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Abstract

Single-cell RNA sequencing (scRNA-seq) enables characterizing the
cellular heterogeneity in human tissues. Recent technological
advances have enabled the first population-scale scRNA-seq stud-
ies in hundreds of individuals, allowing to assay genetic effects
with single-cell resolution. However, existing strategies to analyze
these data remain based on principles established for the genetic
analysis of bulk RNA-seq. In particular, current methods depend on
a priori definitions of discrete cell types, and hence cannot assess
allelic effects across subtle cell types and cell states. To address
this, we propose the Cell Regulatory Map (CellRegMap), a statistical
framework to test for and quantify genetic effects on gene expres-
sion in individual cells. CellRegMap provides a principled approach
to identify and characterize genotype–context interactions of
known eQTL variants using scRNA-seq data. This model-based
approach resolves allelic effects across cellular contexts of differ-
ent granularity, including genetic effects specific to cell subtypes
and continuous cell transitions. We validate CellRegMap using sim-
ulated data and apply it to previously identified eQTL from two
recent studies of differentiating iPSCs, where we uncover hundreds
of eQTL displaying heterogeneity of genetic effects across cellular
contexts. Finally, we identify fine-grained genetic regulation in
neuronal subtypes for eQTL that are colocalized with human dis-
ease variants.
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Introduction

Seminal population-scale single-cell RNA sequencing (scRNA-seq)

studies have demonstrated the feasibility to map expression quanti-

tative trait loci (eQTL) using scRNA-seq as a readout. These studies

have replicated eQTL that had previously been discovered using

bulk RNA-seq profiles (Cuomo et al, 2020a; Data ref: Cuomo

et al, 2020b; van der Wijst et al, 2018), and more importantly,

demonstrated increased resolution by mapping eQTL across individ-

ual cell types that are captured by scRNA-seq (van der Wijst

et al, 2018; Jerber et al, 2021a; Data ref: Jerber et al, 2021b; Neavin

et al, 2021).

Despite the scope of these novel opportunities posed by using

scRNA-seq for genetic mapping, existing strategies for mapping

eQTL using single-cell data remain largely based on principles that

were originally devised for bulk RNA-seq profiling. For example,

established “multi-tissue” eQTL methods (e.g., refs. Ding

et al, 2010; Petretto et al, 2010; Nica et al, 2011; Fu et al, 2012;

Flutre et al, 2013; Sul et al, 2013; Di Narzo et al, 2014; Li

et al, 2018; Urbut et al, 2019) can be adapted to scRNA-seq, but

require discretization of the single-cell profiles into distinct cell clus-

ters a priori to quantify gene expression. Additionally, while these

approaches can be used to test for genetic effects in one or more of

the defined cell types, they are not designed to model and test for

continuous interactions with cell contexts such as “dynamic

effects,” where continuous transitions in cell states modulate genetic

effect size. Alternatively, “interaction tests” methods do exist and

have been applied in the context of eQTL mapping (e.g., refs. Zher-

nakova et al, 2017; van der Wijst et al, 2018), yet current workflows

remain limited to testing for interactions with one context at a time,

and importantly do not effectively account for repeated or related

samples. The latter limitation is particularly relevant for single-cell
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data, where multiple cells are assayed for each individual. Conse-

quently, these approaches do not fully leverage the resolution pro-

vided by single-cell data, potentially failing to detect changes in

allelic regulation across subtle cell subtypes. Discretization of single

transcriptome profiles into distinct cell clusters can also be limiting

in settings where cell states change in a continuous manner, as for

example observed across developmental time courses or cellular dif-

ferentiation. Additionally, even seemingly well-defined discrete cell

types may share common axes of heterogeneity, e.g., due to cell-

intrinsic factors such as the cell cycle, thus motivating to jointly ana-

lyze genetic effects across multiple cell states in order to capture all

of these dimensions.

Here, we propose the Cellular Regulatory Map (CellRegMap), a

framework for mapping regulatory variants in an unbiased manner

across cell types and cell states as obtained from scRNA-seq profiles.

CellRegMap does not depend on any discretization of cells into cell

types, nor is it required to annotate specific cell states a priori.

Instead, the model leverages a multi-dimensional cell state manifold

estimated from single-cell transcriptome profiles to define cellular

contexts in a continuous and unbiased manner. CellRegMap then

allows to test for and characterize interaction effects between indi-

vidual genetic variants and cellular context on gene expression traits

(Fig 1). The primary use case of CellRegMap is to reanalyze eQTL

variants with known additive effects, however the model can in

principle also be used for variant discovery (Materials and Methods;

Appendix Fig S1). We validate CellRegMap using simulated data,

and apply the model to map context-specific effects of eQTL previ-

ously identified in two recent single-cell genetics studies (Cuomo

et al, 2020a; Data ref: Cuomo et al, 2020b; Jerber et al, 2021a; Data

ref: Jerber et al, 2021b), where we demonstrate increased power to

A

D

E
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Figure 1. Overview of CellRegMap.

A, B Established workflows based on principal component analysis or factor analysis applied to scRNA-seq can be used to both estimate cellular manifolds (A) and to
uncover individual factors that capture different cellular contexts (B). In addition to capturing major cell types, these factors can also explain subtle subtypes, as
well as cell-type independent variation, such as the cell cycle and other cell-intrinsic factors. These cellular contexts can represent both discrete and continuous
cell-state transitions, including cellular differentiation.

C Illustration of a genotype–context (GxC) interaction where genetic effects are modulated by a cellular differentiation context. Established analysis strategies (left)
typically require discretization into discrete cell clusters (here low, mid, high), whereas CellRegMap enables assaying allelic effects as a function of the continuous
differentiation context (right). Top panel: cellular manifold with color denoting allelic effects, either estimated in discrete cell populations (left) or in continuous
fashion using CellRegMap (right). Middle panel: Alternative representation of allelic effects for different genotype groups, again either considering a discrete (left) or
continuous modeling approach (right). Bottom panel: Encoding of discrete cell types (left) and continuous gradients using a cellular context covariance matrix in
CellRegMap (right).

D The CellRegMap model can be cast as a linear mixed model, where single-cell gene expression values of a given gene are modeled as a function of a persistent
genetic effect, GxC interactions, additive effects of cellular context, relatedness and residual noise. GxC interactions are modeled by treating allelic effect size esti-
mates in individual cells (βGxC) as random variable with prior covariance Σ (C).

E CellRegMap allows to test for heterogeneous genetic effects across cells due to GxC at a given locus for a given gene (testing βGxC ¼ 0 vs. βGxC≠0). Color denotes the
estimated GxC interaction component of genetic effects in individual cells (βGxC).
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detect genotype–context (GxC) interactions, and we identify regula-

tory modules of eQTL that are active in the same cellular contexts.

Finally, we explore the relevance of cell–context interactions to

enhance the characterization of colocalization events with human

disease variants.

