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Background
Metabolomics hunts for quantitative descriptions of complex biological samples, and 
associates clinical observations of diseases with temporal fluctuations of metabolites. By 
measuring and modelling metabolism alternations in biological samples, metabolomics 
offers much insight into the effects of diet, diseases, and therapies [1, 2]. Many novel 
metabolomics technologies emerge and can now profile big quantity of data effectively. 
For example, matrix assisted laser desorption/ionization mass spectrometry (MALDI 
MS) [3] offers fast processing speed (~ seconds) and low sample consumption (~ μL). 
Meanwhile, cytometry by time-of-flight (CyTOF), a novel single-cell analysis technology, 
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extends the data dimensionality to simultaneously measuring 40 + cellular parameters 
[4]. It has thus been applied to track the expression levels of biomarkers that reflect vari-
ous cellular attributes [5].

While non-targeted metabolomics has the capability of encoding complex biological 
samples, it is often a must to use sophisticated data interpretation techniques to facili-
tate clinical applications. Many conventional studies establish statistical differences at 
the population level. However, it is not easy to generalize their findings to the sample or 
subject level, for the sake of individualized diagnosis and treatment [6]. Concerning the 
rapid progress of machine learning and especially deep learning in past years, there is a 
trend to adopt these advanced tools to search for biomarkers from non-targeted metab-
olomics data and then establish data-driven disease models that are applicable to indi-
vidual patients [7–9].

A major challenge in generalizing a machine learning model to real-case metabo-
lomics data points to batch effect, which is almost inevitable to occur. Exactly, batch 
effect accounts for the measurements that behave differently across experimental condi-
tions yet are unrelated to the biological variables of interest under consideration [10]. 
The origin of batch effect is far-ranging, including different platforms, different reagents 
of the same sample, and different time points to acquire data, etc. In MALDI MS, for 
example, batch effect (if not calibrated) might lead to inconsistent diagnosis, if the serum 
sample for a patient was repeatedly processed in different MS target plates. Therefore, it 
is necessary to suppress the batch effect in these metabolomics scenarios.

The rattling bottleneck of batch effect has drawn intense researches in the past. There 
are two conventional ways to suppress batch effect, i.e., location-scale (LS), and matrix-
factorization (MF) [11]. For example, ComBat [12] is a popular LS method. It employs 
a Bayesian framework to model the data, by parameterizing location and scale for each 
batch and each feature independently [13]. Other LS approaches, including distance-
weighted discrimination (DWD) [14], one-way analysis of variance (ANOVA) approach 
[15] and Ratio_G [16], assume normal data distribution for each batch and align the 
distributions of different batches accordingly. However, the assumption in the LS meth-
ods may be over-simplified to treat complex batch effect as additive and multiplicative 
components.

As an alternative to the LS methods, surrogate variable analysis (SVA) provides an 
MF way to remove batch effect [17]. The MF approaches assume that the data variation 
induced by batch effect is independent with the target labels. In this way, the data can 
be factorized into two parts, corresponding to the distortion of batch effect and the left-
out part [11, 17]. However, the modeling in the MF approaches relies on the assumption 
on the independence of batch effect and data labels, which may not always be valid in 
practice.

Frequently, in the field of non-targeted metabolomics diagnosis, there is a need to con-
struct a discriminative model that can train a batch of source data and apply it to predict 
the labels for target batch data. The Ratio_G method [16] adjusts data for enhancement of 
label prediction. The fSVA method [13] is also capable of predicting the labels for unseen 
samples. In fSVA, SVA is first used to calibrate batch effect in the training dataset. Then, 
the probability weights and coefficients estimated on the training dataset are utilized to 
remove batch effect in the new test samples. The classifier trained on the calibrated dataset 
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can finally be applied for prediction. However, the matrix factorization may sometimes 
reduce the data variation attributed to batch effect at the cost of decreasing the discrepancy 
between the disease group and the controls, which in turn lowers the classification accu-
racy in subsequent analysis [13].

Computational analysis of high-throughput omics data that refers to genomics, transcrip-
tomics, proteomics, metabolomics and radiomics has become popular in recent decades 
[7]. Considering many measurements (corresponding to feature dimensionality) and usu-
ally small numbers of samples (or sample size), it is obviously a challenge to machine learn-
ing [8]. The recent leap of deep learning, on the other hand, provides an unprecedented 
tool to conquer those obstacles. Different kinds of deep learning architectures, such as con-
volutional neural network (CNN) [18], recurrent neural network (RNN) [19], long-/short-
term memory (LSTM) [20], autoencoder (AE) and generative adversarial network (GAN) 
[21], have been applied in various omics studies. It has outperformed many conventional 
machine learning techniques, e.g., at breast cancer classification [22], automatic glaucoma 
detection [23], human gait recognition [24] and intelligent fusion-assisted skin lesion locali-
zation and classification [25]. All of these analyses can potentially help physicians to provide 
precise diagnosis and individualized treatment.

