1,000; Santa Cruz Bio-
technology, Dallas, TX, USA), anti-HO1 (1:1,000; Abcam),
anti-ferritin (1:1,000; Abcam), anti-transferrin (1:1,000;
Santa Cruz Biotechnology), anti-TGF-f(1:1,000; Cell Sig-
naling Technology), anti-SMAD2 (1:1,000; Cell Signaling
Technology), anti-f-actin (1:1,000; Santa Cruz Biotechnol-
ogy), and Tubulin (1:1,000; Abcam). The membranes were
then incubated with horseradish peroxidase-conjugated sec-
ondary antibodies (anti-rabbit or anti-mouse; Santa Cruz
Biotechnology) and washed with TBST. The membranes
were probed with enhanced chemiluminescence reagents
(Thermo Fisher Scientific) and visualized using an imaging
system (Bio-Rad, Hercules, CA, USA) for chemilumines-
cence detection. All immunoblots were quantified using the
Image] software (National Institutes of Health, Bethesda,
MD, USA).

2.5. Immunohistochemistry. The spinal cord was fixed in 4%
paraformaldehyde and rinsed in 0.01 M PBS. Sectioned par-
affin tissues were deparaffinized, and immunohistochemistry
was performed as described previously [9]. The primary
antibodies used were anti-CHAT (1:500; Thermo Scientific,
Wilmington, DE, USA), anti-Ibal (1:2,000; Fujifilm Wako
chemical, Richmond, VA, USA), and anti-GFAP (1:5,000;
Agilent Technologies), and the secondary antibody was an
anti-horseradish peroxidase-conjugated mouse or rabbit
IgG (GenDEPOT, Katy, TX, USA). The spinal cord slides
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FIGURE 1: Timeline of experimental protocol. Herbal formula extract- (HFE-) treated hSOD1°** mice (Tg + HFE, n =8) administered 1 mg/
g HFE oral injection every day for six weeks; nontransgenic (nTg, n=8) and transgenic (Tg, n =8) mice were administered distilled water. All
mice were subjected to behavioral testing (footprint test) and sacrificed the following day. IHC: immunohistochemistry, WB: western

blotting, qPCR: quantitative PCR.

were incubated with anti-mouse or rabbit IgG biotinylated
secondary antibodies (Vector Laboratories, Burlingame,
CA, USA) using diaminobenzidine (Vector Laboratories).
Diaminobenzidine-stained slides were dehydrated with
serial ethanol and xylene solutions and mounted with a cov-
erslip and mounting solution. Images were captured using
an Olympus BX51 microscope, and the intensity of the pri-
mary antibodies was quantified using Image] software.

2.6. RNA Extraction and Real-Time Reverse Transcription
PCR. Total RNA was extracted from the muscle tissues using
the RNA extraction kit (Intron Biotechnology, Seongnam-Si,
Korea). RNA extraction and the RT-PCR were performed as
previously described [15]. The primer sequences used in this
study are shown in Table 1. The relative mRNA levels of the
target genes were presented as fold values.

2.7. Statistical Analysis. All data are reported as the mean
+standard error (SEM). Statistical analyses were performed
using GraphPad Prism 9 software (GraphPad, Inc., La Jolla,
CA, USA). The results were analyzed with a one-way analy-
sis of variance followed by Tukey’s test for multiple compar-
isons. Statistical significance was set at p < 0.05.

3. Results

3.1. HFE Treatment Improved Motor Activity and Reduced
Inflammation-Related Protein Levels in the TA and GC of
hSOD1%%** Mice. To investigate the effect of HFE on motor
activity, we measured the stride length of the mice in a foot-
print test. As shown in Figure 2, HFE improved motor func-
tion by 1.3-fold compared with the Tg group (p = 0.0049).

Next, to examine the biological mechanism involved in
improving motor function following HFE treatment, we
evaluated the effect of HFE on inflammation and oxidative
stress in the TA and GC of hSOD1%%** mice. Levels of
inflammation-related proteins such as f-catenin, CD11b,
and GFAP were increased by 3.4-, 6.6-, and 2.0-fold, respec-
tively, compared with those in nTg mice (p=0.0044,
p=0.0037, p=0.0173). However, HFE treatment signifi-
cantly reduced these levels by 1.9-. 2.4-, and 1.6-fold, respec-
tively, compared with those in Tg mice (p = 0.0194, p = 0.0118,
p =10.0378, Figures 3(a) and 3(c)).