Results

CellRegMap generalizes the classical linear interaction model for

genotype-environment interactions (Zhernakova et al, 2017; van der

Wijst et al, 2018) and allows testing for interactions between genotype

and a possibly large number of discrete and continuous cellular con-

texts. Briefly, CellRegMap encodes the cellular context using a covari-

ance matrix that is estimated from the observed scRNA-seq profiles.

This covariance can be derived using existing workflows, including

factor analysis (e.g., multi-omics factor analysis, MOFA; Argelaguet

et al, 2018) or principal component analysis (PCA; Fig 1A and B).

CellRegMap incorporates the estimated cellular context covariance to

account for additive contributions from cell context as well as interac-

tion effects with genetic variants using random effect components

within the linear mixed model (LMM) framework (Henderson, 1984;

Kang et al, 2008; Lippert et al, 2011; Loh et al, 2015) (Fig 1C and D).

In addition to a conventional fixed effect test for persistent genetic

effects, CellRegMap implements a random effect test to identify GxC

interactions due to heterogeneous genetic effects (Materials and Meth-

ods; Fig 1D). CellRegMap builds on and extends StructLMM, an

LMM-based method to assess genotype-environment interactions in

population cohorts (Moore et al, 2019). In particular, CellRegMap

accounts for relatedness between samples using an additional random

effect component, thereby appropriately addressing the repeat struc-

ture in single-cell analyses. This is required because typically multiple

cells are sampled from the same individuals (Materials and Methods).

More formally, CellRegMap models the single-cell expression pro-

file of a given gene (across a total of N cells from multiple individu-

als; y) as a sum of a conventional—persistent—genetic effect (G),

interactions with cellular context (GxC), additive contributions from

cell context (C), a relatedness component (rel.) and residual noise

(Fig 1D). GxC interactions are modeled as an element-wise product

between the expanded genotype vector g at a given locus and a GxC

effect size vector βGxC ¼ βGxC1
; . . . ; βGxCN

� �T
, which correspond to

allelic effect sizes in individual cells. This vector follows a multivari-

ate normal distribution, βGxC ∼ N 0; σGxC2Σð Þ. Depending on the

parametrization of the cell–context covariance Σ, CellRegMap can be

set up to model interactions with different cellular contexts, including

discrete and related cell types, as well as continuous cell-state transi-

tions (Fig 1C and D; Materials and Methods). The same covariance is

also used to account for additive effects of cellular context on expres-

sion, i.e., c ∼ N 0; σC2Σð Þ. To account for the repeat structure caused

by sampling multiple cells from the same individual, CellRegMap

includes an additional relatedness component, which is parametrized

as the element-wise product between a conventional relatedness

covariance R (expanded to the level of individual cells) and the cell

context covariance, i.e., u ∼ N 0; σRC2R � Σð Þ (see Materials and

Methods). This component ensures that the model retains calibration

when multiple cells are sampled from the same individual. Finally,

the model assumes Gaussian distributed and independently and iden-

tically distributed residual noise, i.e., ϵ ∼ N 0; σn2Ið Þ (Fig 1D).

We propose a score test to identify gene-loci pairs with signifi-

cant GxC effects (testing βGxC≠0, Fig 1E), which generalizes the

approach in ref. (Moore et al, 2019). Additionally, CellRegMap can

be used to characterize GxC effects of eQTL by estimating the allelic

effect for individual cells βGxC, which allows us to identify specific

cell populations with increased or decreased genetic effects (Fig 1C;

Materials and Methods). The model is implemented in efficient

open-source software, which leverages low-rank representations

and factorizations of the resulting total covariance, after marginaliz-

ing the random effect components (Materials and Methods). As a

result, the computational complexity of CellRegMap scales linearly

in the number of cells (Appendix Fig S1; Materials and Methods).

The model can be applied efficiently to assess GxC interactions at

known eQTL variants. The CellRegMap software also comes with an

efficient implementation of a conventional association test that is

consistent with the CellRegMap model and hence suitable for single-

cell sequencing data (CellRegMap-Association, Materials and Meth-

ods). This test allows to rapidly screen for loci with association sig-

nals that can then be assessed using the CellRegMap interaction

model (Appendix Fig S1).

Model validation using simulated data

Initially, we considered simulated data to validate the calibration of

CellRegMap and to assess statistical power of the model. In particu-

lar, we used a semisynthetic simulation procedure, which builds on

empirically observed genotypes, gene expression profiles and cellu-

lar contexts extracted from real scRNA-seq data (Data ref: Cuomo

et al, 2020b; Materials and Methods). We confirmed the statistical

calibration of CellRegMap, both when simulating no genetic effects

(Figs 2a and EV1) and when simulating from a persistent effect

model without GxC interactions (Fig EV1; Materials and Methods).

We also compared CellRegMap to StructLMM (Moore et al, 2019), a

reduced model that does not include the relatedness component,

thereby confirming that the relatedness component is required to

retain calibrated P-values when multiple cells are assayed from each

individual (Figs 2A and B, and EV1). Next, we conducted experi-

ments to assess the statistical power of CellRegMap for identifying

loci with simulated GxC effects (Fig 2b; Materials and Methods). For

comparison, we also considered a conventional linear interaction

test (similar to the approach in Zhernakova et al, 2017) that

assesses a linear interaction with individual cellular contexts

(SingleEnv-LRT; adjusted for multiple testing across factors using

Bonferroni; Materials and Methods), but using otherwise the same

random effect components to account for additive effects of context

and relatedness employed in CellRegMap (Materials and Methods).

Initially, we considered simulated expression profiles with variable

fractions of genetic variance explained by GxC. The power of both

tests increased as the fraction of the genetic effect explained by GxC

increases, noting that CellRegMap was substantially better powered

than the SingleEnv-LRT test. As a second parameter, we varied the

number of cellular contexts that are simulated to contribute to GxC

(out of 20 included in both tests). The results of this analysis show

that CellRegMap outperformed the corresponding SingleEnv-LRT

GxC test when larger numbers of cellular contexts were simulated to

contribute to GxC (> 5 contexts). We also varied the number of cel-

lular contexts tested in the model, again finding that CellRegMap

offers advantages for larger numbers of contexts.
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We extended the benchmark to consider additional comparisons

partners. In addition to the CellRegMap interaction test, we assessed

the CellRegMap association test (CellRegMap-Association), which as

expected is best powered to identify variants with primarily associa-

tion signals (Fig 2A). We also considered a fixed effect equivalent of

CellRegMap, implemented as a linear interaction test that accounts

for multiple contexts at once using a multiple degrees of freedom

approach (MultiEnv-LRT), which however was not calibrated in par-

ticular for larger numbers of cellular contexts (Materials and Meth-

ods; Fig EV1). Furthermore, we considered discrete cellular contexts

(derived using clustering, Materials and Methods) instead of contin-

uous cellular context covariance, which was inferior on both simu-

lated and real data (Appendix Fig S2). Taken together, these results

demonstrate power advantages and robustness of CellRegMap, com-

pared with existing methods, particularly when multiple cellular

contexts contribute to GxC.

