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The distribution and drainage of meltwater at the base
of glaciers sensitively affects fast ice flow. Previous
studies suggest that thin meltwater films between the
overlying ice and a hard-rock bed channelize into
efficient drainage elements by melting the overlying
ice. However, these studies do not account for
the presence of soft deformable sediment observed
underneath many West Antarctic ice streams, and
the inextricable coupling that sediment exhibits with
meltwater drainage. Our work presents an alternate
mechanism for initiating drainage elements such as
canals where meltwater films grow by eroding the
sediment beneath. We conduct a linearized stability
analysis on a meltwater film flowing over an erodible
bed. We solve the Orr–Sommerfeld equation for
the film flow, and we compute bed evolution with
the Exner equation. We identify a regime where
the coupled dynamics of hydrology and sediment
transport drives a morphological instability that
generates spatial heterogeneity at the bed. We show
that this film instability operates at much faster
time scales than the classical thermal instability
proposed by Walder. We discuss the physics of the
instability using the framework of ripple formation on
erodible beds.

1. Introduction
Liquid water is present underneath more than half of the
Antarctic Ice Sheet [1]. The hydrological environments
in which this water is stored and transported are
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diverse, ranging from subglacial lakes to water-saturated wetlands situated underneath fast
flowing ice [2]. Out of these, the drainage systems underneath ice streams, corridors of rapid
ice flow that are tens of kilometres wide and hundreds of kilometres long, are not only the
most spatially extensive but also inextricably coupled with the dynamics of the overlying ice
flow [3–6]. While our understanding of subglacial drainage systems is incomplete, it is becoming
increasingly clear that these drainage systems are both spatially and temporally variable [4,7].

Water flow, however, is not the only dynamic component in the extensive wetlands underneath
the West Antarctic ice streams. Large portions of this area rest on weak and unconsolidated
sediment, commonly referred to as till [8]. Samples collected from the subglacial environment
at Ice Stream B, Siple Coast, have revealed a fine-grained, clay-rich lithology [9] that likely
experiences significant deformation [10–12] and transport [10] due to streaming ice flow.

The insight that sediments play an important role in subglacial hydrology and ice flow is not
new, and several previous models of subglacial hydrology have made progress in that regard.
Early attempts treated the subglacial horizon as an aquifer with porous flow being the primary
means of water drainage [13,14]. While percolation of water into the till is important in altering
the basal resistance that the till layer provides to ice flow [15,16], water transport through the till
is likely very inefficient [17] because of the low permeability of clay-rich till [11,18]. Later models
have replaced the idea of Darcian-type water transport through a porous aquifer by assuming
that most of the water flows in a thin pressurized film between the ice and the till [17,19–21].

Walder [22] identified a problem with large-scale water transport via film flow by pointing
out that meltwater films over hard beds are fundamentally unstable. His work [22] highlights
that a small perturbation in film thickness would lead to higher water flux, which would induce
greater viscous dissipation and preferential melting of the overlying ice until the melting is
balanced by creep closure of the ice. Creyts & Schoof [23] later showed that this instability
is partially suppressed by bed roughness, reinvigorating the idea that films could support
meltwater transport at least up to a certain thickness. They argue that stress localization on
bed protrusions leads to enhanced ice roof closure that counters film expansion, thus entailing
the possibility of finite-sized films. Nonetheless, as the thickness of the film grows, the water
would eventually carve into the ice via melting, thus transforming the film into a more efficient
drainage element such as a Röthlisberger channel [24] or a linked cavity [25]. This insight is
reflected in current subglacial hydrology models for hard beds that generally include both films
and channels [26–30].

In hard-bed settings, efficient drainage systems will inevitably be carved into the ice [25].
The widespread occurrence of till under ice sheets [9,31] suggests the possibility of drainage
elements incised into the sediment layer, such as canals [32–36]. Walder & Fowler [32] show that
dynamic till, in particular the processes of till erosion and deformation, is key to the sustenance
of canals. Ng [33] builds on the work by Walder and Fowler by describing the meltwater flux
and sediment transport dynamics over the longitudinal span of a canal. Given the importance
of the coupled processes of meltwater and till in the sustenance of canals, it is likely that these
processes also play key roles in the formation of such canals. Departing from the classical idea of
Walder’s instability [22] that films grow into channels by melting the ice above, we hypothesize
that meltwater films on soft beds generate a spatially heterogeneous drainage system by eroding
the sediment beneath.

Kyrke-Smith & Fowler [21] have previously studied the evolution of meltwater films on soft
beds. They emphasize the role of dynamic till by explicitly including erosion and deformation
into their model. However, they retain the assumption of static bed roughness from the hard-bed
setting to stabilize thin films [23]. Our work provides an alternative framework for the stability
of meltwater films that describes the formation of bed roughness as a dynamic process resulting
from the coupling between film hydrology and sediment transport.

We model the film as flow over an erodible bed and study morphological instabilities
of the system, similar to granular ripple formation (e.g. [37–40]). We compute bed-form
evolution using the classical Exner equation that represents sediment mass conservation. We
use the three-dimensional Navier–Stokes equations to compute flow velocities within the film.
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A depth-averaged velocity approach, while commonly used for meltwater films [25], is not
suitable for morphological instabilities because of the lack of resolution of near-bed flow
dynamics [41,42].

Walder’s instability of film expansion via dissipation-induced melting of the ice is known to
drive channel initiation [19,22]. To identify potential instabilities that may occur prior to Walder’s
instability, we assume non-turbulent flow within the meltwater film. This assumption allows
us to study the film within a regime where dissipation and associated ice melt is mitigated. In
this regime, and over length scales comparable to film thickness, the overlying ice is effectively
decoupled from the film hydrology. Our set-up then allows us to explore instabilities associated
with the sediment bed rather than the ice.

We conduct a linearized stability analysis of the system. We find that water transport in a thin
film destabilizes the bed. The underlying physics of this bed instability is similar to that of ripple
formation [37,43]. Unlike ripples, however, we show that the structure generated by the instability
has a component transverse to the main flow. As a result, a spatially heterogeneous drainage
element emerges from the bed. While we do not study its temporal evolution explicitly, the
spatially heterogeneous drainage could potentially evolve into a well-defined drainage element
such as a canal or a system of linked cavities.

