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ABSTRACT

Breast cancer is the leading cause of cancer-related death in women worldwide. Aberrant
expression levels of miR-10b-5p in breast cancer has been reported while the molecular
mechanism of miR-10b-5p in tumorigenesis remains elusive. Therefore, this study
was aimed to investigate the role of miR-10b-5p in breast cancer and the network
of its target genes using bioinformatics analysis. In this study, the expression profiles
and prognostic value of miR-10b-5p in breast cancer were analyzed from public
databases. Association between miR-10b-5p and clinicopathological parameters were
analyzed by non-parametric test. Moreover, the optimal target genes of miR-10b-
5p were obtained and their expression patterns were examined using starBase and
HPA database. Additionally, the role of these target genes in cancer development
were explored via Cancer Hallmarks Analytics Tool (CHAT). The protein—protein
interaction (PPI) networks were constructed to further investigate the interactive
relationships among these genes. Furthermore, GO, KEGG pathway and Reactome
pathway analyses were carried out to decipher functions of these target genes. Results
demonstrated that miR-10b-5p was down-regulated in breast cancer and low expression
of miR-10b-5p was significantly correlated to worse outcome. Five genes, BIRC5, E2F2,
KIF2C, FOXM1, and MCM5, were considered as potential key target genes of miR-
10b-5p. As expected, higher expression levels of these genes were observed in breast
cancer tissues than in normal tissues. Moreover, analysis from CHAT revealed that these
genes were mainly involved in sustaining proliferative signaling in cancer development.
In addition, PPI networks analysis revealed strong interactions between target genes.
GO, KEGG, and Reactome pathway analysis suggested that these target genes of miR-
10b-5p in breast cancer were significantly involved in cell cycle. Predicted target genes
were further validated by qRT-PCR analysis in human breast cancer cell line MDA-
MB-231 transfected with miR-10b mimic or antisense inhibitors. Taken together, our
data suggest that miR-10b-5p functions to impede breast carcinoma progression via
regulation of its key target genes and hopefully serves as a potential diagnostic and
prognostic marker for breast cancer.

Subjects Bioinformatics, Oncology, Women’s Health

Keywords miR-10b-5p, Breast cancer, Prognostic significance, Target gene, Pathway enrichment
analysis

INTRODUCTION

Breast carcinoma is the most common malignancy and the leading cause of cancer death in
females worldwide. It consists of multiple subtypes with distinct morphologies and clinical
implications (Dai et al., 2015). Traditional classification systems of breast cancer are based
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on various biological characteristics, including histological grade, tumor size, lymph
node involvement, estrogen receptors (ER), progesterone receptors (PGR), and human
epidermal growth factor receptor 2 (HER2) status. With the development of microarrays,
a new paradigm in deciphering breast cancer heterogeneity has been developed (Cooper,
2001; Dai et al., 2015). Using different gene panels, breast tumors were classified into
five intrinsic molecular subtypes, i.e., luminal A, luminal B, HER2-enriched, basal and
normal-like tumors (Hu et al., 2006; Dowsett et al., 2013). Although the accuracy of disease
prognosis has been increased by emergence of novel subtypes, breast cancer continues
to emerge as a major health issue for women due to high incidence and mortality rates.
Therefore, novel targets that can be utilized to predict or treat breast cancers are urgently
called for.

MicroRNA (miRNA), small non-coding RNA molecules with 19-24 nucleotides in
length, are involved in post-transcriptional gene silencing by targeting the 3’ untranslated
region (UTR) of target genes (Ross ¢ Davis, 2012). It has been demonstrated that miRNAs
play crucial roles in almost every biological process, including cell growth, cell cycle
regulation, cell differentiation, apoptosis, inflammation, and stress response (lorio et al.,
2011). Moreover, miRNA have been associated with tumorigenesis by acting as tumor
suppressors or oncogenes (Kent ¢ Mendell, 2006), and have been shown to affect multiple
hallmarks of cancer, such as sustaining proliferative signaling, evading growth suppressors,
and resisting cell death (Ruan, Fang & Ouyang, 2009). Thus, disturbances of miRNA
expression appear to contribute to tumor initiation, maintenance, and progression, as well
as to invasion and metastasis (Gandellini et al., 2011).