In addition, HFE treatment reduced the mRNA level of
IL18 by 1.5-fold compared with that in the TA of Tg mice
(p=0.0052, Figure 3(b)). Oxidative stress is involved in
inflammation [16]. Therefore, we also determined the effect
of HFE on the expression levels of oxidative stress-related

proteins in the TA of the nTg, Tg, and Tg-HFE groups.
The levels of oxidative stress-related proteins, including
HOLI, ferritin, transferrin, and Bax, were increased by 4.1-,
6-, 1.5-, and 5-fold, respectively, in the TA of the Tg groups
compared with those in the nTg group (p=0.0004, p=
0.0074, p=0.0468, p=0.0004, Figure 3(d)). Furthermore,
HEFE treatment dramatically reduced HO1, ferritin, transfer-
rin, and Bax levels in the TA of the Tg group by 3-, 2.7-, 1.6-,
and 1.5-fold, respectively (p = 0.0006, p = 0.0438, p = 0.0223,
p=0.0275, Figure 3(d)). Furthermore, the mRNA level of
COX IVla was significantly reduced by 1.2-fold in the TA
of HFE-treated mice compared with that in Tg mice
(p=0.0416, Figure 3(e)). These findings suggest that HFE
treatment improved motor activity by regulating inflamma-
tory reactions in the skeletal muscle of hRSOD1“”** mice.

3.2. HFE Treatment Regulates Autophagy Function in TA
and GC of hSOD1°*** Mice. Autophagy dysfunction is a
pathological feature of the muscles and spinal cord in ALS.
In addition, because muscle atrophy is caused by autophagy
dysfunction, we investigated the expression of autophagy-
related proteins, such as p62 and LC3b, and atrophy-
related proteins, including TGF and SMAD2, in the TA
and GC of hSOD1%%** mice. As shown in Figure 4, the levels
of p62 and LC3b proteins were reduced by 2.0- and 1.5-fold
(p=0.0016, p = 0.0441) in the HFE-treated TA and 1.5- and
2.0-fold in the HFE-treated GC, respectively, compared with
those in Tg mice (p=0.0056, p =0.0003, Figures 4(a) and
4(c)).

In addition, the expression of TGFf and SMAD2 was
decreased by 2.3- and 1.7-fold (p=0.0024, p=0.0083) in
the HFE-treated TA and 1.8- and 1.5-fold in the HFE-
treated GC (p =0.0413, p =0.0048), respectively, compared
with those in Tg mice (Figures 4(b) and 4(e)). Furthermore,
HEFE treatment significantly attenuated the mRNA levels of
muscle denervation-related genes, myogenin (Myog). and
cholinergic receptor nicotinic gamma subunit (Chrng), by
1.5- and 1.3-fold (p =0.0478, p = 0.025), respectively, in the
TA compared with those in the Tg group (Figure 4(d)).

3.3. HFE Treatment Attenuates Motor Neuronal Cell Death
in the Spinal Cord of hSOD1°*** Mice. To examine the effect
of HFE on motor neuron death, we investigated the immu-
noreactivity of CHAT, Ibal, and GFAP in the spinal cord
of hSOD1“%** mice. The number of motor neuron cells pos-
itive for CHAT increased by 6.3-fold in the ventral horn of
the spinal cord in HFE-treated mice than in hSOD1%%**
mice (p=0.0189, Figure 5(a)). In addition, the expression
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TaBLE 1: The primer sequence for real-time reverse transcription PCR.

Name Abbreviation Primer Sequence (5'-3"
Cholinergic receptor nicotinic gamma subunit Chrn, F CTTGTGGCTAAGAAGGTGCCTG
& P § 8 R GCAAGGACACATTGAGCACGAC
Mvogenin Mvo F CCATCCAGTACATTGAGCGCCT-
Y08 o8 R CTGTGGGAGTTGCATTCACTGG
. F GACAGCCTGTGTTCGAGGATATG
Interleukin 18 IL-18 R TGTTCTTACAGGAGAGGGTAGAC
. . F CTTTTATCCTCCCAGGATTTGG
Cytochrome ¢ oxidase subunit IV COX 1V R GCTAAATACTTTGACACCGG
F CCTCGTCCCGTAGACAAA
Glyceraldehyde-3-phosphate dehydrogenase GAPDH R AATGAAGGGGTCGTTIGATG