Our study also identifies a hydrodynamic mechanism that suppresses short-wavelength
structures at the bed. By contrast, prior studies attribute the stability of short-wavelength
structures to diffusive mechanisms within the sediment transport dynamics of the film [40]. While
sediment-based mechanisms may provide additional stability to the system, our work shows that
they are not necessary for the selection of the fastest growing perturbation wavelength.

2. Model
We consider a thin layer of subglacial meltwater, flowing between two initially homogeneous,
infinitely extended layers of ice and till on the top and bottom, respectively, both inclined at an
angle β with respect to the horizontal. The surface of the ice possesses its own slope, α with
respect to its base. We adopt a Cartesian coordinate system (x, y, z). As shown in figure 1, the
x-axis is parallel to the bed and denotes the along-flow direction, while the y- and z-axes span the
cross-flow direction and the depth of the film. We represent the ice–water interface by z = h(x, y, t)
and the till–water interface by z = r(x, y, t).

Our model includes two components: fluid flow, described by mass and momentum
conservation; and sediment transport, which governs the evolution of the till–water interface.
We discuss the thermal and mechanical interactions of ice and water, and revisit the underlying
assumptions in §4. The key thermal interaction between ice and water lies in the energy budget
at the corresponding interface, namely the melting of the ice caused by the heat flux from the
film. We assume a non-turbulent flow regime where the dissipation-induced melting of the ice is
suppressed. Combined with the assumption that sediment transport processes are significantly
faster than ice-related processes, we treat the ice–water interface as a fixed boundary. The key
mechanical interaction between ice and water is the pressure exerted on the film by the weight of
the ice column. The corresponding pressure gradient serves as a driving force for the film flow.

We now present the governing equations of the meltwater film system.

(a) Hydrology
Conservation of mass within the subglacial meltwater film, along with incompressibility, yields

∇ · u = 0, on r< z< h, (2.1)

where u = (u, v, w) is the fluid velocity along the axes (x, y, z), respectively.



4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190259

...........................................................

bed slope
b

a

sediment layer (till)

ice–water interface

till–water interface

z = r

z

ice column
thickness, Z

ice

surface
slope

meltwater film

y

x

z = h

Figure 1. Set-up of the model. The thicknesses of the three layers are not drawn to scale. The ice column is several orders of
magnitude thicker than the meltwater film. (Online version in colour.)

The Navier–Stokes equations express momentum conservation within the meltwater film

∂u
∂t

+ u · ∇u = − 1
ρ

∇p + ν∇2u + g, on r< z< h, (2.2)

where t stands for time, ν is the kinematic viscosity of water at the melting point and ρ is the
density of water, p is the fluid pressure, g = (g sinβ, 0 − g cosβ) is the gravitational force, and g is
the gravitational acceleration on the Earth’s surface.

We assume that the ice–water interface is a fixed boundary and apply the no-slip condition

u = 0, v = 0, w = 0, at z = h. (2.3)

The balance of normal stresses at the ice–water interface is given by

p = pa + (Z0 + Z1(x))ρig cosβ, at z = h, (2.4)

where pa is the atmospheric pressure at the surface of the ice and ρi is the density of ice. The
term Z0 is the leading-order ice thickness measured perpendicular to the bed. At length scales
comparable to film thickness, Z0 is constant, indicating that the ice surface is parallel to the bed.
The term Z1(x) represents change in the ice thickness that occurs at scales comparable to film
thickness. In (2.4), the fluid normal stress at the ice–water interface reduces to the pressure p as
a consequence of (2.1) and (2.3). We approximate the normal stress imposed by the ice on the
film by the weight of the overlying ice column. This approximation follows from the Shallow Ice
assumption, namely that the ice thickness is considerably smaller than the ice sheet length scale.

We assume a no-slip boundary condition at the till–water interface. Since the bed evolves over
time, the vertical velocity satisfies the kinematic boundary condition

u = 0, v= 0, w = ∂r
∂t

, at z = r. (2.5)

The no-slip boundary condition (2.5) is an approximation of a permeable boundary that separates
the film and the wet sediment. This approximation is likely not strictly true in nature, but
reasonable if the fluid speed in the till is significantly slower than in the film. The no-slip condition
is commonly used for stability analyses of films over erodible beds (e.g. [41,43,44]).
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(b) Sediment bed-load transport
We model the evolution of the till–water interface z = r(x, y, t) through the Exner equation

∂r
∂t

+ 1
1 − φm

∇ · q = 0, (2.6)

where φm is the mean sediment porosity and q = (q1, q2) is the sediment flux vector. The Exner
equation is a mass conservation statement for the sediment layer, stating that the till–water
interface evolves in time according to the divergence of the sediment flux.

To close the model, we use a classical constitutive relation that expresses the sediment flux q
as a function of the shear stress applied by the water film onto the bed [45–47]

q = τ̂F
( |τ|

(ρs − ρ)gD

)
D

√
ρs − ρ

ρ
gD, (2.7)

where D is the sediment grain diameter, ρs is the sediment density and F is a non-dimensional
function to be defined later. The bed stress vector, τ = (τ1, τ2), and its unit vector, τ̂, are given by

τi = ρνtT
i

(
∇u + ∇uT

)
n, τ̂ = τ

|τ| , at z = r. (2.8)

The vectors t1 and t2 are the unit tangent vectors to the bed in the x- and y-directions, respectively,
and n is the unit normal to the bed z = r (see the electronic supplementary material for more
details).

There is considerable disagreement about the functional form relating the sediment flux to the
bed shear stress (e.g. [48–50]). As a result, there are a variety of empirically derived power-law
formulae in the literature, each calibrated to its own setting (e.g. [46,47]). This diversity of forms
highlights that the physics of bed-load transport is not yet fully understood.