As a member of the miRNA family, hsa-miR-10b (hsa-miR-10b-5p) was reported to be
associated with the oncogenesis of breast cancer. However, current findings regarding the
role of miR-10b in breast cancer are controversial. MiR-10b was originally reported to be
downregulated in primary breast tumors compared with normal breast tissue (lorio ef al.,
2005). In a later study, Ma, Teruya-Feldstein & Weinberg (2007) found that miR-10b was
highly expressed in metastatic breast cancer cells and positively regulated cell migration and
invasion while Gee et al. (2008) reported opposite observations. Nassar et al. (2014) found
that notable downregulation of miR-10b was observed in tumor tissues as compared to
normal breast tissues, and it can be used as biomarker for early breast cancer detection in the
Lebanese population. Moreover, Meerson et al. (2019) reported that obesity exacerbated the
decrease in miR-10b expression in primary tumors compared to normal tissue, suggesting
that the metabolic state may alter the molecular makeup of a tumor. Singh et al. (2014)
revealed that exosome-mediated transfer of miR-10b significantly promoted cell invasion
in breast cancer. Increased miR-10b levels have been described in metastatic breast cancer
(Roth et al., 2010), while the link between miR-10b and metastasis remains controversial,
which may be partly due to the heterogeneity of miR-10b expression in circulating tumor
cells (Gasch et al., 2015). Collectively, these observations suggest that further studies need
to be carried out before drawing conclusions about the function of miR-10b in breast
cancer. In this study, we analyzed the expression data of this miRNA and its molecular
network of target genes using several online databases to elucidate the potential mechanisms
underlying the role of miR-10b in breast cancer.
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MATERIALS AND METHODS

Expression profile of miR-10b-5p in breast cancer
The Cancer Genome Atlas (TCGA) is a landmark cancer genomics program,
providing a large amount of genomic, epigenomic, transcriptomic, and proteomic
data (https://www.cancer.gov/tcga). In this study, we obtained the miR-10b-5p
expression profile of various human cancer types from a TCGA data online analysis
tool (http://bioinfo.life.hust.edu.cn/miR_path/index.html).

starBase is an open-source platform for studying the miRNA-ncRNA, miRNA-
mRNA, RNA-RNA, and RBP-mRNA interactions from CLIP-seq, degradome-seq, and
RNA-RNA interactome data (Li ef al., 2014). Here, we analyzed the expression level of
miR-10b-5p in breast cancer and adjacent normal tissues using starBase v3.0 project
(http://starbase.sysu.edu.cn).

Prognostic value of miR-10b-5p in breast cancer

The Kaplan—Meier Plotter Database (KMPD), a web-tool established using gene
expression data and survival information downloaded from the Gene Expression Omnibus
(GEO), is designed to validate survival-associated miRNAs in various cancer types
(http://kmplot.com/analysis/) (Nagy et al., 2018). In the current study, we used this online
tool to confirm the prognostic value of miR-10b-5p in four public databases (METABRIC,
TCGA, GSE19783 and GSE40267) (Ldnczky et al., 2016). KM survival curves, hazard ratio
(HR), 95% confidence intervals (CI) and log rank P were obtained to analyze the correlation
of miR-10b-5p to the overall survival (OS) in breast cancer. P value of <0.05 was considered
statistically significant.

Association between miR-10b-5p and clinical features

LinkedOmics is a publicly available portal (http://linkedomics.org/) that includes multi-
omics data from 32 TCGA cancer types (Vasaikar et al., 2018). In the present study, we
applied LinkedOmics to identify the relationship between miR-10b-5p and clinical features,
including PAM50 subtypes, ER. status, PR. status, HER2. status, histological type, race,
radiation therapy, tumor purity, and pathologic TNM stage. The differences were analyzed
by non-parametric test.

Target genes prediction and identification

Negatively correlated significant genes of miR-10b-5p in breast cancer were selected using
LinkedOmics. Target genes of miR-10b-5p were predicted using starBase v3.0 database,
which contains seven bioinformatic algorithms: PITA, RNA22, miRmap, microT, miRanda,
PicTar, and Targetscan. Overlapped genes from both LinkedOmics and starBase database
were considered as the optimal target genes of miR-10b-5p. Finally, the expression patterns
of these genes in breast cancer and normal tissues were compared using starBase v3.0
and the Human Protein Atlas (HPA) database v18.1 (http://www.proteinatlas.org) (Uhlen
etal., 2017).
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Functional and network analysis of the overlapping target genes

The role of the target genes of miR-10b-5p in cancer development were explored via Cancer
Hallmarks Analytics Tool (CHAT) (Baker et al., 2017). Subsequently, the protein—protein
interaction (PPI) networks were constructed to investigate the interactive relationships
among these genes, using STRING database v11.0 (Szklarczyk et al., 2019). Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Reactome pathway
analyses were carried out, and enriched GO terms and pathways were identified according
to the cut-off value of false discovery rate (FDR) <0.05.