Finally, we used simulated data to assess the impact of expres-

sion level and expression variance on the power to detect genuine

GxC effects, finding that our power to identify GxC effects is

increased for genes with higher overall expression level mean and

lower variance (Appendix Fig S3).

Application to a continuous trajectory of iPS cells differentiating
towards definitive endoderm

Next, we applied our model to a single-cell RNA-seq dataset of differ-

entiating induced pluripotent stem cells (iPSCs) that spans 125 geneti-

cally diverse individuals (Cuomo et al, 2020a; Data ref: Cuomo

et al, 2020b). Briefly, a total of ~ 30,000 cells were captured at four

time points of iPSC differentiation (day 0: iPSCs, day 1, day 2 and day

3 of differentiation towards definitive endoderm; Fig 3), using the

SMART-Seq2 (Picelli et al, 2014) protocol. As expected, cell differenti-

ation is the dominant cellular context in this study, and hence this

dataset is an ideal test case to assess the ability of CellRegMap to iden-

tify continuous changes of allelic effects across a cellular trajectory.

We used MOFA (Argelaguet et al, 2018) to infer latent factors

that explain variation in gene expression in the data, which cap-

tured both differences in major cell types across the differentiation

trajectory, but also more subtle cell states. For example, the first fac-

tor (MOFA 1) primarily explained the differentiation axis, with cells

transitioning between a pluripotent state and the definitive endo-

derm fate. Higher order factors captured other cellular contexts,

including cell cycle phase (MOFA 3 and 6), respiration (MOFA 4)

and others (Fig EV2; Materials and Methods).

We applied CellRegMap to test for GxC effects at 4,470 eQTL variant/

gene pairs that were previously reported in the primary analysis of the

dataset using a conventional eQTL mapping workflow that does not

account for GxC interactions (Cuomo et al, 2020a; Data ref: Cuomo

et al, 2020b). For comparison, we also considered the CellRegMap

Association test to identify eQTL variants within a single end-to-end

workflow, which yielded a consistent set of variants (Appendix Fig S4).

We compared CellRegMap when only using the first MOFA factor to

define the cell context covariance, which is similar to the approach

taken in the primary analysis (Cuomo et al, 2020a; Data ref: Cuomo

et al, 2020b), to a model that leverages the information contained in

the leading 10 MOFA factors. The model with 10 components yielded

A

B

Figure 2. CellRegMap validation using simulated data.

Test performance for 500 simulated semi-synthetic eQTL based on real expression profiles and genotypes (Materials and Methods).
A Test calibration under the null hypothesis (without any genetic effects). StructLMM, a model that does not account for the repeat structure in single-cell sequencing

data yields inflated test statistics. P-values from CellRegMap and CellRegMap-Association, a variant of CellRegMap for detecting persistent genetic effects only (Mate-
rials and Methods), follow the expected uniform distribution.

B Power at significance level α = 0.01 as a function of the fraction of genetic variance explained by GxC (left), the number of simulated contexts with GxC (middle) and
the number of tested contexts (out of 20 all contributing to GxC, right). Compared are CellRegMap, CellRegMap-Association (where applicable) and a fixed-effect
likelihood-ratio-test for single contexts (minimum P-value across all contexts, Bonferroni-adjusted for the number of tested contexts; Materials and Methods).
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a substantially larger number GxC effects (322 vs. 183, FDR < 5%;

Fig 3A, Table EV1), indicating that despite cell differentiation being

the major driver of expression variation, other more subtle cellular

states also manifest in GxC interactions on gene expression.

To assess the robustness of the identified GxC effects, we consid-

ered alternative latent variable methods to capture cellular contexts,

including principal component analysis, which yielded broadly con-

sistent results (Appendix Fig S5; Materials and Methods). As a sec-

ond technical control, we investigated the extent to which variation

in genetic effects due to GxC across the contexts were associated

with changes in expression level of the same genes. Reassuringly,

the gene expression dynamics and the eQTL dynamics tended to be

distinct, demonstrating that gene expression level is not the primary

mechanism governing variation in genetic effects (Appendix Fig

S6). Finally, we assessed whether variation in gene expression level

could result in synthetic interactions, finding that the model retained

calibration in such settings (Appendix Fig S7).

Next, we set out to characterize specific cellular contexts that are

associated with the identified GxC interactions. We used Cell-

RegMap to estimate the GxC allelic effects in each cell, thereby

recovering the continuous landscape of the GxC component of

genetic effects across the cell–context manifold (Materials and Meth-

ods). This analysis identified a range of allelic patterns, including

GxC effects that are primarily governed by cellular differentiation

but also more complex patterns that involve multiple cellular con-

texts and higher-order cellular factors. For example, the eQTL vari-

ant rs113520162 for IER3 had a GxC effect that reflects variation

across cell differentiation explained by the first MOFA component

(Fig 3B, middle). Other eQTL, such as rs11180470 for GLIPR1L1,

had GxC effects that were associated with two MOFA factors (Fig 3

B, right). More generally, we observed that higher order MOFA com-

ponents capture changes in cellular contexts beyond cellular differ-

entiation, including the cell cycle (Fig 3C), cellular respiration

(Fig 3D), and others (Fig EV3). Collectively these results illustrate

A

C D

B

Figure 3. Application of CellRegMap to iPSCs differentiating towards definitive endoderm.

A Comparison of the CellRegMap GxC interaction test, either considering the first MOFA factor to define the cell context covariance (MOFA 1, x-axis) or using the
leading 10 cellular factors (MOFA 1:10, y-axis). Shown is a scatter plot of negative log P-values obtained from the respective tests applied to 4,470 eQTL variants
and genes. Horizontal and vertical lines denote the FDR < 5% significance threshold (Benjamin-Hochberg adjusted). Shown in each quadrant is the number of
eQTL with evidence for a GxC effect (e.g., 239 GxC effects are exclusively detected by the model that uses 10 MOFA factors; FDR < 5%).

B–D Representative examples of eQTL with GxC interaction. (B) Left: scatter plot of the first two MOFA factors (capturing cell differentiation as context) with color
denoting the time point of collection (days 0, 1, 2 and 3 of endoderm differentiation); middle: identical scatter plot with color encoding the estimated allelic effect
for the eQTL variant rs113520162 for the gene IER3; right: allelic effect for the eQTL at rs11180470 for the gene GLIPR1L1. Shown are total allelic effects (βG þ βGxC)
for individual cells. The allelic effect size color bar is centered on the persistent genetic effect (βG). Panels on the top and right display marginal densities of cells
that have either increased (high, red) or decreased (low, cyan) allelic effects (corresponding to the bottom and top 10% quantiles, respectively). Whereas the GxC
effect for the eQTL for IER3 is primarily explained by the first MOFA component, the GxC effect for GLIPR1L1 is captured by the combination of the first two MOFA
factors. (C) Analogous presentation as in (B), displaying a scatter plot between MOFA factors 3 and 6 with cells colored by alternative annotations. Left: inferred cell
cycle phase (Materials and Methods); Right: allelic effects for an eQTL at rs506770 for HSPA1A (yellow). (D) As in (B, C) scatter plot of MOFA factors 4 and 1. Left:
cells colored by cellular respiration (Materials and Methods); Right: allelic effects for the eQTL at rs11763367 for WBSCR27 (green).
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how CellRegMap can be used to uncover different cellular contexts

that manifest in GxC interactions.