Observations of bed-load transport highlight that there is a threshold value of bed stress
below which there is purportedly no grain motion at the bed, as discussed in the classical work
by Shields [48] and others (e.g. [51–53]). Houssais et al. [53] suggest that this threshold value,
known as the critical Shields stress, marks a phase transition for the granular material. Below
the threshold the bed stress is balanced by extremely slow creep deep in the sediment, while
exceeding the threshold leads to the formation of an overlying bed-load layer undergoing dense
granular flow at a time scale comparable to that of near-bed fluid flow. Experimental studies
[52–54] characterize this phase transition as a toggle point, where bed-load transport is deemed
active only when the fluid bed stress exceeds the threshold stress. Our model uses the threshold
in the same manner and we assume that the film bed stress always exceeds this threshold. This
assumption is a key prerequisite for the linearized stability analysis conducted in §5.

For the purposes of this study, we choose the classic Meyer-Peter & Müller [45] functional

F
( |τ|

[τb]

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A
( |τ|

[τb]
− τc

∗
)m |τ|

[τb]
≥ τc

∗

0
|τ|

[τb]
< τc

∗
, A = 8, m = 1.5, (2.9)

where [τb] = (ρs − ρ)gD is the associated scale for bed stress, and τc
∗ is the non-dimensional

critical Shields stress. Experiments for non-turbulent flow over erodible beds suggest that τc
∗ =

0.12 [52,54]. We do not include sediment suspension in our model since the lack of turbulence
precludes the possibility of sediment saltation (e.g. [52,55,56]).

We choose a specific functional for the purposes of our analysis, but our approach can
be repeated for a broad range of functionals satisfying (2.7). The linearized stability analysis
conducted in §5 demonstrates that the exact choice of functional does not alter the overall stability
of the meltwater film. Insensitivity to the functional broadens the applicability of our model to a
wide variety of glaciological settings.
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(c) Steady state
We solve the system of equations (2.1)–(2.6) for the steady state. We assume that the steady-state
solution is uniform in the x- and y-directions.

The ice topography imposes a driving force on the fluid, as described in (2.4). The pressure
gradient within the film arises from the change in ice thickness, (∂Z1/∂x) that occurs over a length
comparable to meltwater film thickness. We parametrize this term as

∂Z1

∂x
= − tanα, (2.10)

where α represents the slope of the ice surface with respect to the bed. We combine both the
driving forces, gravity (2.2) and ice overburden (2.4), into a single parameter

Π = σi tanα cosβ + sinβ, where σi = ρi

ρ
. (2.11)

The steady-state solution below describes a Poiseuille flow profile with uniform bed-load
transport. We denote steady-state variables by an overlying bar. We define H as half the film
thickness at steady state. The constant of half allows us to avoid re-scaling in other equations

h̄(x, y) = 2H, r̄(x, y) = 0, (2.12)

ū(x, y, z) = H2gΠ

2ν
z
H

(
2 − z

H

)
, v̄= 0, w̄ = 0, on r̄ ≤ z ≤ h̄, (2.13)

p̄(x, y, z) = pa + ρigZ0 cosβ − ρgx tanα cosβ, on r̄ ≤ z ≤ h̄, (2.14)

τ̄1(x, y) = ρgHΠ, τ̄2(x, y) = 0 (2.15)

and q̄1(x, y) = F
( |τ̄|

(ρs − ρ)gD

)
D

√
ρs − ρ

ρ
gD, q̄2(x, y) = 0. (2.16)

3. Non-dimensionalization and simplification
We list the main variables and define their scales (denoted by square brackets) in table 1.

Denoting the non-dimensionalized variables with stars, the non-dimensional forms of
equations (2.1)–(2.9) are given by

∇ · u∗ = 0, on r∗ < z∗ < 2, (3.1)

γ
∂u∗

∂t∗
= −u∗ · ∇u∗ + 1

Re

[
∇2u∗ − 2

Π
∇p∗ + 2

Π
g∗

]
, on r∗ < z∗ < 2, (3.2)

∂r∗

∂t∗
= −∇ · q∗, q∗ = κF(S|τ∗|)τ̂, F(S|τ∗|) = A(S|τ∗| − τc

∗)m, (3.3)

u∗ = 0, p∗ = pa

ρgH
+ σi

Z0

H
cosβ − σix

∗ cosβ tanα, at z∗ = 2 (3.4)

and u∗ = 0, v∗ = 0, w∗ = Lγ
∂r∗

∂t∗
, at z∗ = Lr∗, (3.5)

where g∗ = (sinβ, 0, −cosβ), Re is the Reynolds number, L is the grain-to-film size ratio, σ
is the grain-to-fluid density ratio, γ is the hydrology-to-sediment transport time-scale ratio,
S is the steady-state non-dimensional bed stress, also known as Shields number, and κ is a
non-dimensional constant for the bed-load functional

L = D
H

, Re = [u]H
ν

, σ = ρs

ρ
, γ = H

[u][t]
, S = [τ]

(ρs − ρ)gD
, κ = D

√
(σ − 1)gD

[q]
. (3.6)

The main dimensional parameters of the system, H, D, β, α, Π, ρ, ρs, ρi, φm, g, ν and τc
∗, reduce

to the following independent dimensionless quantities: Re, L, β, α, σ , σi, φm and τc
∗. We do not

include the terms pa and Z0 as parameters since they only contribute to the ambient pressure in
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Table 1. Characteristic scales of system variables.

variable scale description

[x], [y], [z] H The coordinate system scales with the film thickness.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[h] H The ice–water interface, which is considered a fixed boundary, is at distance 2H from
the till–water boundary.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[r] D The evolution of the till–water interface is governed by an active bed-load layer that is
a few grain diameters in thickness [53,56].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[u]
H2gΠ
2ν

The velocity scale is derived from (2.13).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[τ ] ρgHΠ The bed stress scale is derived from (2.8).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[p] ρgH This scale is consistent with the hydrostatic pressure in (2.14).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[q]
ρs

ρ
D
D
H
[u] Experiments by Houssais et al. [53] suggest that q scales with grain density (∼σ ),

bed-load layer thickness (∼D) and near-bed fluid velocity
(

∼ D
H
[u]

)
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[t] (1 − φm)
DH
[q]

This characteristic time scale is defined according to the Exner equation (2.6) and
describes the rate of sediment transport.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3.4) and do not affect the dynamics of the system. The dependent dimensionless quantities are
given by

γ = Lσ
1 − φm

, S = Π

(σ − 1)L
, κ =

√
2(σ − 1)

σ
√

ReLΠ
, Π = σi tanα cosβ + sinβ. (3.7)

Among the eight independent non-dimensional quantities, the latter four, σ , σi, φm and τc
∗,

tend to vary by less than an order of magnitude over the range of subglacial settings. We represent
them with constant values as given in table 2. We also assume that the bed slope and surface slope
are roughly comparable, i.e. β ∼ α [57,58]. This allows us to simplify Π in (2.11)

Π ≈ 2 sinα. (3.8)

In summary, the system is determined by three non-dimensional parameters Re, L and α.
We assume that sediment grains are very small compared with the film size, i.e. L 	 1.