Quantitative RT-PCR analysis of target genes in MDA-MB-231 cells
MDA-MB-231 cells (obtained from ATCC and preserved in our lab) were seeded in
24-well plate (1x 10° cells/well) in DMEM (Gibco, Waltham, MA, USA) supplemented
with 10% fetal bovine serum (Gibco, Waltham, MA, USA) and 1% penicillin-streptomycin
in a humidified incubator at 37 °C with 5% CO,. Cells were transfected with negative
control (NC) or miR-10b mimic (50 nM) or miR-10b antisense inhibitors (100 nM;
Ribo-bio, Guangzhou, China) using lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA)
and Opti-MEM Reduced Serum Medium (Gibco, USA) according to the manufacturer’s
instructions. After 24 h of incubation, cells were harvested with TRIzol reagent (Invitrogen).
PrimeScript RT reagent Kit (Takara) was used to prepare cDNA from total RNA. qRT-PCR
was performed using Luminaris Color HiGreen qPCR Master Mix (Thermo Scientific,
Waltham, MA, USA) for targets genes.

RESULTS

Identification the aberrant expression of miR-10b-5p in breast cancer
As shown in Fig. 1, the expression profile of miR-10b-5p demonstrated that it was down-
regulated in most human cancers, such as breast cancer (BRCA), kidney renal papillary
cell carcinoma (KIRP), and uterine corpus endometrial carcinoma (UCEC). We next
analyzed miR-10b-5p expression using starBase (based on 1085 breast cancer samples and
104 normal samples) and we found that miR-10b-5p level was significantly lower in breast
cancer tissues than in adjacent normal tissues (P = 3.6e—95, FDR = 1.0e—92) (Fig. 2).

Clinical significance of miR-10b-5p in breast cancer
We analyzed the prognostic value of miR-10b-5p in four public databases: METABRIC
(n=1262), TCGA (n=1077), GSE19783 (n=101) and GSE40267 (n=181). Kaplan—
Meier survival analysis indicated significantly reduced overall survival in breast cancer
patients with low miR-10b-5p expression in METABRIC database (HR = 0.64, 95% CI
[0.52-0.8], P =4.1e—5) (Fig. 3D). However, no significant prognostic effect of miR-10b-5p
for breast cancer was found in either TCGA or GSE19783 (Fig. 3E and Fig. 3F). Noticeably,
low expression of miR-10b-5p was correlated to higher overall survival (HR = 1.92,
95% CI [1.06-3.47], P =0.029) in the GSE40267 dataset which is composed primarily of
triple-negative (ER/PGR/HER2-negative) tumors (Fig. 3G).

According to the results from LinkedOmics, expression of miR-10b-5p was significantly
related to PAMS50 subtypes (P = 3.934e — 23), ER. status (P = 3.982¢ — 2), histological
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Figure 1 Expression profile of miR-10b-5p from TCGA. The miR-10b-5p expression profile of various
human cancer types was obtained from a TCGA data online analysis tool (http://bioinfo.life.hust.edu.cn/
miR_path/index.html). MiR-10b-5p was down-regulated in breast adenocarcinoma tissues compared with
normal tissues.

Full-size &l DOI: 10.7717/peer;j.7728/fig-1

hsa-miR-10b-5p with 1085 cancer and 104 normal samples in
BRCA

Data Source: starBase v3.0 project

19
n
L ]
L]
— n
i
=Y = e
=}
+
&
& 16
%" o
s}
- 15 -
o
> [ ]
Q2
- L]
o 14 =
‘@
§ n
<13 -3
w
(e}
12 o}
11
Cancer log2(RPM) Normal log2(RPM)

I Box plot O Gene expressions

Figure 2 Expression level of miR-10b-5p from starBase v3.0 database. The box plot was based on 1,085
breast cancer samples and 104 normal samples that revealed downregulated expression of miR-10b-5p in

breast cancer.
Full-size Gl DOI: 10.7717/peer;j.7728/fig-2
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Figure 3 Prognostic value of miR-10b-5p in breast cancer from the KM plotter database. ER, PGR, and
HER? status in four public databases (METABRIC, TCGA, GSE19783 and GSE40267) (A-C). Kaplan-
Meier survival curves comparing patient survival time between samples with high- or low- level of miR-
10b-5p expression in breast cancer in METABRIC (D), TCGA (E), GSE19783 (F), and GSE40267 database
(G).
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Figure 4 Correlation between miR-10b-5p and clinicopathological features in breast cancerpatients
from LinkedOmics database. Box plot showing the relationship between miR-10b-5p expression and
PAMS50 subtypes (A) ER. status, (B) histological type, (C) patient race, (D) radiation therapy, (E) and tu-
mor purity (F) in breast cancer.