Application to iPSC-derived dopaminergic neurons

Next, we applied CellRegMap to a single-cell dataset of 215 iPS cell

lines that were assayed at three stages of differentiation towards

dopaminergic neurons (Jerber et al, 2021a; Data ref: Jerber

et al, 2021b) (11, 30 and 52 days of differentiation) using the 10X

Genomics technology (30 kit; Zheng et al, 2017), as well as a stress

condition at the most differentiated time point. These data feature

prominent discrete cell states rather than continuous changes, thus

providing a complementary use case.

To assess whether CellRegMap can identify GxC effects associated

with finer grained neuronal subtypes, we considered 147,801 cells that

were annotated as dopaminergic neurons in the primary analysis of

this dataset (based on marker genes; Jerber et al, 2021a; Data ref: Jer-

ber et al, 2021b). This selection included cells collected at three of the

four time points and conditions: young neurons (at day 30 of iPSC dif-

ferentiation), mature neurons (day 52) and mature neurons followed

by rotenone treatment (day 52 ROT). A t-SNE embedding of these

cells identified discrete cell populations that reflect the combination of

differentiation stage and stimulus (Fig 4A). Our hypothesis is that

while it is expected that regulatory variants can be specific to these

major sub populations, there could also be GxC effects that are more

granular due to cellular contexts that capture subpopulations within

these clusters, or that capture shared cellular contexts that are present

across these clusters. To mitigate the sparsity of 10X sequencing data

compared with SMART-Seq2, we aggregated the read count informa-

tion into pseudocells (similar to approaches described in refs. (Baran

et al, 2019; DeTomaso et al, 2019); resulting in 17 cells on average,

8,648 pseudocells in total, Appendix Fig S8; Materials and Methods).

We again considered the leading 10 MOFA components to define the

cell context covariance for analysis using CellRegMap.

We tested for GxC effects at 1,374 SNP-gene pairs identified as

eQTL in at least one of the three discrete cell populations in the pri-

mary analysis of the data (Jerber et al, 2021a; Data ref: Jerber

et al, 2021b) (FDR < 5%; Materials and Methods). This identified

213 eQTL with evidence for GxC interactions (FDR < 5%, Materials

and Methods, Table EV2). We also considered the impact of consid-

ering a discrete cell–context covariance, either using the three cell

populations described in the original paper (Jerber et al, 2021a; Data

ref: Jerber et al, 2021b) or using clustering to derive discrete con-

texts (Materials and Methods), revealing that in all cases a discrete

cell–context covariance resulted in a much smaller number of dis-

coveries (Appendix Fig S2D–F).
Next, for each of the 213 eQTL with a significant GxC effect, we

again estimated GxC allelic effects in individual cells. To identify

general patterns of genetic regulation, we adapted a clustering

approach originally designed for spatial transcriptomics data to group

eQTL based on their allelic effect patterns across the cell context mani-

fold (implemented in SpatialDE (Svensson et al, 2018; Fig EV4A)).

This identified 17 clusters of eQTL with distinct GxC effect profiles

(Fig 4B). We annotated individual clusters by examining the subpopu-

lation of cells with the largest absolute GxC effects. Briefly, for each

cluster we ranked genes by the correlation between their single-cell

expression profiles and the pattern of absolute GxC allelic effects.

Based on this gene ranking, we then assessed enrichments of known

pathways (over-representation analysis using a hypergeometric test

and annotations from GO, Reactome, KEGG, HPO and others), as well

as using literature-curated marker gene sets of dopaminergic neurons

(see Materials and Methods for details, Fig EV4B).

Some of the clusters primarily captured genetic effects that were

specific to the three major cell populations. For example, cluster 8

corresponded to eQTL that are primarily active in the day 30 popula-

tion, cluster 4 eQTL are primarily active in day 52 cells, and cluster

5 captures effects specific to the rotenone-treated day 52 cell popula-

tion (Fig 4C–E). Gene enrichment analysis of these clusters yielded

processes that are consistent with the expected function of the corre-

sponding cell populations, such as response to oxidative stress (GO:

006979) for cluster 5 (Materials and Methods; Fig EV4).

Beyond these expected patterns of GxC effects, other eQTL had

interaction effects that were explained by clusters that exhibit con-

tinuous changes of allelic effects across developmental time, or that

are specific to more fine-grained sub populations (Fig 4F–H). For

example, cluster 10 captured eQTL that are active in common sub-

population of day 52 treated and untreated cells (Fig 4F). Functional

enrichment analysis linked this cluster to processes related to exocy-

tosis and neurotransmitter transport through synapsis, suggesting

an association with neurons that are actively transmitting cell–cell
information (Fig EV4). Clusters 2 and 9 exhibit GxC effects with

opposing directions, with cluster 2 being associated with increased

genetic effects and cluster 9 with decreased effects. Cluster 9 eQTL

show increasing absolute effect sizes in more mature neurons,

regardless of the stimulation status. Enrichment of this cluster high-

lights neuronal-specific features such as synaptic signaling

(GO:0099536; Figs 4G and EV4). Cluster 2, on the other hand, is

specific to a subpopulation of day 30 cells (Fig 4H) that corresponds

to less mature dopaminergic neurons, as evident by continuous gra-

dients of canonical dopaminergic neuronal markers (Fig EV4; Mate-

rials and Methods).

We also considered to what extent estimated allelic effects in

single cells could be used to identify opposite effects, that is eQTL

variants with opposite signs of effects for different cellular contexts.

Globally, we identified 45 GxC effects (21%) with putatively oppos-

ing effects (defined as at least 25% of cells having opposite sign in

▸Figure 4. CellRegMap identifies fine-grained regulatory modules in dopaminergic neurons.

A Overview of the cell subpopulations: tSNE plot of 8,648 pseudocells (Materials and Methods), highlighting three major populations of dopaminergic neurons: young
neurons (day 30 of iPSC differentiation), more mature neurons (day 52) and rotenone-treated day 52 dopaminergic neurons (day 52 ROT).

B–H Results from clustering of GxC allelic effect size estimates of individual cells for different genes. (B) Barplots indicating the number of eQTL with GxC effects
assigned to each of 12 clusters. Highlighted are the six representative clusters that are displayed in subsequent panels. (C–H) For each of 6 representative clusters,
from left to right: box plot of the distribution of the relative GxC effect sizes estimates for cells in each of the three major cell populations (as in A), manifold of
consensus relative GxC effect sizes estimates for each cluster (A); example eQTL with allelic effect size estimates across the cell manifold as in a with color
denoting total allelic effects (βG þ βGxC); the color bar is centered on the persistent genetic effect size estimate for each eQTL (βG). For box plots, central bands
represent median values, upper and lower box limits represent the 25% and 75% quantiles, and whiskers correspond to minimum and maximum values.
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the estimated GxC portion of genetic effects; βGxC). We also reas-

sessed these effects using conventional eQTL mapping by defining

pseudo-bulk expression profiles in the bottom and top 20% quan-

tiles of GxC allelic effects, which confirmed 72% of these putative

opposite effects (Materials and Methods; Appendix Fig S9).