With the popularity of deep learning, Shaham et al. [26] used ResNet to remove batch 
effect. While deep learning has powerful capability of approximating highly nonlinear map-
ping, the solution in Shaham et al. is unsupervised in nature (i.e., without knowing the dis-
ease labels the of samples). On the other hand, the GAN based NormAE [27] constructs an 
adversarial training procedure between a nonlinear AE to remove batch effect and a dis-
criminator to classify the batch labels based. The discriminative power of the learned net-
works is critical to diagnostics and identification of metabolic biomarkers. Unfortunately, 
by only reducing the mismatching across different batches, the diagnosis efficacy would not 
necessarily improve.

The subsequent learning-based classification and diagnosis can benefit only if the batch 
effect among sample data is properly handled. To address the above issues, we propose a 
joint deep learning framework to calibrate batch effect first and then conduct sample classi-
fication (e.g., to derive disease diagnosis). Our framework consists of three major networks 
that interact with each other closely: (1) Given individual input batches of metabolomics 
data, we pass them through the calibrator such that they are aligned in the latent feature 
space; (2) A subsequent discriminator derives from the latent space, supervised by the 
known labels of certain batch in training, and completes classification for the other test 
batch; (3) The reconstructor(s) also derives from the latent feature space and restores all 
input batches, to ensure that the input batches are well learned throughout the networks. 
We first conduct a set of simulation experiments on the public CyTOF data to verify the 
effectiveness of our method. Next, we apply the proposed method to our private MALDI 
MS data, and demonstrate superior performance in achieving not only good batch effect 
removal but also satisfactory classification capability.

Results
In this study, we propose a deep learning framework to remove batch effect from MALDI 
MS based metabolomics data. To verify our framework, we first conduct a set of simula-
tion experiments on a public dataset using high-throughput technology of CyTOF. Next, 
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we report experimental results aiming at our private MALDI MS data and compare it to 
several representative methods in the literature. Detailed evaluations are reported in the 
next.

Evaluation metrics

Our evaluation focuses on batch effect removal and classification performance, respec-
tively. Particularly, for batch effect removal, we adopt MMD as a quantitative metric. We 
also turn to t-SNE, which is a popular dimension reduction tool, to visualize the distri-
bution of the high-dimensional data. For classification performance, we adopt four met-
rics on the test set, including Accuracy (ACC), F_score, Area Under Curve (AUC), and 
Matthews correlation coefficient (MCC) [16, 28].

Simulation study on public CyTOF data

Dataset

CyTOF is a mass cytometry technology that allows simultaneous measurements of mul-
tiple biomarkers in each cell of a specimen [29]. We aim to validate the capability of our 
method with a subset of the publicly available data used in [26], which originally derived 
from Finck et al. [30]. In particular, Peripheral Blood Mononuclear Cells (PBMCs) were 
collected from two sclerosis patients, and thawed on two different days that corre-
sponded to two batches naturally. The classification labels are specified as being incu-
bated with (positive) or without (negative) ionomycin marks that represent different 
mass cytometry antibodies. Thus, we can specify Day 1 (Batch 1) of Patient 1 for training 
and Day 2 (Batch 2) for testing, and so on for Patient 2. There are 1858 (Day 1 of Patient 
1), 1460 (Day 2 of Patient 1), 4308 (Day 1 of Patient 2), 3530 (Day 2 of Patient 2) samples 
per batch, while each sample has 25 measurements or features. In this data, we focus on 
the batch effect (Days) while the two patients are independently considered.

Validation of batch effect removal

We first perform quantitative evaluation by computing the MMD between the source 
and target batches, before and after calibration. Note that to derive each MMD value 
in Table 1, we compute from a subset of 500 samples randomly drawn from all sam-
ples available and then take the average over 10 permutation runs. Particularly, we 
also compute the in-batch MMD in the same way, which represents the lower-bound 
of the MMD measure as batch effect doesn’t exist inside a batch presumably. As 
shown in Table 1, our calibration decreases the MMD value between the two batches 
(i.e., 0.067 ± 0.005 for Patient 1 after being processed by our method, 0.092 ± 0.005 
for Patient 2, both of which are lower than the raw data and the results calibrated by 
other methods). Meanwhile, the MMDs produced by our approach become closer to 
the in-batch limits, which are listed as the last two columns of the table. This demon-
strates our framework can suppress batch effect effectively.