Full-size & DOI: 10.7717/peerj.7728/fig-4

type (P = 3.322e—6), patient race (P = 1.228e — 9), radiation therapy (P =2.79¢e —3), and
tumor purity (P = 1.81e—10) (Fig. 4). However, no significant difference in miR-10b-5p

expression was observed when patients were stratified by pathologic TNM stage, PR. status,
and HER2.status (Table S1).

Potential key targets of miR-10b-5p in breast cancer

Positively and negatively correlated genes of miR-10b-5p in breast cancer were presented
as volcano plot (Fig. 5A). Fifty significantly positively correlated genes obtained from
LinkedOmics were demonstrated in Fig. S1 and 48 significantly negatively correlated
genes obtained from LinkedOmics were demonstrated in Fig. 5B. A total of 1,222 target
genes of miR-10b-5p were predicted, and five overlapped genes, BIRC5 (Baculoviral
IAP Repeat Containing 5), E2F2 (E2F Transcription Factor 2), KIF2C (Kinesin Family
Member 2C), FOXM1 (Forkhead Box M1), and MCM5 (Minichromosome Maintenance
Complex Component 5), were considered as candidate target genes of miR-10b-5p for
further analysis (Fig. 5C). Inverse correlation and alignment of binding sites between
miR-10b-5p and target genes in breast cancer were illustrated in supplemental Table S2
and Fig. S2.

Wang et al. (2019), PeerdJ, DOI 10.7717/peerj.7728 7/20


https://peerj.com
https://doi.org/10.7717/peerj.7728/fig-4
http://dx.doi.org/10.7717/peerj.7728#supp-3
http://dx.doi.org/10.7717/peerj.7728#supp-1
http://dx.doi.org/10.7717/peerj.7728#supp-4
http://dx.doi.org/10.7717/peerj.7728#supp-2
http://dx.doi.org/10.7717/peerj.7728

Peer

-log10(pvalue)

A

hsa-mir-10b Association Result

20 30 40 50 60
1 | |

10
|

Spearmans rho Statistic (Spearman test)

Predicted Target Genes

Negatively Correlated Genes

i

'“ i

I A ?,‘“L
W'*ﬂW'J
W

— = —=——— =

fill | M'\
i i ‘M‘M yihl

| u‘h

 ——————

“M
&” “&

LM
JM

u' l\{

L ‘a‘.!: il

E

A

|

il | \I\I IHI\IH \‘:IH‘ uI J L ‘:\H ‘W ?‘l\ ‘
yﬂh.ﬂhﬂﬂm MWMWNNW

i =

wm :

it

Z-Score Group

-3 M4

Il ;o
i ‘ - 2
WM “ /" Il ’h W3 =-4

sion level: log2 (FPKM.+0.01)]

Bxpres:

BIRCS with 1104 cancer and 113 normal samples in BRCA
arBase v3.0 project

P=1.6e-122, FDR=8.0e-120

Expres:

sion level: og2 (PKM40.01)]

E2F2 with 1104 cancer and 113 normal samples in BRCA
Source: starBase v3.0 project

75
P=2.5¢-69, FDR=1.4e-67

8
—5—

Cancer log2(FPKM) Normal log2(FPKM)

KIF2C with 1104 cancer and 113 normal samples in BRCA FOXM1 with 1104 cancer and 113 normal samples in BRCA MCMS with 1104 cancer and 113 normal samples in BRCA
artase v3.0 project Data Source: starBase v3.0 project Data Source: starBase v3.0 project
. s s
P=4.9¢-108, FDR=1.3¢-105 N P=2.3¢-105, FDR=5.5¢-103 P=3.8e-15, FDR=2.4e-14
° - s 8
s — s -
[ . H . : -
b o b — .
2, = 2, -
0 : o § : :
: £ i, . :
a m & g y g - S
2 o -

c

Cancer log2(FPKM) Normal log2(FPKM)

Figure 5 Predicting the potential target genes of miR-10b-5p in breast cancer. The volcano plot
showing the Log2 (fold change) vs. —log10 (p-value) obtained from LinkedOmics. The red dots represent
positively correlated genes, and green dots represent negatively correlated genes of miR-10b-5p in breast
cancer (A). A total of 48 significantly negatively correlated genes were acquired from LinkedOmics (B).