Finally, we considered a subset of 94 eQTL with evidence for sta-

tistical co-localization with GWAS hits for neuronal and human dis-

ease traits (Jerber et al, 2021a; Data ref: Jerber et al, 2021b)

(Materials and Methods). Out of these, 14 eQTL had significant GxC

interactions. For example, the eQTL variant rs1972183 for SLC35E2

has a GxC effect explained by cluster 4 and is colocalized with a

GWAS variant for sleeplessness and insomnia in the subpopulation

of day 52 untreated cells (Fig 5A–C). CellRegMap allowed for pin-

pointing a specific sub-population within this cluster with elevated

allelic effect sizes (Appendix Fig S10A). We again considered the

allelic GxC effect estimates in single cells to stratify cells into the top

and bottom 30% quantiles of absolute genetic effects, and con-

ducted conventional cis eQTL mapping using the corresponding

A

C

B

D

E F

Figure 5. CellRegMap allows to pinpoint subpopulations of cells linked to human disease variants.

A Allelic effect size estimates for the rs1972183 on SLC35E2. Shown is a scatter plot of tSNE coordinates with color denoting estimated GxC allelic effects (βGxC).
B–F SLC35E2-eQTL results obtained from a conventional eQTL mapping workflow (Materials and Methods), using the CellRegMap output to select alternative cell popu-

lations to estimate expression phenotypes. (B, C) tSNE plots as in a, with color indicating alternative selected subpopulations of day 52 untreated cells. (B) Top and
bottom 30% quantiles of day 52 untreated cells ranked by the absolute GxC allelic effect. (C) Day 52 untreated cells. (D) Manhattan plots displaying negative log P-
values from a conventional eQTL workflow when using the subpopulations as in b to estimate expression phenotypes. Shown are negative log P-values (y-axis) as a
function of the genomic position of common variants (x-axis). (E, F) Violone plots displaying effect size estimates on SLC35E2 (y-axis) stratified by genotype at the
lead variant rs1972183 (x-axis), either considering all cells for pseudo bulk expression estimation (E) or (F) considering the subpopulations as in (B, D).
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pseudo bulk expression profiles (Cuomo et al, 2021). This analysis

confirmed the expected difference in eQTL effect sizes (Fig 5D–F)
and, notably, the trait associated with the top quantile of allelic

effects yielded higher evidence for co-localization with the disease

GWAS signal (Fig EV5).

Discussion

Here, we presented the cellular regulatory map (CellRegMap), a linear

mixed model for the identification and characterization of context-

specific eQTL that is applicable to cellular states derived from scRNA-

seq. Critically, CellRegMap overcomes the need to define cellular con-

texts a priori (Fig 1) and instead uses cell manifolds derived from

single-cell transcriptome profiles to estimate cellular contexts in an

unbiased manner to then test for interaction effects.

Conceptually, CellRegMap is related to and builds on StructLMM,

a model that was originally designed to identify genotype-

environment interactions in population cohorts (Moore et al, 2019).

CellRegMap adapts these concepts to single-cell genomics, by

including an additional relatedness component in the model to

account for dependencies across cells that are assayed from the

same individual. CellRegMap retains calibrated test statistics (Figs 2

A and B, and EV1) and enjoys power benefits compared with con-

ventional fixed-effect interaction tests (Fig 2C–E). Additionally, we

complement our framework with a fast genetic association test

designed specifically for single-cell sequencing data (CellRegMap-

Association), allowing to efficiently generate sets of candidate eQTL

to be tested for GxC.

To illustrate the model, we applied CellRegMap to a single-cell

dataset of iPS cells from 125 individuals across differentiation towards

a definitive endoderm fate (Cuomo et al, 2020a; Data ref: Cuomo

et al, 2020b). The main source of variation in this dataset is a continu-

ous differentiation signal, which manifests in dynamic eQTL across

differentiation. Notably, we also identify eQTL associated with other

dimensions of transcriptome variation, including factors associated

with cell-cycle phase or respiration (Fig 3). As a second-use case, we

applied CellRegMap to scRNA-seq data from iPSCs across differentia-

tion towards a dopaminergic neuronal fate (Jerber et al, 2021a; Data

ref: Jerber et al, 2021b). Our analysis demonstrated that cell-type

specific eQTL are not only observed for major subpopulations linked

to known cell types, but instead a substantial number is driven by

other more subtle variations in cellular context (Fig 4).

An important insight from both use cases is that continuous and

subtle allelic regulation, which manifests in GxC in specific subpopula-

tions, is common. Even in cell populations that seemingly correspond

to well-defined cell types, CellRegMap identified heterogeneity in

genetic effects that manifests in GxC interactions. These interactions

are particularly relevant if they are linked to eQTL with evidence for

colocalization with human disease variants. We illustrated this for one

disease-linked GxC effect, where CellRegMap allowed to pinpoint the

specific subpopulation of cells that is primarily responsible for this

eQTL signal. Notably, this step does not only enhance the interpreta-

tion of most relevant cell populations but can also yielded more fine-

grained cis eQTL signals for mapping variants.

Although we demonstrated that CellRegMap is broadly applicable

to different datasets and scRNA-seq technologies, the model is not free

of limitations. At present, CellRegMap is primarily designed as a tool to

annotate known eQTL variants rather than facilitating variant discov-

ery. This is analogous to the two-stage strategy for mapping of

genotype-environment interactions at known GWAS loci in population

cohorts. Such procedures build on the assumption that the persistent

genetic effect signal is sufficiently strong to enable discovery. The

CellRegMap-Association test implemented as part of the software can

be used to define an end-to-end workflow in the cases where eQTL are

not known a priori (Materials and Methods, Appendix Fig S11). Future

extensions of CellRegMap could enable the discovery of eQTL variants

while accounting for GxC. A second limitation of the model is that it

currently requires appropriate processing steps (e.g., variance stabiliza-

tion and quantile-normalization; Materials and Methods) to provide

cell-level or pseudo-cell expression estimates that approximately follow

a Gaussian distribution. Although our results indicate that this approxi-

mation is acceptable in practice and retains statistical calibration (Fig

EV1), explicit modeling of count data could provide additional power

benefits, in particular in the regime of lowly expressed genes. Similarly,

standardization of the cell contexts (e.g., MOFA factors) is recom-

mended for robust results, but may in some cases fail to fully capture

the underlying structure of the cellular landscape (for example, in the

case of outlier cells). Finally, as datasets grow in size, future develop-

ments on the scalability may be warranted. While CellRegMap scales

linearly in the number of cells already, the computations required to

account for the relatedness component could be prohibitive when ana-

lyzing very large datasets from thousands of individuals. Datasets of

this magnitude will become available through large data-integration

efforts, for example via federated analysis envisioned in the single-cell

eQTLGen consortium (van der Wijst et al, 2020).