We further list a common and straightforward visualizing comparison before and 
after batch effect removal. Figure  1 shows t-SNE plot of the raw inputs X1 , X2 and 
the calibrated data Z1 , Z2 for Patient 1. Notice that, we have the same t-SNE axes to 
span the latent space for all four figures. Ideally, the samples of the same classifica-
tion label should be close to each other in the feature space, instead of distributing 
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with respect to the batch factor. However, as in Fig.  1A, one may observe that the 
two batches (Days, in different colors) are distributed in different patterns, suggest-
ing a clear batch effect that separates them and may hinder subsequent classification 
(c.f. Figure 1C, colored in accordance to sample labels before calibrating batch effect). 
On the contrary, after being calibrated as in Fig. 1B, the two batches share the distri-
butions that are fully entangled, implying their in-between mismatch due to batch 
effect is removed. Meanwhile, as in Fig.  1D, the samples are naturally grouped into 
two halves in accordance to their true labels other than batches. This is partially due 
to our discriminator in the network, which helps shape the feature space to not only 
remove batch effect but also facilitate the classification of the labels.

Classification performance

The contribution of our framework can further be validated by the classification per-
formance quantitatively. There are two possible classification tasks, i.e., training with 
Batch 1 (Day 1) and testing on Batch 2 (Day 2), or training with Batch 2 (Day 2) and 

Fig. 1 Visualization of the public CyTOF data of Patient 1. In (A) and (B), different colors highlight the two 
batches (Days). In (C) and (D), different colors identify true labels of the samples
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testing on Batch 1 (Day 1). As shown in Table 2, the quantitative results indicate that 
our method can improve in both tasks, after the two batches are processed through 
batch effect calibration and then classification.

The classification performance can even be comparable to the case when batch 
effect is theoretically ruled out. Particularly, we examine the in-batch classification 
performance by conducting tenfold cross-validation within a certain batch. These 
results are perceived as a reference of the classification performance without being 
corrupted by batch effect, which are listed in the diagonals of Table 2 when the source 
and target indices are the same. Our proposed method produces the metrics that are 
not only close to the in-batch classification performance, but also can sometimes 
exceed them, which will be discussed later.

Real‑case study on private MALDI MS data

Dataset

The method we have developed is mainly aimed at serum MALDI MS dataset. All 
healthy controls (HCs) and systemic lupus erythematosus (SLE) patients were recruited 
from Renji Hospital, Shanghai Jiao Tong University School of Medicine. The SLE patients 
were diagnosed according to the criteria of 2012 Systemic Lupus International Collabo-
rating Clinics (SLICC) [31], and the healthy controls showed no symptoms of rheumatic 
disease or other disease. All the participants have provided the informed consents for 
this study. In summary, we have a dataset of 598 subjects (306 SLE patients, and 292 
HCs). Based on the limitation of sample volume that the MS target plates could hold, all 

Table 2  Classification results on the public CyTOF data

When the source and target indices are the same, the reported metrics are for the in-batch classification by tenfold cross-
validation

Source Target

Before calibration After calibration

Day 1 Day 2 Day 1 Day 2

Patient 1

ACC Day 1 0.962 0.939 0.962 0.951

Day 2 0.947 0.961 0.964 0.961

F-score Day 1 0.931 0.885 0.931 0.909

Day 2 0.907 0.931 0.935 0.931

AUC Day 1 0.962 0.911 0.962 0.928

Day 2 0.958 0.961 0.968 0.961

MCC Day 1 0.906 0.845 0.906 0.877

Day 2 0.875 0.904 0.911 0.904

Patient 2

ACC Day 1 0.985 0.973 0.985 0.975

Day 2 0.973 0.982 0.978 0.982

F-score Day 1 0.939 0.901 0.939 0.905

Day 2 0.895 0.934 0.908 0.934

AUC Day 1 0.976 0.951 0.976 0.937

Day 2 0.963 0.966 0.947 0.966

MCC Day 1 0.931 0.885 0.931 0.891

Day 2 0.881 0.924 0.895 0.924
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subjects are divided into three plates (and thus batches), each of which has 201 (94 SLEs, 
107 HCs), 212 (120 SLEs, 92 HCs), and 185 (92 SLEs, 93 HCs) subjects, respectively. The 
task is to diagnose SLE patients from HCs based on the MALDI MS data.

The collection process for the MALDI MS data was early introduced in [32]. Qual-
ity control (QC) was enforced to ensure that the data acquired are of high quality and 
reproducible. In particular, the mass calibration was conducted using standard mol-
ecules to ensure the precise mass measurement and avoid intra-plate deviation. For each 
subject, we repeated LDI MS detection for five times to enhance reproducibility and sta-
bility. Only MS signals with a signal-to-noise ratio over 3 and the relative standard devia-
tion (RSD) more than 5% were used for the identification of molecules. Therefore, each 
subject would have 1–5 (mostly 5) samples in the final. In total, for the three batches, we 
collected 1005 samples for 201 subjects, 1053 samples for 212 subjects, and 925 samples 
for 185 subjects, respectively. All data was preprocessed through smoothing, baseline 
correction, peak extraction, alignment and normalization, following the protocol in [32]. 
For each sample, the m/z range was set from 100 to 1000 and 814 features were finally 
obtained after data preprocessing.