A venn diagram showing the overlap between the target genes of miR-10b-5p predicted by starBase and
negatively correlated genes from LinkedOmics. Five genes, BIRC5, E2F2, KIF2C, FOXM1, and MCM5,
were considered as potential key target genes of miR-10b-5p (C). Expression levels of the potential target
genes in breast cancer. Boxplots were based on 1104 breast cancer samples and 113 normal samples that
revealed overexpression of target genes of miR-10b-5p in breast cancer (D-H).

Full-size & DOLI: 10.7717/peerj.7728/fig-5

We further investigated the expression levels of these five key target genes in breast cancer,

and results showed that they were significantly up-regulated in cancer tissue samples (Figs.
5D-5H). Consistently, BIRC5, E2F2, FOXM, and MCMS5, showed higher expression
in breast cancer tissues than in normal tissues, according to the immunohistochemical
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Figure 6 Validation of the potential target genes of miR-10b-5p in breast cancer from the HPA
database. The Human Protein Atlas (HPA) database can be accessed at: https://www.proteinatlas.org.
Expression levels of BIRC5, E2F2, FOXM1, and MCMS5 were higher in breast cancer samples (B, D, F, H)
than in normal samples (A, C, E, G).

Full-size & DOL: 10.7717/peerj.7728/fig-6

assessment from HPA database (Fig. 6). However, data on KIF2C expression was not found
in HPA.

Functional analysis of target genes in cancer development

Analysis from CHAT revealed that BIRC5, E2F2, KIF2C, FOXM1, and MCM5 were mainly
involved in sustaining proliferative signaling in cancer development, with npmi values of
0.15, 0.222, 0.168, 0.218, and 0.157, respectively. As illustrated, these target genes also play
a critical role in evading growth suppressors, resisting cell death, and promoting genome

instability and mutation during cancer progression (Fig. 7).

Network construction and pathway enrichment analysis

In the PPI network, 5 nodes and 9 lines illustrated strong interactions (average node
degree = 3.6, enrichment P = 8.62e—09) between the potential key target genes (Fig. 8).
We further performed GO analysis and results revealed that these targeted genes were
significantly enriched in biological processes (BP) of cell cycle, mitotic cell cycle process,
mitotic cell cycle phase transition, establishment of chromosome localization, regulation
of chromosome segregation, mitotic nuclear division, signal transduction by p53 class
mediator, G2/M transition of mitotic cell cycle, chromosome segregation, and regulation
of cell cycle (Table 1). The significant GO molecular function (MF) terms included
sequence-specific double-stranded DNA binding and microtubule binding (Table 1).
Cellular component (CC) enrichment displayed that genes were significantly present
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Figure7 Association between the target genes of miR-10b-5p and hallmarks of cancer from Cancer
Hallmarks Analytics Tool (CHAT). CHAT can be accessed at: http://chat.lionproject.net.
Full-size Gl DOI: 10.7717/peerj.7728/fig-7

in microtubule associated complex, condensed chromosome kinetochore, microtubule,
nucleoplasm, and nucleus (Table 1). In addition, using KEGG pathway analysis, target
genes were found to be significantly involved in cellular senescence and cell cycle (Table 2).
According to Reactome pathway analysis, these target genes were significantly enriched in
cell cycle, assembly of the pre-replicative complex, mitotic G1-G1/S phases, and cell cycle
checkpoints (Table 2).

Measurement of target genes expression in MDA-MB-231 cells

As shown in Fig. 9, the expression levels of BIRC5 (A), E2F2 (B), FOXM1 (D) and MCM5
(E) were significantly up-regulated in MDA-MB-231 cells transfected with miR-10b
antisense inhibitors compared with negative control (NC). A trend of increase was found
for KIF2C (C) expression after transfection with inhibitors while there was no statistical
significance. Moreover, MCM5 (E) was significantly down-regulated in cells transfected
with miR-10b mimic as compared to NC.