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source Identifier or Catalog Number

Software

Scanpy 1.8.2 https://scanpy.readthedocs.io

ZINB-WaVe 1.18.0 https://bioconductor.org/packages/release/bioc/html/zinbwave.html

scvi-tools 0.14.5 https://scvi-tools.org

LDlinkR 1.2.1 https://cran.r-project.org/web/packages/LDlinkR/index.html

CellRegMap 0.0.3 https://github.com/limix/CellRegMap

MOFA 1.2.0 https://github.com/bioFAM/MOFA
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Methods and Protocols

The cellular regulatory map model
CellRegMap builds on and extends the structured linear mixed

model (StructLMM; Moore et al, 2019), which has recently been

proposed to test for genotype-environment interactions on physio-

logical traits in population cohorts. CellRegMap extends this model

to test for interactions between genotype and cellular context on

gene expression using single-cell RNA-seq as readout.

The model can be cast as:

y ¼ gβG þ g � βGxC þ uþ c þ e;

where

y denotes the log-transformed single-cell expression for a given gene,

g is the SNP genotype,

βG is the persistent genetic effect,

βGxC ∼ N 0; σ2GxCΣ
� �

is the cell-specific GxC effect,

u ∼ N 0; σ2RC R � Σ
� �

accounts for repeat samples,

c ∼ N 0; σ2CΣ
� �

accounts for effects of cell context and

e ∼ N 0; σ2nI
� �

is the noise term,

and � denotes the element-wise Hadamard product.

Relation to StructLMM

CellRegMap extends StructLMM, which can be cast as

y ¼ gβG þ g � βGxC þ c þ e;

by introducing an additional random effect component that accounts

for relatedness or sample repeat structure (u). First, we note that the

phenotype (y) now represents single-cell resolved expression data, so

samples are expression levels in cells, not individuals. This intro-

duces additional structure in the data, as typically multiple cells are

sampled from the same individual. To account for this repeat struc-

ture, an additional random effect component is included in the model.

This additional random effect component accounts for relatedness or

the repeat structure, which is parameterized as a product kernel

between relatedness (R) and the environmental covariance (Σ). Here,
R denotes the relatedness matrix of individuals expanded to all cells

based on the known assignment of cells to individuals and the covari-

ance Σ again denotes the cell-level environmental context. Notably,

this parametrization extends the classical LMM, which would exclu-

sively consider a relatedness component R. One way to interpret this

covariance is to account for polygenic interactions between environ-

ment and relatedness, which has previously been considered to esti-

mate the GxE component of heritability (Heckerman et al, 2016). We

note that the introduction of this additional covariance term, R � Σ is

critical for retaining calibration (Figs 2 and EV1).

Construction of the cellular context covariance and

processing guidelines

Typically, we define the cellular context covariance using a linear

covariance function of a matrix of environmental contexts C, i.e.,

Σ ¼ CCT . In practice, we consider as cellular contexts axes of varia-

tion in the dataset (for example, captured by principal components or

MOFA (Argelaguet et al, 2018) factors), appropriately standardized

(mean = 0, standard deviation = 1) and build Σ ¼ CCT accordingly.

Depending on the type and structure of cellular contexts, Σ can

simply separate cells into groups, and appear as a block diagonal or

capture continuous transitions (Fig 1C). In principle, CellRegMap can

also be used in conjunction with other parameterizations of the cell

context covariance.

The CellRegMap tests and downstream analysis

Interaction (GxC) test The main test implemented in CellRegMap

allows users to test for GxC effects for a given eQTL (or gene-SNP

pair). We refer to this as “CellRegMap Interaction test,” or simply

“CellRegMap.” The test consists in comparing the following models

under the null (H0) and alternative (H1) hypotheses, i.e., we are

testing whether βGxC≠0 (or more accurately, σ2GxC > 0):

H0
y ¼ gβG þ uþ c þ e

H1
y ¼ gβG þ g � βGxC þ uþ c þ e:

In order to evaluate the significant contribution of GxC effect, we

use a score test, similar to strategies adopted in StructLMM (Moore

et al, 2019), which in turn uses the approach described in Sequence

Kernel Association Test (SKAT; Wu et al, 2011). For more details on

the implementation, we refer the reader to our Appendix Supple-

mentary Methods.

Association test In addition to the GxC interaction test, it is also pos-

sible, within the CellRegMap framework, to test for persistent

genetic effects, while appropriately accounting for cell context and

multiple cells per donor in the background. CellRegMap-association

essentially draws from the background of the full CellRegMap model

and compares the following two models (i.e., testing βG≠0):

H0
y ¼ uþ c þ e;

and

H1
y ¼ gβG þ uþ c þ e:

We note that this model is similar to a conventional LMM, bar the

specific of the relatedness component (u ∼ N 0; σ2RR
�

)). To evaluate

statistical significance in this model, we employ a likelihood ratio test

(LRT), as implemented within the LIMIX (preprint: Lippert

et al, 2015) software, which in turn adopts fast LMM testing as first

proposed in Lippert et al (2011) (Appendix Supplementary Methods).

In cases where eQTL are not already known for a given dataset,

the association test can be run first in discovery mode, and all SNP-

gene pairs passing a significance threshold (e.g., we recommend

FDR < 20%) can be then tested for GxC effects using the Cell-

RegMap interaction test described above.

Single-cell GxC effect size estimation Finally, within the CellRegMap

framework it is possible to estimate allelic effects in individual cells
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(thus estimating βGxC) for each gene-SNP pair tested. These estimates

can be obtained from posterior predictions of the model, which is

analogous to the best linear unbiased predictor (BLUP) in a classical

LMM (Henderson, 1984) (Appendix Supplementary Methods).

Simulation strategy
Synthetic data for 500 gene-SNP pairs were generated using empiri-

cally observed data extracted from (Cuomo et al, 2020a; Data ref:

Cuomo et al, 2020b), including genotypes (50 individuals), back-

ground gene expression profiles (100 cells per individual) and cellular

contexts derived from scRNA-seq data (MOFA factors). We primarily

focused on simulating continuous effects by constructing a cell covari-

ance matrix from the observed MOFA factors. As part of the power

assessment, we additionally considered discrete contexts (see below).

SNPs and genes were sampled uniformly from different chromosomes,

thereby avoiding the possibility of confounding the simulated eQTL

with existing cis eQTL in these data. Synthetic expression counts with

GxC effects were simulated for individual cells using a conventional

linear interaction model with Poisson noise model:

y ∼ Poisson λð Þ; λ ¼ exp ybase þ∑k
i¼1g � ci βGxCð Þi þ gβG

� �
;

where

ybase is the log-transformed observed (background) gene expression

vector for a given gene in the reference dataset,

g is the SNP genotype vector from the reference dataset,

ci denotes the i-th context variable (MOFA factor),

βGxCð Þi ∼ N 0; σG2ρGxCð Þ is the interaction effect size for context i,

βG ∼ N 0; σG2 1�ρGxCð Þð Þ is the effect size of the persistent genetic

effect and

σG2 denotes the total genetic variance and ρGxC is the fraction of

genetic variance explained by GxC.