8 4 skeskskok sk
£
&
=l
oo
s 4 —
Q
pt
& 24

0 T T
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F1GURE 2: Herbal formula extract (HFE) attenuated motor function
impairment. Tg mice showed decreased stride length compared
with nTg mice. However, HFE treatment inhibited motor
function defects in hSOD1%*** mice. Data are presented as the
mean = SEM. n=7 mice per group. *xp <0.01, =% p<0.0001.
nTg: nontransgenic mice, Tg: transgenic mice, Tg+HFE: HFE-
treated transgenic mice.

of neuroinflammatory proteins, Ibal and GFAP, was signif-
icantly reduced by 1.8- and 2.1-fold (p = 0.0462, p = 0.0012),
respectively, in the spinal cord of HFE-treated hSOD1%%**
mice compared with that in hSOD1%** mice
(Figure 5(a)). Furthermore, SMAD2, p62, and ferritin levels
were dramatically decreased by 1.7-, 1.6-, and 3.2-fold
(p=0.0011, p =0.0106, p = 0.0007), respectively, in the spi-
nal cord of hSOD1%°** mice following HFE treatment com-
pared with those in Tg mice (Figure 5(b)).

4. Discussion

Thus far, an effective drug that can improve the quantity of
life of patients with ALS is yet to be developed. Therefore, we
examined the effects of herbal medicines against the multiple
pathological mechanisms of ALS, including metabolic and
muscle dysfunction, inflammation, autophagy dysfunction,
and oxidative stress [17-19] in the muscle and spinal cord
of an ALS animal model. We found that the HFE (A. biden-
tata Blume, E. ulmoides Oliver, and P. lactiflora Pallas)
improved muscle function by reducing inflammation and
autoph%gy dysfunction in the muscle and spinal cord of
hSOD1”** mice.

Neuroinflammation or inflammation is critical in neuro-
degenerative diseases, including Alzheimer’s disease, Parkin-
son’s disease, and ALS. In ALS, microglia activation and
activated astrocytes are increased in the spinal cord, induc-
ing motor neuron death [20]. In addition, neuroinflamma-
tion in hSOD1%%** mice is involved in the upregulation of
NLRP3-inflammasome-related proteins [21]. However,
based on these findings, most drugs target a single mecha-
nism, such as those with antiglutamatergic (ceftriaxone,
memantine, and talampanel), anti-inflammation (celecoxib,
erythropoietin, and NP001), antioxidative stress, and neuro-
trophic effects, have failed in clinical trials [4]. TAR DNA-
binding protein 43 (TARDBP, TDP-43) and ORF 72 on
chromosome 9 (C9orf72) mutation were detected in spo-
radic and familiar ALS cases and involved in neuroinflam-
mation [22, 23].

ALS is associated with muscular disease, including mus-
cle weakness, inflammation, and denervated atrophy [24].
Specifically, inflammation and oxidative stress affect muscle
homeostasis and myogenesis following FOXO activation,
leading to muscle atrophy. Lawler et al. showed that muscle
atrophy is induced by Foxo3 activation under oxidative
stress and inflammation conditions. Huang et al. also dem-
onstrated that oxidative stress and inflammation suppres-
sion attenuated denervation-induced muscle atrophy [25].

Autophagy is important for maintaining muscle func-
tions; however, dysfunction in autophagy induces muscle
degeneration, inflammation, oxidative stress, and mitochon-
drial dysfunction in ALS [26-29]. In ALS, inflammatory
events in the skeletal muscle induce motor weakness, neuro-
muscular junction impairment, and motor neuron death.
Autophagy dysfunction induces oxidative stress [30] and
antioxidants through redox signaling, and the Nrf2-Keapl
pathway regulates autophagy function [31]. However, it is
unclear whether autophagy activation or inactivation causes
ALS. Zhang et al. reported that autophagy activation
decreased the accumulation of misfolded proteins in the
motor neurons of hSOD1%%*A mice [32]. However, Bhatta-
charya et al. showed that autophagy activation augmented
motor neuron degeneration and did not extend the life span
of hSOD1*** mice [33]. These results suggest that other
mechanisms such as oxidative stress and inflammation
should be considered therapeutic targets, as ALS is a com-
plex disease. In this study, we demonstrated that HFE
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FIGURE 4: Herbal formula extract (HFE) regulated expression of autophagy- and muscle atrophy-related proteins in hSOD1%** mice. (a)
Representative immunoblots and quantification of autophagy-related proteins (p62 and LC3b) and muscle atrophy-related proteins
(TGE- and SMAD?) in the tibialis anterior (TA) (b) and gastrocnemius (GC) (c, e) of each group. n=3-4 mice per group. (d) mRNA
level of muscle denervation-related genes (Myo and Churg) in each group. n=3-5 per group. Data are presented as the mean + SEM.
#p < 0.05, ##p < 0.01, *** p <0.001. nTg: nontransgenic mice, Tg: transgenic mice, Tg+ HFE: HFE-treated transgenic mice.
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Figure 5: Herbal formula extract (HFE) reduced neuroinflammation in the spinal cord of hSOD1