Validation of batch effect removal

Similar to the experiment on the public CyTOF data, we also compute the MMDs 
between every pair of source and target batches on the MALDI MS dataset. As shown in 
Table 3, our calibration decreases the MMDs to large extent (i.e., after being processed 
by our approach, 0.071 ± 0.008, 0.072 ± 0.007, 0.073 ± 0.008, 0.069 ± 0.006, 0.074 ± 0.008, 
0.070 ± 0.007 for six source/target combinations of three batches, respectively, all of 
which are lower than the raw data and the calibrated results by other algorithms). Mean-
while, the MMDs produced by our framework are closest to the in-batch measures, 
which are listed in the last column of the table and can be perceived as MMD bounds of 
batch effect removal.

We also visualize the data distribution, by projecting the raw data and the calibrated 
data to the same feature space by t-SNE. We have particularly chosen Batch 3 as the 
source and Batch 2 as the target in Fig.  2 for demonstration. Notice that we have the 
same t-SNE feature space across all plots. The two selected batches (ID = 3 and 2) are 
completely mixed together (Fig. 2B) compared with the case before calibration (Fig. 2A), 
which confirms that the calibration suppresses the batch effect. Meanwhile, if colored 
by the disease labels (SLE vs. control), one may notice that the samples are barely sepa-
rable before calibration (Fig. 2C), yet much clearly separable after calibration (Fig. 2D). 
The remaining five combinations of source/target batches are listed in Figure S2 of Addi-
tional file 1, where all distributions are rendered in the same t-SNE feature space.

An additional objective of non-targeted metabolomics is to find putative biomark-
ers to unravel the differences in the molecular underpinnings between two metabolic 
states, i.e., phenotypes. To this end, we have found 37, 34, and 37 potential metabolic 
biomarkers with model selection frequency > 90%,  p < 0.05 in each batch, respectively 
(Fig. 3a). Then we select six common features to display the significant differences in the 
expression levels of the SLE and healthy groups, as shown in Fig. 3b. Taking batch 2 as 
an example, since the expression abundance of these m/z features is quite different from 



Page 9 of 19Niu et al. BMC Bioinformatics          (2022) 23:270  

Ta
bl

e 
3 

 M
M

D
s 

of
 th

e 
SL

E 
da

ta
 b

ef
or

e 
an

d 
af

te
r b

ei
ng

 c
al

ib
ra

te
d 

by
 in

di
vi

du
al

 m
et

ho
ds

Th
e 

fir
st

 tw
o 

co
lu

m
ns

 p
re

se
nt

 th
e 

da
ta

 c
om

bi
na

tio
ns

 o
f d

iff
er

en
t b

at
ch

es
 p

ar
tic

ip
at

in
g 

in
 th

e 
co

m
pa

ris
on

. T
he

 o
th

er
 c

ol
um

ns
 a

re
 s

im
ila

r t
o 

th
e 

co
m

pa
ris

on
s 

in
 T

ab
le

 1

So
ur

ce
Ta

rg
et

Ra
w

Co
m

Ba
t

Ra
tio

_G
fS

VA
Re

sN
et

N
or

m
A

E
O

ur
s

In
 S

ou
rc

e

1
2

0.
21

7 
±

 0
.0

10
0.

12
5 
±

 0
.0

08
0.

21
7 
±

 0
.0

09
0.

28
5 
±

 0
.0

13
0.

15
3 
±

 0
.0

10
0.

20
2 
±

 0
.0

12
0.

07
1 
±

 0
.0

08
0.

05
3 
±

 0
.0

05

3
0.

69
6 
±

 0
.0

16
0.

13
4 
±

 0
.0

09
0.

29
2 
±

 0
.0

08
0.

35
1 
±

 0
.0

14
0.

14
4 
±

 0
.0

08
0.

16
6 
±

 0
.0

08
0.

07
2 
±

 0
.0

07

2
1

0.
21

7 
±

 0
.0

10
0.

12
5 
±

 0
.0

08
0.

22
1 
±

 0
.0

10
0.

21
4 
±

 0
.0

11
0.

15
3 
±

 0
.0

10
0.

20
2 
±

 0
.0

12
0.

07
3 
±

 0
.0

08
0.

06
2 
±

 0
.0

05

3
0.