Equation (3.7) then implies γ 	 1 and reduces (3.5) to homogenous boundary conditions

w∗ = Lγ
∂r∗

∂t∗
= O(L2) ∼ 0, at z = r. (3.9)

The electronic supplementary material provides the mathematical details underlying (3.9).
The assumption that the system is always above the threshold stress value in (2.7), is given by

S> 0.12. (3.10)

4. Applicability of the model
Since glacial settings are diverse, it is valuable to clarify where the assumptions and scaling
choices within our model are applicable. In this section, we identify regions of the parameter
space that lie within the scope of our model.

One of the key requirements of our model is maintaining a low-to-intermediate Reynolds
number for the film flow (Re< 104). Since the Reynolds number, defined in (3.6), is governed
by the film thickness scale H and the surface slope α, due to (3.8), we plot contours of Re against
these parameters in figure 2a. The range of surface slopes aims to capture both the polar setting,
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Figure 2. (a) Contour plot of Reynolds Number Re for a given film size H and surface slope α. (b) Contour plot of the non-
dimensional bed stress Shields Number S for a given grain-to-film size ratio L and surface slope α. The model is inapplicable
within the shaded regions. (Online version in colour.)

Table 2. Fundamental parameters of the model, along with their estimates and ranges.

parameter estimate/range description

H 10−4 m≤ H ≤ 10−2 m Film thickness (divided by 2). Values based on observations [59] and
drainage theory [23].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D 10−6 m≤ D≤ 10−4 m Grain diameter. Core measurements [31] reveal a bi-modal clay
(D∼ 1μm) and sand distribution (D∼ 100μm).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β 10−4 ≤ β ≤ 0.1 Bed slope angle. Values from [57]. The large range allows our model to
consider both the polar and alpine settings.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g 9.8 ms−2 Gravitational acceleration near the Earth’s surface.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ν 1.787 × 10−6 m2s Kinematic viscosity of water at 0◦C.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ 1000 kgm−3 Density of water at 0◦C.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρs 2600 kgm−3 Density of sediment grains, assuming clay-like material.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρi 917 kgm−3 Density of ice.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φm 0.4 Mean porosity of subglacial sediment [9].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τc
∗ 0.12 Threshold Shields stress. Empirical value [52–54].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 2.6 Grain-to-fluid density ratio.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L 10−4 ≤ L≤ 10−2 Grain-to-film size ratio. Our model assumes L	 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Re Re< 104 Reynolds number. We assume a non-turbulent regime.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α 10−4 ≤ α ≤ 0.1 Ice surface slope angle. Values from [57].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

especially the Siple Coast, West Antarctica (e.g. α∼ 10−3 [57]) as well as the alpine setting which
is characterized by steeper slopes. The red-shaded region highlights Re> 104, which we consider
as the turbulent regime. Our model is only applicable to non-turbulent films, which are of the
order of centimetres in thickness or less, as per figure 2a. Observational evidence records films
with thicknesses of 1 μm to 0.1 mm [60,61], which is on the lower end of our parameter space.
Theoretical studies generally assume films that are millimetres thick [22,23].

Active sediment transport at the bed of the film is a key prerequisite for potential
channelization. This requirement is described by the bed stress exceeding the critical Shields stress
needed to erode sediment grains (3.10). Within our model, the non-dimensional bed stress S is a
function of surface slope α and grain-to-film size ratio L, described in (3.6). Figure 2b shows the
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contour plots of S over the ranges of α and L. The region where the bed stress does not exceed the
critical Shields threshold is represented by the red-shaded triangle.

The parameter L also governs feedbacks between the bed and the vertical flow velocity as
represented in the kinematic boundary condition (2.5). The assumption L 	 1 enables us to ignore
kinematic boundary effects in (3.9). The yellow-shaded rectangle in figure 2b highlights the region
of L> 10−2, which is beyond the scope of our model.

(a) Competition between ice melt and sediment transport
Since our model focuses on the mechanical coupling of water and sediment while excluding
thermal processes associated with the ice, its applicability is restricted to a regime where sediment
transport is significantly faster than film-induced melting of the ice. We conduct a rudimentary
comparison of time scales to identify the parameter space that characterizes this regime. We
introduce a simple thermal model for melting of the ice. Note that the presence of a subglacial
meltwater film indicates a temperate basal setting, i.e. the base of the ice is at melting point. The
energy balance at the ice–water interface is described by the Stefan equation

LHρi
∂h
∂t

= Q+ − Q−, (4.1)

where LH = 3.36 · 105 J kg−1 is the latent heat of fusion of water, Q+ is the heat flux into the ice
from the water along the direction normal to the interface, and Q− is the heat outflux.

The potential sources of heat influx Q+ for subglacial settings are frictional heating of ice
sliding over the bed, film thermal dissipation and geothermal heat flux [58]. Frictional heating
is suppressed in the presence of a meltwater film which lubricates the ice-bed contact. Thermal
dissipation within the film is negligible in non-turbulent settings. The main source of heat flux
in our setting is geothermal, which is transported through the film to the ice–water interface. We
assume that the heat influx Q+ scales with the geothermal heat flux G, i.e. Q+ ∼ G.