DISCUSSION

Despite advances in detection and therapies, breast cancer is still the leading cause
of cancer related death in women (Iorio et al., 2011). MiR-10b has been implicated in
regulating several human cancers, including breast cancer. However, the expression profile
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Figure 8 The PPI network of the target genes of miR-10b-5p in breast cancer. The protein—protein
interaction (PPI) network analysis was conducted using STRING v11.0. A total of 5 nodes and 9 edges
constitute the network. Colored nodes denote query proteins. Lines with different colors represent the
protein—protein interactions (blue: from curated databases; pink: experimentally determined; yellow: text-
mining; black: co-expression).

Full-size G4l DOI: 10.7717/peerj.7728/fig-8

Table 1 Functional annotation of the gene ontology (GO) terms.

GO-term Description Countingeneset  FDR
BP-GO:0007049 Cell cycle 50f 1263 0.00041
BP-GO0:1903047 Mitotic cell cycle process 4 of 564 0.00062
BP-GO:0044772 Mitotic cell cycle phase transition 3 of 254 0.0019
BP-G0:0051303 Establishment of chromosome localization 20f72 0.0073
BP-G0:0051983 Regulation of chromosome segregation 2 0f97 0.0101
BP-G0O:0140014 Mitotic nuclear division 2 of 136 0.0145
BP-G0:0072331 Signal transduction by p53 class mediator 2 0f 128 0.0145
BP-G0:0000086 G2/M transition of mitotic cell cycle 20f123 0.0145
BP-G0:0007059 Chromosome segregation 2 of 253 0.0428
BP-G0:0051726 Regulation of cell cycle 30f1129 0.0429
MF-GO:1990837  Sequence-specific double-stranded DNA binding 4 of 747 0.00088
MF-G0:0008017  Microtubule binding 2 of 253 0.0277
CC-GO0:0005875 Microtubule associated complex 2 of 144 0.0164
CC-GO:0000777 Condensed chromosome kinetochore 2 of 104 0.0164
CC-GO:0005874 Microtubule 2 of 385 0.0267
CC-GO0:0005654 Nucleoplasm 4 of 3446 0.0267
CC-GO:0005634  Nucleus 5 of 6892 0.0310
Notes.
BP, biological process; MF, molecular function; CC, cellular component; FDR, False Discovery Rate.
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Figure 9 Quantitative RT-PCR analysis of target genes in MDA-MB-231 cells. MDA-MB-231 cells were
transfected with negative control (NC) or miR-10b mimic (50 nM) or miR-10b antisense inhibitors (100
nM). After 24 h of incubation, the expression levels of BIRC5 (A), E2F2 (B), KIF2C (C), FOXM1 (D) and

MCMS5 (E) were measured by quantitative RT-PCR analysis. * indicates P < 0.05.
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Table 2 Functional annotation of the KEGG and Reactome pathway analysis.

Pathway Description Countingeneset  FDR
KEGG-hsa04218 Cellular senescence 2 of 156 0.0084
KEGG-hsa04110 Cell cycle 20f123 0.0084
Reactome-HSA-69278 Cell Cycle, Mitotic 4 0f 483 9.84e—05
Reactome-HSA-68867 Assembly of the pre-replicative complex 2 of 65 0.0020
Reactome-HSA-453279  Mitotic G1-G1/S phases 2 of 145 0.0049
Reactome-HSA-69620 Cell Cycle Checkpoints 2 of 265 0.0137

of miR-10b has led to conflicting reports and its role in tumorigenic process remains
unexplored. In this work, we observed that miR-10b-5p expression level was significantly
down-regulated in human breast cancer tissues than in adjacent normal tissues. These
results were consistent with the work of lorio et al. (2005) and Fassan et al. (2009), who
demonstrated that miR-10b was significantly down-regulated in breast carcinoma. Ma,
Teruya-Feldstein & Weinberg (2007) reported that miR-10b was upregulated in metastatic
breast cancer cell lines compared with primary mammary epithelial cells. However, their
patient group was small and data on clinical variables limited.

After verification of miR-10b-5p expression in breast cancer, we investigated the
associated prognostic value of miR-10b-5p in public databases. Our results indicated that
low expression of miR-10b was significantly correlated to worse outcome in METABRIC
database, while no prognostic significance of miR-10b-5p in breast cancer was found
in either TCGA or the GSE19783 dataset. Interestingly, low expression of miR-10b-5p
was associated with better prognosis in the GSE40267 database composed primarily
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of triple-negative tumors. These inconsistent overall survival findings may be partially
explained by differences in sample size, tumor subtypes, genetic status, diseases status,
treatment received, economic and social status, etc.