62
3 
±

 0
.0

16
0.

14
7 
±

 0
.0

09
0.

24
5 
±

 0
.0

10
0.

24
2 
±

 0
.0

10
0.

17
6 
±

 0
.0

10
0.

14
5 
±

 0
.0

08
0.

06
9 
±

 0
.0

06

3
1

0.
69

6 
±

 0
.0

16
0.

13
4 
±

 0
.0

09
0.

29
1 
±

 0
.0

08
0.

28
9 
±

 0
.0

12
0.

14
4 
±

 0
.0

08
0.

16
6 
±

 0
.0

08
0.

07
4 
±

 0
.0

08
0.

06
4 
±

 0
.0

04

2
0.

62
3 
±

 0
.0

16
0.

14
7 
±

 0
.0

09
0.

24
0 
±

 0
.0

10
0.

22
3 
±

 0
.0

08
0.

17
6 
±

 0
.0

10
0.

14
5 
±

 0
.0

08
0.

07
0 
±

 0
.0

07



Page 10 of 19Niu et al. BMC Bioinformatics          (2022) 23:270 

others, we divide them into several groups to better present the differences of case and 
control.

Diagnosis performance

We then evaluate the classification performance in a quantitative way. As shown in 
Table 4, given a single source batch for training and another single target batch for test, 
one can notice that the classification performance has substantially increased after batch 
effect removal by our framework. For example, when Batch 1 is used as the training set 
and Batch 2 for test, the metrics of ACC, F_score, AUC, and MCC have increased by 
13.6%, 9.7%, 15.3% and 26.9%, respectively. Meanwhile, other source/target combina-
tions of batches have also achieved improvement after the batch effect in raw data is cali-
brated. The above results prove that our framework can remove batch effect effectively, 
leading to superior diagnostic performance.

While the in-batch diagnostic prediction is performed by tenfold cross-validation, 
we observe that our method produces the results that get much closer to the ceilings 
where batch effect is completely ruled out. Furthermore, we also conduct random 

Fig. 2 Visualizations of Batch 3 as the source and Batch 2 as the target of the private MALDI MS data. A and 
B are colored by batch indices. In (C) and (D), the samples are colored by disease labels (Class 1: SLE; Class 0: 
control)
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permutation test to see weather random or “fake” labels could achieve good results 
or not. Taking batch 1 for training and batch 2 for test as an example, our implemen-
tation is to randomly shuffle the labels of training set 100 times and count the fre-
quency of accuracy (ACC) value in each interval. As shown in Fig. 3c, the ACC values 
are distributed in a bell shape and the overall result of random labels is really poor. It 
turns out that the random label generation is reasonable and our model is practical.

It is worth noting that, in our MALDI MS data, each subject comes with multiple 
samples during data acquisition. While each sample can have a predicted label in test, 
the final diagnosis should be ensembled to the subject level. Specifically, we can infer 
the classification label per sample, and then derive the classification result for the 
subject as the median of all samples in one subject [32]. The subject-level diagnosis 
results are reported in Table 4. Similar to the sample-level evaluation, we find that the 
sample-level prediction can reflect the ground-truth diagnoses of the subjects effec-
tively. Note that the following comparisons with other methods are all reported in the 
sample level.

Comparison with state‑of‑the‑art methods

We select several popular tools including ComBat [12], Ratio_G [16], fSVA [13], ResNet 
[26] and NormAE [27] for further comparison. Accuracy of cross-batch prediction in the 
sample level is used to evaluate effectiveness of the methods, as it reflects a common cir-
cumstance for the classification purpose. To achieve fair comparison, we evaluate their 

Fig. 3 a Venn diagram about the number of metabolite peak intersections within three batches as potential 
biomarkers with model selection frequency > 90% and p < 0.05. b Boxplots of six common m/z features that 
reflect significant differences for the case and control groups. c Permutation test of random labels for batch 1 
as source and batch 2 as target
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performance based on the same processing pipeline and by following recommended 
protocols in their reports.

The comparing results are reported in Table 5. The performance of ours is superior 
over all other methods. On average, the accuracy of our framework is 5.1 ~ 7.9% higher 
than other methods.

• Compared with ComBat, the popular LS method for population-level correction, our 
method has improved by 7.3% (from 81.1% to 88.4%).

• Ratio_G is a typical LS method for batch effect removal. However, the method in 
overall (81.9%) is inferior to ours (88.4%) by a margin 6.5%. Their relatively poor 
performance is attributed to the linear nature of simple addition and multiplication 
being superimposed.

• The representative MF method of fSVA performs slightly better than other algo-
rithms, but it is still below ours, e.g., especially 77.3% vs. 88.9% in Table 5 for the first 
source/target combination.