The heat outflux at the ice–water interface is a result of conduction through the ice. With
the goal of deriving a conservative upper bound on the ice melt, we assume that the outflux is
negligible compared with the influx, i.e. Q− = 0. We derive the ice melt time scale [ti] using (4.1)

LHρi
D
[ti]

= G. (4.2)

We scale the evolution of the ice–water interface h by the sediment grain size D to make an
appropriate comparison with the erosion-based evolution of the till–water interface.

The Exner equation (2.6) and Stefan equation (4.1) highlight two processes for the evolution
of a meltwater film. We compare the time scales of these two processes, namely ice melt and
sediment transport, to identify which process is faster at carving out a channel. We represent the
ratio of the time scales of these two processes, R = ([t]/[ti]), defined in (4.2) and table 1

R = ν(1 − φm)G
σD2LHρig sinα

. (4.3)

We calculate R over our parameter space. Observational estimates for geothermal heat flux in
the Siple coast region show a range of 0.04 Wm−2 ≤ G ≤ 0.13 Wm−2 [62]. Since the variation in G
is less than an order of magnitude, we choose a representative value, G = 0.13 Wm−2. This higher
end value provides a conservative upper bound for the rate of ice melt. We plot R as a function
of surface slope α and grain diameter D in figure 3. The figure indicates sediment transport is
several orders of magnitude faster than ice melt for most of the parameter space. The red-shaded
triangle denotes the region where R is close to 1, indicating that the model is inapplicable within
the region. Overall, figure 3 suggests that decoupling the dynamics of the ice–water interface from
the meltwater film for the purposes of stability analysis is a suitable assumption for a large variety
of glaciological settings.
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Figure 3. Contour plots of the ratio of time scales, defined in (4.3). Geothermal heat flux G = 0.13 Wm−2. The red-shaded
region indicates R> 0.01 where the two time scales are comparable. (Online version in colour.)

5. Linearized stability analysis
To better understand the stability of a subglacial meltwater film flowing over a sediment bed, we
perform a linearized stability analysis on the model presented in §3.

We consider small amplitude perturbations about the steady state (2.13) and expand
dependent non-dimensional variables as

f (x, y, z, t) = f̄ (z) + εf̃ (x, y, z, t), ε	 1, (5.1)

where barred quantities represent steady-state variables, and for simplicity we have omitted stars
denoting non-dimensional variables. In the light of the domain being infinitely extended in the
x- and y-directions, we represent the perturbation as elements of the Fourier basis

f̃ (x, y, z, t) = f̂ (z, t) exp
(
ik1x + ik2y

)
, (5.2)

where k1 and k2 are the wavenumbers of the perturbations in the x- and y-directions, respectively.
Given the linearity of the system, we also assume separation of variables in z and t

f̂ (z, t) = f ′(z) exp (ωt), ω=ωr + iωi, (5.3)

where ωr and ωi are the real and imaginary parts of ω, respectively. Note that q and r do not vary
along the depth, hence q′ and r′ are constants. The variable r′ represents the amplitude and phase
of the bed-form perturbation. Given the linearity of the system, the variables u′, v′, w′ and p′ scale
linearly with r′ while ω is independent of r′. When performing computations, we set r′ = 1.

The sign of ωr is the key indicator of stability within the meltwater film. If ωr > 0, then
the perturbation in the system described by wavenumbers (k1, k2) undergoes exponential
amplification with time, indicating unstable growth of the bed-form. The goal of the linearized
stability analysis is to compute ωr given model parameters and perturbation wavenumbers k1, k2.
If there exists some pair (k1, k2) for which ωr > 0, then the system is deemed unstable.

We introduce small-amplitude perturbations described in (5.1) and linearize the equations
(3.1)–(3.5) around the steady state. Denoting the derivative d

dz by D, we obtain the equations

0 = ik1u′ + ik2v
′ + Dw′, on 0< z< 2, (5.4)

γωu′ = −ik1ūu′ − wDū − 2ik1

ΠRe
p′ + 1

Re

[
−k2

1 − k2
2 + D2

]
u′, on 0< z< 2, (5.5)

γωv′ = −ik1ūv′ − 2ik2

ΠRe
p′ + 1

Re

[
−k2

1 − k2
2 + D2

]
v′, on 0< z< 2, (5.6)
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γωw′ = −ik1ūw′ − 2
ΠRe

Dp′ + 1
Re

[
−k2

1 − k2
2 + D2

]
w′, on 0< z< 2, (5.7)

0 = u′, 0 = v′ 0 = w′, 0 = p′, at z = 2, (5.8)

0 = u′ + Lr′Dū, 0 = v′, 0 = w′, at z = 0 (5.9)

and ωr′ = −ik1SκdF̄Du′ − ik2κF̄Dv′, at z = 0, (5.10)

where F̄ and dF̄ are steady-state sediment transport values derived via (3.3) for τ̄ = (1, 0),

F̄ = F(S|τ̄|) = A(S − 0.12)m, dF̄ = dF
d|τ| (S|τ̄|) = Am(S − 0.12)m−1, A = 8, m = 1.5. (5.11)

We derive the linearization of the Exner equation (5.10) in the electronic supplementary
material.

Since the bed-load transport functional (2.9) is non-differentiable at the threshold for initiating
grain erosion, condition (3.10) is mathematically necessary to ensure that we can linearize the
system of equations for the perturbations around the steady state.

In (5.9), the no-slip boundary conditions (3.5) at the moving boundary z = r have been
transformed by a Taylor expansion in ε into equivalent boundary conditions imposed at the
domain boundary z = 0. The equivalence allows us to solve the system of equations on a fixed
domain while obtaining the solution to the original problem with an evolving till–water interface.