Among the clinical characteristics evaluated, miR-10b-5p was significantly related to
PAMS50 subtypes, ER. status, histological type, patient race, radiation therapy, and tumor
purity. However, no significant differences were observed based on pathologic TNM
stage, PR. status, and HER2. status. In a recent study, miR-10b expression was observed
to be inversely correlated with malignancy in human breast cancer (Zhang et al., 2018).
However, Gee et al. (2008) found no significant association between miR-10b levels and
metastasis or prognosis in a total of 219 patients with early breast cancer, while its expression
correlated inversely with tumor size and grade. Ma, Teruya-Feldstein ¢ Weinberg (2007)
and Ma et al. (2010) showed a positive correlation between miR-10b expression and cell
migration and invasion, and silencing of miR-10b could inhibit metastasis in a mouse
cancer model. Others have reported down-regulated miR-10b levels in breast cancer and
indicated that restoration of miR-10b expression might have therapeutic value (Fassan ef al.,
2009; Andorfer et al., 2011). Additionally, Biagioni et al. (2012) and Biagioni et al. (2013)
characterized miR-10b* (miR-10b-3p) as a tumor suppressor microRNA in primary breast
cancers and the locus of microRNA-10b was a critical target for breast cancer insurgence
and dissemination.

To facilitate a more in-depth understanding of the role of miR-10b-5p in breast cancer,
we analyzed the interaction networks between the key target genes of miR-10b-5p and
their potential functions in breast cancer. Although 1222 target genes of miR-10b-5p were
predicted and 48 significantly negatively correlated genes were obtained, only 5 overlapped
genes, BIRC5, E2F2, KIF2C, FOXM1, and MCMS5, were considered as potential key targets
of miR-10b-5p in breast cancer for further analysis. Results demonstrated that these 5
key target genes were significantly up-regulated in cancer tissue samples. According to the
immunohistochemical assessment from HPA database, BIRC5, E2F2, FOXM, and MCM5,
exhibited higher expression in breast cancer tissues than in normal tissues while data on
KIF2C expression was not found. Consistently, our qRT-PCR analysis also showed that
expression levels of BIRC5, E2F2, FOXM1 and MCMS5 were significantly up-regulated in
human breast cancer cell line MDA-MB-231 transfected with miR-10b antisense inhibitors
and a trend of increase was also found for KIF2C expression, further validating the predicted
target genes of miR-10b-5p in the current study. BIRC5, is a member of the inhibitor of
apoptosis (IAP) gene family, which encode negative regulatory protein (also known as
survivin) that functions as a key regulator of mitosis and programmed cell death (Mita
et al., 2008). BIRC5 has been reported to be selectively expressed in most tumors, including
breast carcinomas, and yet low in adult tissues (Tanaka et al., 2000). E2F2, a member
of the E2F family of transcription factors, is known to play a key role in the control of
cell cycle progression and proliferation (Ren et al., 2002). Hollern et al. (2014) observed
striking reductions in metastatic capacity and in the number of circulating tumor cells in
E2F2 knockout mice using a murine model of breast cancer, suggesting a crucial role for
E2F2 in tumor development and metastasis. KIF2C encodes a kinesin-like protein that
functions as a microtubule-dependent molecular motor and a key regulator of mitotic
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spindle assembly and dynamics (Gwon, Cho ¢ Kim, 2012). Shimo et al. (2008) confirmed
KIF2C overexpression in breast cancer cells and its phosphorylation in G(2)/M phase. Their
findings indicate that overexpression of KIF2C might be involved in breast carcinogenesis
and be a potential therapeutic target for breast cancers. FOXMI1 is a transcriptional
activator involved in cell proliferation, which stimulates cell cycle progression and inhibits
apoptosis (Wierstra, 2013). It has been considered as a key gene that serves important roles
in multiple biological processes in triple-negative breast cancer and a promising potential
target for the prevention and/or therapeutic intervention in cancer treatment (Tan ef al.,
2019). Previous research showed a strong expression of FOXM!1 in clinical tissues of
human breast cancer, and knockdown of FOXM1 expression diminished the proliferation
and anchorage-independent growth of breast cancer cells (Yang et al., 2013). MCMS5 is a
member of the MCM family of chromatin-binding proteins and actively participates in
cell cycle regulation. Snyder, He ¢» Zhang (2005) demonstrated that, in addition to its roles
in DNA replication, MCM5 was also necessary for transcription activation. Expression
profiling of MCM5 in multiple malignancies has been reported (Giaginis et al., 2011;
Das et al., 2013; Eissa et al., 2015). MCM5 was shown to be significantly over-expressed
in cervical cancer and clinically correlated to cervical carcinogenesis, implying that it may
serve as potential diagnostic and prognostic marker for human malignancies (Das et al.,
2013). Eissa et al. (2015) found that MCMS5 expression was positive in breast cancer patients
and high levels of MCM5 were associated with short relapse free survival of breast cancer.
They also identified MCM5 expression changes consistent with the miRNA-10b target
regulation, and considered both miR-10b and MCMS5 as prognostic biomarkers in breast
cancer. In line with previous studies, our CHAT analysis revealed that these potential key
target genes were mainly involved in sustaining proliferative signaling, evading growth
suppressors, resisting cell death, and promoting genome instability and mutation in cancer
development.