(b)

G934 mice. (a) Representative images of

ventral horn of spinal cord showing diaminobenzidine staining using anti-CHAT, anti-Ibal, and anti-GFAP. HFE administration
increased CHAT-positive cells and reduced Ibal- and GFAP-positive cells in the ventral horn of the spinal cord in the Tg group.
Quantification of positive intensity of primary antibody. n=3-4 mice per group. Scale bars: 2mm. (b) Representative image of SMAD2,
p62, and ferritin expression detected using western blotting analysis in the nTg, Tg, and Tg-HFE groups. Tubulin was used as the
loading control. Quantification of immunoblots of GFAP, SMAD2, P62, and ferritin. Data are presented as the mean + SEM. n =3-4 mice
per group. #p < 0.05, #*p < 0.01, *** p <0.001. nTg: nontransgenic mice, Tg: transgenic mice, Tg+ HFE: HFE-treated transgenic mice.



treatment exhibited anti-inflammatory and antioxidative
effects and attenuated autophagy dysfunction in the TA,
GC, and SP of hSOD1“%** mice, suggesting that multitar-
geted treatment with HFE regulates the ALS-inducing path-
ological mechanism.

In the skeletal muscle, denervation-induced muscle
atrophy and neuromuscular junction impairments occur
with motor neuron loss, and mitochondria are involved in
inducing apoptosis for denervation [34]. TGF-f, which
causes muscle fibrosis, Smad, and histone deacetylase 4
(HDACH4), is related to ALS progression and is upregulated
in ALS [35, 36]. Furthermore, HDAC4 activates the synap-
tic acetylcholine receptors MuSK to promote muscle rein-
nervation, and HDAC4 deletion contributes to neurogenic
atrophy [37]. Consistently, we found that the expression
of TGF-f and Smad proteins was increased in the muscle
of hSOD1°”** mice; however, treatment with HFE signifi-
cantly reduced the levels of these proteins. Furthermore,
denervation-related genes (Myog and Chrng) were reduced
by HFE in the TA of hSOD1 %A mice. Thus, treatment
with HFE may prevent muscle atrophy and delay motor
neuron loss in hSOD1%%** mice.

Muscle metabolism is involved in body energy homeo-
stasis, and denervation of muscle and atrophy is related to
muscle metabolism. Therefore, metabolic dysfunction is a
key factor in ALS. Dobrowonly et al. reported a relationship
between metabolic changes and disease progression in a
hSOD1%** mouse model [38] and suggested that the mus-
cle is a critical therapeutic target in ALS. Muscle metabo-
lism is related to mitochondrial function. Mitochondrial
abnormalities with dysregulation of respiratory complexes,
such as complexes I and IV, were observed in the muscles
of patients with ALS and an hSOD1%”** mouse model
[39, 40]. We previously observed that herbal medicine
improved motor activity and inhibited mitochondria cristae
disruption in hSOD1%°** mice [9]. Therefore, herbal med-
icines may improve motor function by regulating muscle
metabolism via inhibition of mitochondria dysfunction in
hSOD1%** mice.

5. Conclusions

The HFE treatment improved motor function through anti-
inflammation, antioxidative, and autophagy regulation
effects in the TA, GC, and SP of hSOD1%*** mice. These
findings suggest that HFE are therapeutic candidates for
treating patients with ALS or inhibiting disease progression.
However, this study has some limitations. The effects of
HFE treatment on neuromuscular junction impairment in
skeletal muscles and motor neurons should be further
investigated in an ALS animal model. In addition, muscle
metabolism and mitochondria dysfunction in hSOD1%%**
mice should be examined, as HFEs improve motor func-
tion. Chang et al. had reported that TDP43-induced aggre-
gation was reduced by berberine, herbal medicine, by the
regulation of mTOR-autophagy signaling pathway [41].
Therefore, studies are also needed to investigate the efficacy
of HFE in various ALS models, such as mice modeling
TDP43 and C9orf72 ALS, as this experiment was per-
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formed only in hSOD1%%** mice before it can be estab-
lished that HFE are therapeutic candidates for patients
with ALS.
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