(a) Reformulation in terms of streamfunction
The perturbation introduced into the steady state is two-dimensional in nature, described
by the wavenumbers k1 and k2. To simplify our analysis, we reduce the perturbation to a
single dimension. The Squire transformation [63–65] is a classical method that projects three-
dimensional fluid flow onto a plane while preserving its perturbation characteristics. This plane,
known as the Squire plane, is defined by the z-axis, and the vector (k1, k2) in the horizontal plane.
We define k as the Squire perturbation wavenumber, θ as the Squire angle, and U as the horizontal
velocity in the (k1, k2) direction, such that

k1 = k sin θ , k2 = k cos θ , kU ′ = k1u′ + k2v
′. (5.12)

We take appropriate linear combinations of equations (5.4)–(5.9) to replace u′ and v′ with U ′,

0 = ikU ′ + Dw′, on 0< z< 2, (5.13)

γωU ′ = −ik1ūU ′ − ik1Dūw′ − 2ik
ΠRe

p′ + 1
Re

[
−k2 + D2

]
U ′, on 0< z< 2, (5.14)

γωw′ = −ik1ūw′ − 2
ΠRe

Dp′ + 1
Re

[
−k2 + D2

]
w′, on 0< z< 2, (5.15)

U ′ = 0, w′ = 0, p′ = 0, at z = 2 (5.16)

and kU ′ = −k1LDūr′, w′ = 0, at z = 0. (5.17)

For θ < (π/2), which is relevant in the case of transverse bed-form structures such as canals,
the Exner equation (5.10) does not always map perfectly onto the U ′ and w′ notation. We are left
with a residual term involving Du′,

ωr′ = −iκF̄DU ′ − iκk1(SdF̄ − F̄)Du′ at z = 0. (5.18)

In physical terms, the bed evolution in the Squire plane has two contributors: the first term on
the right-hand side of (5.18) represents the bed evolution due to the flow field within the Squire
plane. The second term represents the bed evolution due to the out-of-plane flow field, and hence
it cannot be represented in terms of U ′ and w′. The out-of-plane contribution is a consequence of
the nonlinearity of the sediment transport functional (2.9).
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We derive an approximation for the residual term in (5.18) by assuming

θ 	 1, (5.19)

i.e. k1 	 k2, which implies that the along-flow perturbations have very long wavelengths
compared with the across-flow perturbations. As derived in appendix A, we write the Exner
equation (5.10) in terms of U ′ and an additional term

ωr′ = −ikκF̄DU ′ + C(k, θ ) + O(θ3), at z = 0, (5.20)

where C(k, θ ) is the quadratic correction factor for (5.18)

C(k, θ ) = −ikθκVF̄(Du(0)(0) + θDu(1)(0)). (5.21)

The variable V represents

V = S
dF̄

F̄
− 1, (5.22)

and is non-negative, provided that the condition m ≥ 1 is satisfied in (2.9).
Appendix A highlights that the choice of θ = 0 introduces a singular perturbation into

(5.4)–(5.9), rendering the stability analysis inconclusive. Therefore, we perform the analysis by
choosing a small non-zero value of θ satisfying (5.19). The quadratic expansion given in (5.21)
is necessary to ensure that we solve the system of equations with consistent accuracy. Appendix
A details the computations of Du(0)(0) and Du(1)(0). From this point onward, all variables are
understood to be accurate up to second order in θ .

We introduce a streamfunction ψ(z) so that mass balance (5.13) holds implicitly

U ′ = Dψ and w′ = −ikψ . (5.23)

Streamfunction notation allows us to eliminate the pressure term and reformulate our equations
into the Orr–Sommerfeld (OS) equation [63,64,66],

γω
[
D2 − k2

]
ψ = −ikθ

[
ūD2ψ − ψD2ū − k2ūψ

]
+ 1

Re

[
D2 − k2

]2
ψ , on 0< z< 2. (5.24)

The boundary equations arise from (5.16), (5.17) and (5.20),

Dψ = 0, ψ = 0, at z = 2, (5.25)

Dψ = − sin(θ )LDūr′, ψ = 0, at z = 0 (5.26)

and ωr′ = −ikκF̄D2ψ + C(k, θ ) at z = 0. (5.27)

Given k and θ 	 1, and setting a reference perturbation amplitude r′ = 1 for the bed-form, we
compute ωr by solving (5.24)–(5.27) for the unknowns ψ and ω.

(b) Numerics
We reformulate the system of equations (5.24)–(5.27) as an eigenvalue problem and solve it
numerically to obtain the eigenvalue–eigenvector pairs ω and (ψ , r′). To discretize the system
of equations, we use a spectral Galerkin method originally proposed by Shen [67] and adapted
for the current problem from [68,69]. We express the streamfunction as a linear combination of
doubly integrated Legendre polynomials that vanish at the boundaries, plus two lower-order
polynomials that incorporate the till–water boundary conditions. We present the details of the
discretization in the electronic supplementary material.

The key benefit of Spectral Galerkin methods is that numerical accuracy does not depend on
spatial discretization, but on the number of spectral elements. This method is particularly well
suited to our physical system where spatial resolution of the near-bed dynamics, especially the
computation of the derivatives D2ψ in (5.27), is crucial for determining bed stability. Spectral
Galerkin methods are known to be highly accurate for solving the OS equation with homogenous
boundary conditions [70], with the key advantage of not producing spurious eigenvalues.
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6. Results
We study the stability properties of the meltwater film. We describe the system by the
independent non-dimensional parameters Re, L, α, the perturbation angle θ and perturbation
wavenumber k. We solve equations (5.24)–(5.27) to obtain the eigenvalues, ω, and corresponding
eigenvectors (ψ , r′), where ψ(z) is the perturbed streamfunction, and r′ characterizes the
amplitude of the bed-form perturbation. The eigenvalues are complex, i.e. ω=ωr + iωi, with the
sign of ωr determining growth (ωr > 0) or decay (ωr < 0) of the perturbations in time.

The primary motivation for our analysis here is to understand the physical processes leading
to the initiation of efficient drainage in the along-flow direction such as till-incised canals. We
hence consider perturbations that are close to perpendicular to the main flow direction, θ 	 1,
and evaluate which perturbations grow the fastest.

(a) System instability
For demonstration purposes, we consider a meltwater film with the following values for the
independent non-dimensional parameters: Reynolds number Re = 20, grain-to-film size ratio
L = 10−3 and surface slope α = 10−3. This system corresponds to film thickness 2H ≈ 4 mm and
grain diameter D ≈ 2 μm (clay-like). We set θ = 0.01 to consider perturbations that are near-
perpendicular to the main flow direction. We discretize the system with the number of spectral
elements N = 300 and plot the spectra of eigenvalues in figure 4a,b for wavenumbers k = 1 and
k = 20, respectively.