Table 4  Classification results on the MALDI MS data

The top half is conducted in the sample level, and the bottom half in the subject level. When the source and target IDs are 
the same, we perform in-batch cross-validation, whose results are free of batch effect

Source Target

Before calibration After calibration

1 2 3 1 2 3

Sample

ACC 1 0.926 0.753 0.813 0.926 0.889 0.879

2 0.799 0.911 0.828 0.875 0.911 0.870

3 0.876 0.763 0.927 0.907 0.884 0.927

F-score 1 0.915 0.807 0.828 0.915 0.904 0.875

2 0.814 0.919 0.823 0.867 0.919 0.863

3 0.865 0.741 0.929 0.904 0.899 0.929

AUC 1 0.923 0.729 0.813 0.923 0.882 0.879

2 0.809 0.912 0.828 0.875 0.912 0.870

3 0.874 0.786 0.927 0.909 0.879 0.927

MCC 1 0.857 0.505 0.637 0.857 0.774 0.758

2 0.648 0.831 0.656 0.749 0.831 0.743

3 0.750 0.593 0.866 0.816 0.764 0.866

Subject

ACC 1 0.922 0.769 0.822 0.922 0.896 0.892

2 0.791 0.909 0.832 0.891 0.909 0.876

3 0.871 0.769 0.925 0.921 0.892 0.925

F-score 1 0.911 0.821 0.837 0.911 0.910 0.890

2 0.814 0.918 0.827 0.883 0.918 0.870

3 0.862 0.749 0.926 0.916 0.905 0.926

AUC 1 0.919 0.744 0.822 0.919 0.889 0.892

2 0.802 0.909 0.832 0.890 0.909 0.875

3 0.870 0.793 0.925 0.921 0.888 0.925

MCC 1 0.848 0.539 0.658 0.848 0.789 0.784

2 0.636 0.827 0.666 0.780 0.827 0.753

3 0.740 0.608 0.858 0.841 0.779 0.858
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• Compared with ResNet, the first deep learning algorithm used for batch effect 
removal, our method has also achieved 6.0% improvement (82.4% vs. 88.4% in over-
all) taking advantage of label supervision from the source data.

• NormAE is the latest strategy that adopted the popular adversarial network in recent 
years. Even though, it still lags behind ours by 5.1%, which is trapped in the idea of 
traditional GAN that distinguishes domain labels rather than true biological labels 
directly during the adversarial training.

Particularly, the first combination (Batch 1 as source, Batch 2 as target) yields the 
most improvement for our method (9.1%) compared to the second-ranking approach 
(Ratio_G). All methods perform well in the fifth combination (Batch 3 as source, Batch 
1 as target) partially due to their intrinsic data distribution. These results in overall indi-
cate that our approach not only removes batch effect more effectively than other meth-
ods, but also achieves classification and diagnosis more accurately.

Discussion
Non-targeted metabolomics is considered as a rapid, accurate and noninvasive tech-
nique, especially MALDI MS, and it is becoming an increasingly popular tool in dis-
covering diagnostic biomarkers of diseases. However, batch effect is ubiquitous in these 
types of high-throughput metabolomics informatics. For instance, to facilitate large-
scale MS experiments and allow for data analysis, a batch adjustment process is required 
to reduce variability among these data. If one was not aware of it, subsequent experi-
ments would lead to incorrect conclusions.

In this study, our primary goal is to use existing (source) data to create a model to pre-
dict the class labels for future (target) data. Thus, we formulate our task as an integration 
of both batch effect removal and classification, which makes our task significantly differ-
ent with the existing works. To this end, we introduce a joint deep learning framework 
for batch effect removal and classification toward MALDI MS based metabolomics. Our 
main contributions include: (1) the calibrator-reconstructor design instantiating the 
encoder-decoder pathway, such that all batches well preserve their intrinsic data pat-
terns throughout self-learning; (2) the discriminator, which also follows the calibrator to 
remove batch effect, can classify input samples accordingly.

We demonstrate that our proposed method can remove batch effect effectively and 
outperform all compared methods in terms of classification accuracy. This is attributed 

Table 5  Comparison of diagnosis accuracy with one source batch for training and another target 
batch for testing

“Baseline” denotes classification based on raw input data without any calibration for batch effect removal

Source Target Baseline ComBat Ratio_G fSVA ResNet NormAE Remove_R Ours

1 2 0.753 0.778 0.798 0.773 0.791 0.805 0.852 0.889
1 3 0.813 0.797 0.858 0.836 0.803 0.812 0.856 0.879
2 1 0.799 0.817 0.821 0.857 0.824 0.827 0.839 0.875
2 3 0.828 0.851 0.818 0.829 0.852 0.866 0.833 0.870
3 1 0.876 0.861 0.864 0.854 0.868 0.889 0.863 0.907
3 2 0.763 0.759 0.754 0.824 0.805 0.799 0.821 0.884
Overall 0.805 0.811 0.819 0.829 0.824 0.833 0.844 0.884
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to multiple modules that are interacted with each other in our framework. With regards 
to this, the multiple losses have taken effect through the calibrator C and discriminator 
D , in which the former penalizes the domain mismatch for the different batches and the 
latter rewards the similarity for the same category in different batches. The joint learning 
of the two tasks can substantially improve the overall performance of our network.