Notably, possible confounding factors such as read count distribu-

tion (dropout, overdispersion), batch effects or context-specific expres-

sion variation present in the observed expression counts ybase do not

need to be simulated using a parametric ormodel-based approach.

Calibration

We assessed the statistical calibration of the proposed tests, Cell-

RegMap and CellRegMap-Association, as well as three alternative

models (Figs 2 and EV1):

• StructLMM (Moore et al, 2019), a linear interaction model for

capturing genotype–environment interactions (GxE). This model

is conceptually similar to CellRegMap but does not account for

the repeat structure present in population-scale single-cell mea-

surements.

• SingleEnv-LRT, a fixed-effect version of CellRegMap, where we

test for GxC interactions with individual context dimensions using

a likelihood ratio test and report the minimum P-value across all

contexts (Bonferroni-adjusted for the number of contexts).

• MultiEnv-LRT, a fixed-effect version of CellRegMap with a

multiple-degree-of-freedom likelihood ratio test for GxC effects.

Both SingleEnv-LRT and MultiEnv-LRT share the same null

model as CellRegMap. Data were simulated assuming only

persistent (ρGxC ¼ 0; σG2 ¼ 0:025Þ or no genetic effects (σG2 ¼ 0:025Þ
and testing for GxC effects using either 10 or 20 contexts (MOFA fac-

tors). As shown before (Moore et al, 2019), MultiEnv-LRT does not

retain calibration for larger numbers of context variables and was

therefore excluded from other simulation experiments.

Power

Statistical power for CellRegMap, CellRegMap-Association and

SingleEnv-LRT was evaluated in three different settings (all simula-

tions assume σG2 ¼ 0:025, Fig 2):

• Varying ρGxC , the fraction of genetic variance explained by GxC

(0, 0.25, 0.5, 0.75, 1.0) for 10 tested and simulated contexts.

• Varying the number of simulated contexts with GxC (2, 5, 10, 15,

20), for 20 tested contexts (only CellRegMap and SingleEnv-LRT).

• Varying the number of tested contexts (2, 5, 10, 15, 20) when

simulating 20 contexts with GxC (only CellRegMap and

SingleEnv-LRT).

Additionally, we assessed the relationship between statistical

power (estimated P-values) and background mean gene expression

and variance, as well as minor variant allele frequency (10 tested

and simulated contexts, ρGxC ¼ 0:5, Appendix Fig S3). For the same

simulated data, we also compared power to detect GxC effects when

defining discrete (one-hot-encoded) contexts, using either experi-

mental annotations (Cuomo et al, 2020a; Data ref: Cuomo

et al, 2020b) (day of sample collection) or Leiden clusters (Wolf

et al, 2018; Traag et al, 2019) (based on 20 MOFA factors; resolu-

tion of 0.5 and 1.0, resulting in 12 and 24 clusters, respectively,

Appendix Fig S2).

Computational complexity

From using the implementation described above, and using the

LMM efficient implementation described by Lippert et al (2011; see

more detail in Appendix Supplementary Methods) it follows that the

complexity is O(N), where N is the minimum between the number

of cells and the product of the number of unique individuals × the

number of cellular contexts.

Empirical runtime was evaluated using observed expression pro-

files and contexts (MOFA factors) from the endoderm differentiation

dataset (Cuomo et al, 2020a; Data ref: Cuomo et al, 2020b) and sim-

ulated individuals / genotypes. We assessed the runtime of Cell-

RegMap and CellRegMap-Association as a function of either the

total number of cells (5,000, 7,500, 10,000, 12,500 or 15,000 cells

sampled without replacement from the full dataset), the number of

individuals (50, 75, 100, 125, 150) or the number of contexts tested

for GxC effects (2, 5, 10, 15 or 20 leading MOFA factors; using the

same number as background effects). Nonvarying parameters

were set to a default of 10,000 cells, 100 donors and 10 tested

contexts. All experiments were run on an Intel Xeon CPU E5-2660

v4 with 2.00GHz and averaged across 125 simulated eQTL

(Appendix Fig S1).

Application to endoderm differentiation
We considered single-cell expression data from 33,964 cells across

125 individuals from (Cuomo et al, 2020a; Data ref: Cuomo

et al, 2020b). These data cover in vitro differentiation of iPS cells

from pluripotent stage (day0) to definitive endoderm (day3).
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Compared with the entire dataset considered in the original publica-

tion, we discarded two outlying cell sub-populations (n = 475 and

n = 1,212 cells, respectively).

Preprocessing of scRNA-seq count data

Count data were processed as in the primary paper (Cuomo

et al, 2020a; Data ref: Cuomo et al, 2020b), where counts were nor-

malized using scran (Lun et al, 2016) and log-transformed (log2

(x + 1)). Prior to be inputed into the model as phenotype vectors

(i.e., as y), single-cell counts for a given gene were quantile-

normalized to better fit the Gaussian distribution assumed by the

model. The log-normalized count data (prior to quantile normaliza-

tion) for the top 500 highly variable genes is also used as input for

MOFA (see details below).

Estimation and annotation of MOFA factors

MOFA (Argelaguet et al, 2018) factors calculated from the expres-

sion profiles of the top 500 highly variable genes identified across

all cells (using scran’s function “modelGeneVar”), using default

parameters. Annotation of the leading 10 MOFA factors was per-

formed using gprofiler (Raudvere et al, 2019), considering the abso-

lute loading of individual genes as estimated by MOFA. For each

MOFA factor, we considered the top 20 enriched pathways to anno-

tate individual factors (adjusted P-values < 0.05; Fig EV2).

Testing for GxC effects

We considered cis eQTL from (Cuomo et al, 2020a; Data ref: Cuomo

et al, 2020b). In particular, we considered all gene-SNP pairs that

were significant (FDR < 10%) in one or more of the developmental

stages considered in the original paper, i.e., iPSCs, mesendoderm,

definitive endoderm. In total, this corresponds to 4,470 eQTL pairs

(3,240 unique Genes with an eQTL). This approach is similar to

established strategies to test for GxE interactions, where SNPs with

at least weak persistent effects (g only) are prioritized as candidates

to assess GxE effects.

Next, we mapped context-specific effects using either 1 or 10

MOFA factors. In both cases, all 20 MOFA factors were used to con-

struct the background term, i.e., columns in C standardized and then

used to build Σ ¼ CCT . To account for multiple testing, the resulting

P-values were adjusted at the gene-level using the Bonferroni proce-

dure to control the family-wise error rate, followed by an adjustment

across genes using the Storey method to control the false-discovery

rate (FDR). Significant results were reported at FDR < 5%.