Figure 4 highlights that the eigenvalue with the largest real part stands out from the cluster
of the other eigenvalues of the system. The distinctness of this particular eigenvalue suggests that
the corresponding solution (mode) represents a set of physical processes that are different from
the other modes of the system.

To better understand the underlying processes, we plot the eigenfunctions ψ(z) corresponding
to the respective eigenvalues ω in figure 5. The first eigenfunction, corresponding to the
eigenvalue with the largest real part, has a structure localized in the region close to the bed
(z = 0), which is indicative of near-bed processes. This particular eigenpair (ψ ,ω) corresponds
to the mode dominated by bed evolution processes. All the other eigenfunctions plotted in
figure 5c,d are characterized by symmetric profiles spanning the entire domain. They represent
hydrodynamic responses to the perturbation which arise even in the absence of a dynamic bed
[66]. From this point onward, we denote the eigenpair (ψ ,ω) with the near-bed localized structure
as the sediment transport eigenpair.

Figure 6 shows the eigenspectra for a range of wavenumbers 10−3 ≤ k ≤ 103. For each
wavenumber k on the x-axis, we plot on the y-axis the top 20 eigenvalues with the largest real
parts. Most of the eigenvalues in the spectra lie in the upper half of figure 6a and have negative
real parts. For these eigenvalues, we compute the corresponding eigenfunctions and confirm that
they have profiles similar to those in figure 5c,d, which indicates that they are hydrodynamic
modes. The negative real parts for the hydrodynamic eigenvalues show that, under the given
parameter regime, there is no turbulence in the film [66].

The eigenvalue with the largest real part stands out for each value of k. Its eigenfunction profile
confirms that it is the sediment transport eigenvalue. Figure 6a further indicates that for small k,
the sediment transport eigenvalue satisfies ωr > 0, indicating a morphological instability.

This instability is governed by the bed-load transport patterns that arise from the near-bed
flow profile of the film. To study the processes that shape the near-bed flow, we distinguish three
sub-processes within the hydrodynamics of the system: acceleration, advection and diffusion

γ

acceleration︷ ︸︸ ︷
ω

[
D2 − k2

]
ψ =

advection︷ ︸︸ ︷
−ik1

[
ūD2 − D2ū − k2ū

]
ψ + 1

Re

diffusion︷ ︸︸ ︷[
D2 − k2

]2
ψ . (6.1)
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Our model resolves the above-mentioned hydrodynamic sub-processes within the Squire
plane only. For near-transverse perturbations (θ 	 1), the instability is not only affected by the
processes within the Squire plane but also the flow-field outside the plane. More specifically,
the Exner equation (5.27) includes the correction term C(k, θ ), which represents the out-of-plane
contribution to the instability.

In the upcoming subsections, we investigate how the three hydrodynamic sub-processes
couple with bed-load transport to affect the stability of the system at different wavenumbers k.
We also isolate and highlight the influence of the out-of-plane dynamics in these investigations.

(b) Viscous diffusion causes bed-formmigration
We first study a diffusion-only system. To suppress the advection and acceleration terms, we
consider the regime Re 	 1. We numerically solve the system of equations (5.24)–(5.27), and we
isolate the sediment transport eigenvalue ω and the corresponding streamfunction ψ . Figure 7
shows the velocity and shear stress perturbations for the sediment transport eigenpair (ω,ψ).
Panels (a,c) consider the case k = 1 and show the Squire velocity vector field (U , w), as well as the
colour plots of U and the shear stress

τ = D2ψ . (6.2)

Panels (b,d) represent the case of perturbations with short wavelengths (k = 10).
The horizontal velocities at the till–water interface are generated by the perturbations in

the bed, as seen in (5.26). The velocities then propagate toward the ice as a result of viscous
diffusion, and their corresponding gradients create the stress field. The near-bed vertical velocities
and associated circulation cells are generated by mass conservation over the horizontal velocity
gradients at the boundary.

Figure 7 shows that bed-stress and bed-form are in phase, in which case (5.27) indicates that
the real part of the sediment transport eigenvalue is zero. Since the system perturbations have
the form exp(k1x + k2y + ωt), the equation ωr = 0 implies that the bed-form neither amplifies nor
decays, but simply migrates along the bed. We conclude that diffusion by itself does not affect the
stability of the system. In other words, a diffusion-only system is neutrally stable.

We develop a reduced model to better understand the physics in the diffusion-only case that
leads to ωr = 0. Figure 7b suggests the formation of a boundary layer for the short wavelength
regime (k � 1). We set perturbation amplitude r′ = 1. We re-scale the variables

z� = kz, ψ� = kψ
L sin θ

, ω� = ω

k2F̄κL sin θ
, C�(k, θ ) = C(k, θ )

k2F̄κL sin θ
. (6.3)

The re-scaled OS equation (5.24) takes the form

a1ω(D2 − 1)ψ� = −ia2

[(
2z� − k−1z�2

)
(D2 − 1) + 2k−1

]
ψ� + (D2 − 1)2ψ�, (6.4)

where a1 = F̄LγReκ sin θ , a2 = Rek−2 sin θ . (6.5)

The limits a1 → 0 and a2 → 0 suppress the acceleration and advection terms. We may interpret this
regime as a highly viscous flow, Re → 0. We perform an asymptotic expansion of the variables to
study the short wavelength regime

z� = z(0) + O
(

1
k

)
, ψ� =ψ (0) + O

(
1
k

)
, ω� =ω(0) + O

(
1
k

)
and C� = −2iV + O

(
1
k

)
,

(6.6)
where the asymptotic behaviour of C is provided in appendix A.