A considerable number of computational methods have been developed for remov-
ing batch effect especially in the field of genomics and transcriptomics. However, they 
might be less effective on improving the accuracy of diagnosis based on MALDI MS 
based metabolomics. Taking ComBat as an example, the accuracy basically remains the 
same level as raw data in our experiments. The algorithm of fSVA is originally designed 
concerning the prediction or classification task, so it can yield better performance than 
ComBat or ratio_G. Although ResNet is based on deep learning, it is not superior to 
fSVA in accuracy, as shown in Table 5. A possible reason points to the fact that it doesn’t 
make full use of the supervision provided by source labels. As for NormAE, apart from 
distinguishing batch labels instead of biological labels during the adversarial process, the 
dimensionality of latent space may also be one of the reasons why it is inferior to us. 
Unlike its strategy, the number of nodes in hidden layers from input to output remains 
the same, although we also utilize the autoencoder backbone. According to our attempts, 
compressing the number of features in latent space will lead to a decline for classification 
performance. Overall, previous publications cannot effectively address batch effect espe-
cially concerning the need of classification.

There are many findings regarding the experimental results in this work. Given the 
classification results on the simulation study of CyTOF data, one may notice that the in-
batch tenfold cross-validation for Patient 1 yields the AUC of 0.961. While batch effect is 
fully ruled out in the in-batch validation, the four metrics should be perceived as a ceil-
ing of performance for cross-batch validation. However, when treating Day 2 as source 
and Day 1 as target, the cross-batch AUC is 0.968, even beyond the in-batch ceiling. This 
phenomenon might as well be caused by the imbalanced sample sizes of the two batches. 
In other words, the larger size of the training data will help build a more robust classifier 
despite of the batch effect.

Although our method achieves the best performance across all comparing metrics, 
there are still several deficiencies in this work that cannot be underestimated. The first 
is that we may not obtain perfect performance for each compared algorithm by enumer-
ating all hyperparameters. Next, our work is applicable to single-source-single-target 
scenario only. In the presence of multiple batches that can be often encountered in real-
world settings, it is highly expected that adapting a trained model to be used by multiple 
unlabeled target batches, or boosting the classification performance by using multiple 
source batches for training. Last but not least, beyond the fact that this approach is 
no longer unsupervised and requires domain knowledge, the amount of labeled data 
that might be needed to achieve reasonable performance can possibly be large. Future 
improvements will carry out from the perspectives of these items.
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Conclusions
The research of non-targeted metabolomics represents an important part of human 
physiological mechanism study as well as in the aspect of phenotypic disease. However, 
these human clinical studies often require multiple batches followed by some analyti-
cal barriers. Combining data from different batches without carefully removing batch 
effect can be strong enough to interfere the outcomes. Many approaches to adjust for 
batch effect have been developed, yet they focus more on batch effect removal rather 
than downstream classification.

Here we have introduced a novel joint deep learning framework for simultaneous 
batch calibration and classification. Our framework consists of three major parts – cali-
brator, reconstructor(s), and discriminator. Upon the simulation study on CyTOF data 
and case study on MALDI MS data, we find that our method can effectively eliminate 
batch effect and then complete classification, yielding significantly better performance 
than existing state-of-the-art methods. We have witnessed here applications to MALDI 
MS based metabolomics data and released publicly available code. This novel tool will 
produce great potential where other metabolomics (i.e., LC–MS) even other omics tech-
nologies are applied for the analysis of large samples in clinical studies practically.

Methods
The application scenario of our method is to train a model from known labels of the 
source batch, such that the samples in the target batch can infer their labels by clas-
sification. We denote the source batch as the matrix X1 accompanied with the labels 
in the vector y1 , and the ‘unlabeled’ (not input to D during the training stage) target 
data is X2 . Our goal is to find a calibrator C , such that the two calibrated batches, 
Z1 = C(X1) and Z2 = C(X2) , distribute compactly in the latent space. The calibrated 
data then pass through the discriminator D , which produces the classification label 
per sample. Note that D is only trained on the source batch with its corresponding 
labels, and then we leverage the well-trained discriminator to classify the calibrated 
samples in the target batch. To make sure that the latent space encodes powerful and 
well-functioning representation, we require all sample data to be fully reconstructed 
from the calibrated latent space, e.g., by passing through two individual reconstruc-
tors, R1 and R2 , respectively. Figure 4 illustrates the overall framework of our method 
consisting of calibrator, reconstructor(s) and discriminator.