In our study, the PPI network analysis illustrated strong interactions between the
potential key target genes. In a previous study, Zhao et al. (2014) identified KIF2C as
a novel FOXM1 transcriptional target that may be implicated in the acquisition of
chemoresistance in cancer treatment. Another study conducted by De Moraes et al.
(2015) showed that FOXM1 could target BIRC5 to modulate breast cancer survival
and chemoresistance. Sullivan et al. (2012) found that FOXM1 could also regulate E2F2
transcription, as evidenced by the fact that the transcription levels of E2F2 was significantly
decreased with the knockdown of FOXM1. Additionally, a previous study reported that
E2F2 intercalated in the Rb pathway bound to discrete sites in the BIRC5 promoter, and
repressed its transcription (Guha ¢ Altieri, 2009). These findings of previous studies, thus,
confirm our results from the PPI network analysis.

According to the GO analysis, the target genes of miR-10b-5p were significantly enriched
in cell cycle, mitotic cell cycle process and phase transition, establishment of chromosome
localization, regulation of chromosome segregation, mitotic nuclear division, signal
transduction by p53 class mediator, G2/M transition of mitotic cell cycle, chromosome
segregation, sequence-specific double-stranded DNA binding, and microtubule binding,
suggesting that miR-10b-5p might impact the development of breast cancer by participating
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in the biological processes and molecular functions mentioned above. In addition, the
KEGG and Reactome pathway analysis revealed that these target genes were significantly
involved in cell cycle, cellular senescence, assembly of the pre-replicative complex, mitotic
G1-G1/S phases, and cell cycle checkpoints. Thus, these data suggest that miR-10b-5p
functions to impede breast carcinoma progression by regulating the above-described
pathways.

CONCLUSION

In conclusion, miR-10b-5p is down-regulated in breast cancer and might serve as a
potential diagnostic and prognostic marker for breast cancer. The tumor-suppressing
effect of miR-10b-5p might be mediated via regulation of key target genes involved in cell
cycle. In vivo or in vitro experiments are warranted to verify the underlying mechanism of
miR-10b-5p and its interactions with target genes in the future.

ACKNOWLEDGEMENTS

The results shown here are in whole or part based upon data generated by the TCGA
Research Network: https://www.cancer.gov/tcga.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This research was supported by the National Natural Science Foundation of China (No.
31802075). There was no additional external funding received for this study. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 31802075.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Junmin Wang performed the experiments, analyzed the data, prepared figures and/or
tables, approved the final draft.

e Yanyun Yan and Zhiqi Zhang analyzed the data, prepared figures and/or tables, approved
the final draft.

e Yali Li conceived and designed the experiments, contributed reagents/materials/analysis
tools, authored or reviewed drafts of the paper, approved the final draft.

Wang et al. (2019), PeerdJ, DOI 10.7717/peerj.7728 15/20


https://peerj.com
https://www.cancer.gov/tcga
http://dx.doi.org/10.7717/peerj.7728

Peer

Data Availability
The following information was supplied regarding data availability:

qRT-PCR data is available in the Supplemental Files.

miR-10b-5p expression profile of various human cancer types is available at a TCGA
data online analysis tool: http://bioinfo.life.hust.edu.cn/miR_path/.

Expression level of miR-10b-5p (MIMAT0000254) in breast cancer is available at
starBase v3.0 project: http://starbase.sysu.edu.cn/panMirDiffExp.php.

Prognostic value of miR-10b-5p in breast cancer is available at the Kaplan-Meier Plotter
Database (KMPD): http://kmplot.com/analysis/index.php?p=service&cancer=breast
mirna.

Relationship between miR-10b-5p and clinical features is available at LinkedOmics:
http://linkedomics.org.
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