Estimation of single-cell effect sizes

We estimated both persistent genetic effects (βG) and cell-level

effect sizes due to GxC (βGxC; Appendix Supplementary Methods)

for eQTL with significant GxC interactions (FDR < 5%), when con-

sidering either the first MOFA factor (MOFA 1, capturing differentia-

tion) or the first 10 MOFA factors to define cell contexts.

Calibration of the GxC test

We evaluated calibration of the CellRegMap GxC interaction test by

considering all genes on chromosome 22 (n = 270) and permuting

the genotypes across individuals for two random SNPs per gene,

finding calibrated test statistics. Additionally, we stratified genes by

their correlation with differentiation time (the dominant axis of vari-

ation in this dataset) to rule out inflation of CellRegMap’s test

statistics in cases where the cell context has a strong effect on the

outcome variable y (Appendix Fig S7A and C).

Alternative context definition

In order to assess the effects of the workflows used to define cell con-

text, we considered chromosome 22 of the endoderm differentiation

data (Cuomo et al, 2020a; Data ref: Cuomo et al, 2020b) (total number

of eQTL: 121). We reassessed GxC effects when compare MOFA to

alternative latent variable methods to definitions of contexts, namely

using principal component analysis (PCA), linearly-decoded varia-

tional autoencoder (LDVAE; Svensson et al, 2020), and zero-inflated

negative binomial-based wanted variation extraction (ZINB-WaVe;

Risso et al, 2018). Both LDVAE and ZINB-WaVe were run using a

latent space dimension of 10 and accounting for the experiment identi-

fier as a batch covariate. All other parameters were set to default val-

ues of the respective method. Despite differences on the level of the

individual estimated factors using these different pipelines, CellReg-

Map’s results were largely consistent demonstrating its robustness to

the choice of factors used to capture context (Appendix Fig S5).

GxC interaction test (discovery)

We assessed an end-to-end workflow, which employs a two-stage

procedure, where CellRegMap-Association is used first to identify

candidate GxC eQTL prior to assessing interaction effects using Cell-

RegMap (interaction test). Specifically, we considered 643 expressed

genes on chromosomes 20–22 (n = 279, 53 and 270 on each chro-

mosome, respectively) and used the CellRegMap-Association to

identify candidate variants to test for GxC effects. All analyses were

based on a cis eindow of 100 kb window flanking the gene body,

and SNPs with MAF > 5%. As expected, we observed that this

orthogonal filter greatly reduced the number of GxC test compared

with an exhaustive analysis (Appendix Fig S11A). More impor-

tantly, this filter also increased the total number of eQTL with

detected GxC effects, indicating that this filter is helpful to mitigate

the burden of multiple testing (Appendix Fig S11A).

Application to neuronal differentiation
We considered single-cell transcriptomic data from over 200 individ-

uals from (Jerber et al, 2021a; Data ref: Jerber et al, 2021b). We

focused on a single cell type: midbrain dopaminergic neurons (DA),

across three conditions defined in the original publication: day 30,

day 52 untreated, and day 52 rotenone-treated. In total, this consists

of 135,435 cells from 210 donors.

Preprocessing of scRNA-seq count data

Count data were processed following the procedure as outlined in

the primary paper (Jerber et al, 2021a; Data ref: Jerber et al, 2021b),

where counts were normalized using scanpy (Wolf et al, 2018) and

log-transformed (log2(x + 1)). Single-cell counts for a given gene

were quantile-normalized to a Gaussian distribution prior to using

them as input vector (y). In case of very large numbers of cells and

sparse data (e.g., when considering 10X data), it may be appropriate

to consider a pseudo-cell approach (see below) to aggregate data

across small numbers of cells to improve the signal-to-noise ratio.

Pseudo-cell calculation

We obtained pseudo-cells by clustering transcriptionally related

cells in UMAP space using an approach similar to approaches
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described by Baran et al (2019) and DeTomaso et al (2019). Briefly,

for each cell type we calculated the first 50 PCs across all conditions

and donors, using all expressed genes (after QC, n = 32,738). Next,

we applied batch-correction for the experimental batches using Har-

mony (Korsunsky et al, 2019), as implemented in scanpy

(“scanpy.external.harmony integrate”). Harmony-adjusted PCs were

then used to build a k-NN (k = 10) graph based on Euclidean dis-

tances, separately for each condition and donor. Subsequently, cells

were clustered using scanpy’s implementation of the Leiden algo-

rithm ((Traag et al, 2019), as implemented in “scanpy.tl.leiden”) at

a resolution of 3.4.

The pseudo-cell calculation as described above resulted in a total

of 8,479 pseudocells (10–40 pseudocells per donor, 10–100 cells per

pseudocell; Appendix Fig S8).

Clustering of single-cell effect sizes

Next, we set out to cluster context-specific eQTL based on their

allelic effects due to GxC. We considered 212 eQTL which displayed

significant GxC effects (FDR < 5%), identified using CellRegMap

based on the leading 10 MOFA factors as cellular contexts. Next, we

considered the estimated effect size profiles due to GxC, which were

normalized to relative values in the range 0 to 1. We clustered these

normalized profiles using SpatialDE (Svensson et al, 2018), using

the same first 10 MOFA factors as spatial coordinates, and default

parameters. This identified 12 clusters, containing between 2 and 43

genes (Fig 4B).

Cluster enrichment

For each cluster, we considered Pearson’s correlation between the

cluster’s summary profiles (as outputted by SpatialDE) and single-

cell gene expression across all genes (n = 32,738). Next, we selected

all genes with positive correlation larger than 0.4 and used gprofiler

(Raudvere et al, 2019) to identify enriched pathways (considering

Gene Ontology (GO) biological processes, molecular function, cellu-

lar components, pathways from KEGG Reactome and WikiPath-

ways; miRNA targets from miRTarBase and regulatory motif

matches from TRANSFAC; tissue specificity from Human Protein

Atlas; protein complexes from CORUM and human disease pheno-

types from Human Phenotype Ontology). The gprofiler function (“g:

GOSt” as implemented in R) performs over-representation analysis

on input gene list (ordered by correlation level) using a hypergeo-

metric test, corrected for multiple testing. The latter is performed

using a tailor-made method (g:SCS algorithm) which analytically

approximates a threshold t corresponding to the 5% upper quantile

of randomly generated queries of the provided size. All actual P-

values resulting from the query are transformed to corrected P-

values by multiplying these to the ratio of the approximate thresh-

old t and the initial experiment-wide threshold a = 0.05. Finally, we

selected the top 3 significant (adjusted P-values < 0.05) pathways

per cluster (Fig EV4).

Further statistical details and derivations are provided in

Appendix Supplementary Methods.

Data availability

CellRegMap is available under an open-source license at: https://

github.com/limix/CellRegMap/. Code to reproduce the specific

analyses presented here can be accessed under: https://github.com/

annacuomo/CellRegMap_analyses/.

Expanded View for this article is available online.
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