Calibrator

Our calibrator is responsible for reducing the discrepancy between the source and 
target by mapping two batches of data to a common latent space. In order to facilitate 
the convergence in training, we enforce the first layer of the calibrator to be batch 
normalization (BN). The subsequent layers consist of two fully connected (FC) lay-
ers and two Leaky ReLU activation layers. The number of nodes in each hidden layer 
always remains equal to the dimensionality of the input, such that the length of the 
latent code per sample is not compressed with respect to the number of their original 
features.
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The loss of the calibrator needs to measure the divergence between the source and 
the target distributions. Particularly, we train our calibrator to minimize the maxi-
mum mean discrepancy (MMD) between the two batches in the latent space

where x(i)1  and  x(j)2  indicate the i-th sample in the source batch X1 and the j-th sample in 
the target batch X2 , and ·1 is the L1-norm operator. The MMD measure vanishes when 
the underlying distributions are highly similar.

Reconstructor

We expect the calibrated data to be free of batch effect, and to encode solely the intrin-
sic biological states in the samples (e.g., disease labels). To prevent losing the class seman-
tics encoded in the latent code Z , we introduce R(Z) to transform the latent code Z to the 
reconstructed X′ . In other words, the reconstructor is responsible for mapping the latent 
code back to the original sample data.

The calibrator and reconstructor in overall form an encoder-decoder backbone for self-
learning. There are three FC layers and two Leaky ReLU activation layers in each recon-
structor. All the FC layers share the same initialization strategy and the number of nodes in 
the hidden layers always remains equal to the dimensionality of the input. The reconstruc-
tion loss is thus calculated as the residual in L2-norm between the reconstructed output 
and the input prior to calibration:

(1)LC = C x
(i)
1 − C x

(j)
2

1
,

Fig. 4 The architecture of the proposed deep learning framework for joint batch effect removal and 
classification. The source batch X1 and the target batch X2 are processed through the same calibrator C , such 
that both batches are compactly distributed in the latent space. The source batch supervises the training of 
the discriminator D , which then predicts the labels for the target batch in testing. Two reconstructors, R1 and 
R2 , are used to ensure that the input data can be fully recovered from latent encoding
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Note that each reconstructor is corresponding to a certain batch.

Discriminator

Finally, we derive D as a task-specific label classifier. At training stage, the input data 
generates Z that can represent its semantics through the calibrator C , and then it is 
transmitted to the discriminator D for classification. In the latent space, each encoded 
source sample z1 and target sample z2 are accompanied with their corresponding ground-
truth class label and the to-be-predicted label. At inference stage, the well-trained D is 
expected to achieve high discriminative ability on the target batch, under the supervision 
of the source batch.

The network of the discriminator has the similar specification but different numbers of 
layers with calibrator/reconstructors, namely five FC layers and four Leaky ReLU activation 
layers. The numbers of nodes in the five FC layers are reduced from 128 to 64, 32, 16 and 
finally to 1 (in that we only consider binary classification in our later experiments). The Sig-
moid activation function is utilized by the last layer to complete classification.

We calculate the discriminator’s loss as binary cross entropy (BCE) between its output 
and samples’ labels. When there are only two categories to classify, the discriminator is 
trained by minimizing

where y(i)1  can be either 0 (for negative training sample) or 1 (for positive). The class label 
information of the test data is only used when evaluating the prediction performance 
and the information is unknown during the network training process.

Implementation details

The total loss of our framework is then calculated by considering the calibrator, 
reconstructor(s), and discriminator as a whole, i.e., to minimize

where α , β , γ are scalar weights for each component network.
We implement the proposed solution with PyTorch (version 1.3.1) and Sklearn (ver-

sion 0.21.3). The downstream analysis has been carried out using Python (version 3.6.8), 
and R (version 3.6.3) for visualization. For details, we use ADAM [33] for training with 
default settings (i.e., the exponential decay rate of the first/second moment estimation). 
All the experiments are run on the same host with 16 GB memory and an Nvidia RTX 
2080Ti GPU.

Abbreviations
MS  Mass spectrometry
MALDI  Matrix assisted laser desorption/ionization
SVA  Surrogate variable analysis
MMD  Maximum mean discrepancy
CyTOF  Cytometry by Time-Of-Flight
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))2

2
.

(3)LD = −y
(i)
1 logD

(

C
(

x
(i)
1

))

,
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MF  Matrix-factorization
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MCC  Matthews correlation coefficient
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