We reduce equations (6.4), (5.26), (5.25) and (5.27) to leading order as k → ∞,

0 = (D2 − 1)2ψ (0), on 0< z(0) <∞, (6.7)

Dψ (0) = −2, ψ (0) = 0, at z(0) = 0, (6.8)
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Dψ (0) → 0, ψ (0) → 0, as z(0) → ∞ (6.9)

and ω(0) = −iD2ψ (0) − 2iV at z(0) = 0. (6.10)

The leading-order solution of the reduced boundary layer model is given by

ψ (0) = −2z(0) exp(−z(0)) and ω(0) = −4i − 2iV, (6.11)

where the term −4i arises as a result of the coupling between diffusion and sediment transport
in the Squire plane. Since it is pure imaginary, the above analysis supports the hypothesis that
diffusion in the Squire plane is neutrally stable in the short wavelength regime, i.e. diffusion
does not affect the stability of the system. The second term in (6.11), −2iV, is the out-of-plane
contribution to the stability. It is also pure imaginary, suggesting that the out-of-plane flow field
does not affect the stability of the system at short wavelengths either.

In the long wavelength regime (k 	 1), we consider the following re-scaled variables:

ψ� = ψ

L sin θ
, ω� = ω

F̄Lkκ sin θ
, C�(k, θ ) = C(k, θ )

kF̄κL sin θ
, (6.12)

to obtain the re-scaled OS equation

b1kω�(D2 − k2)ψ� = −ib2k
[(

2z − z2
)

(D2 − k2) + 2
]
ψ� + (D2 − 1)2ψ�, (6.13)

where b1 = F̄LγReκ sin θ , b2 = Re sin θ . (6.14)

The advection and acceleration terms automatically vanish as k → 0. We consider the
asymptotic expansion of the system at k = 0

z = z(0) + O(k), ψ� =ψ (0) + O(k), ω� =ω(0) + O(k), C� = −iV + O(k). (6.15)
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To leading order, equations (5.24)–(5.27) reduce to

0 = D4ψ (0), on 0< z< 2, (6.16)

Dψ (0) = −2, ψ (0) = 0, at z(0) = 0, (6.17)

Dψ (0) = 0, ψ (0) = 0, as z(0) = 2 (6.18)

and ω(0) = −iD2ψ (0) − iV at z(0) = 0, (6.19)

as k → 0. Omitting the asymptotic notation, the leading-order solution is given by

ψ = −2z + 2z2 − 1
2

z3, ω= −4i − iV, (6.20)

and shows that ωr = 0 as k → 0. As in the short-wavelength case, both the terms constituting ω
in (6.20), −4i, corresponding to the contribution of the viscous diffusion within the plane, and
the term −iV, corresponding to the effect of the out-of-plane flow field, have zero real parts. The
solution above implies that the diffusion-only system is neutrally stable.

(c) Advection destabilizes the system
We study the advection–diffusion system and identify the effect of advection on the film
instability. The acceleration term is suppressed under the condition γ 	 1. Equation (3.7) suggests
that this condition is achieved with L 	 1. Figure 8 plots the velocity and shear stress for
the advection–diffusion regime. The computed velocity field exhibits a right-ward skew. This
skew causes a left-ward phase shift of the shear stress, especially the bed stress, resulting in a
phase advance over the bed-form. The bed stress advancing ahead of the bed-form implies that
Im(τ)> 0, which yields ωr > 0 from (5.27) and (6.2), suggesting that advection contributes to the
instability of the system.

We use a reduced model to test our hypothesis that the advection–diffusion force balance leads
to ωr > 0 in the short wavelength regime. We take the limit a1 → 0 of the re-scaled OS equation
(6.4) to suppress the acceleration term. The short wavelength asymptotic expansion (6.6) yields

2ia2z(0)(D2 − 1)ψ (0) = (D2 − 1)2ψ (0), on 0< z(0) <∞, (6.21)

while the boundary equations are given by (6.8)–(6.10). The leading-order solution is given by

ψ (0) = 2
∫z

0
∫∞
v e2v−s−zAi(c−1s + c2) dsdv
∫∞

0 e−sAi(c−1s + c2) ds
, ω(0) = −2iAi(c2)

∫∞
0 e−sAi

(
c−1s + c2

)
ds

− 2iV, (6.22)

where c = (1/ 3
√

2ia2) with arg(c) = −(π/6), and Ai(s) is one of the two standard linearly
independent solutions of the system D2f = sf . The integrals in (6.22) converge as a consequence
of the exponential decay rate of Ai(s) for −(π/3)< arg(s)< (π/3).

The electronic supplementary material, figure S2, plots ω(0) over a range of the simplified
parameter a1. The figure shows that ω(0)

r > 0, and thus supports our hypothesis that the interplay
of advection and diffusion causes the instability.

The asymptotic analysis from the previous section suggests that diffusion dominates in
the long-wavelength regime, yielding a neutrally stable system, i.e. ωr = 0. Assuming that the
sediment transport eigenvalue varies continuously with the wavenumber k, if ωr is positive at
wavenumber k0, then it is likely that ωr decays to 0 while maintaining its sign over the range
0< k ≤ k0. This hypothesis appears to hold in figure 6, where ωr peaks at k = 3 and diminishes to
0 as k becomes small.

We sketch the physics of destabilization via advection in figure 9a. The component of steady-
state velocity Ū advects momentum to the perturbed velocity field, causing the rightward skew
that leads to a phase advance in the bed stress, which amplifies the bed-form perturbations.
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(d) Fluid acceleration stabilizes the system for short wavelengths
The computed spectra in figure 6a show that the real part of the sediment transport eigenvalue
becomes negative as the wavenumber becomes large, indicating that the film suppresses short-
wavelength structures at the bed. Since our analysis suggest that advection is a destabilizer and
diffusion does not influence stability, we study the role of acceleration as a potential stabilizer.
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We consider the system in the short-wavelength regime (k � 1). Figure 10 shows the plots of
computed velocity fields and shear stresses for this parameter regime. In contrast to the right-
ward velocity skew in the advection–diffusion case, figure 10a highlights a left-ward velocity
skew, which creates a right-ward phase shift of the bed stress. The bed stress lagging behind
the bed-form implies that Im(τ)< 0, and hence yields ωr < 0. We conclude that acceleration
contributes to the short-wavelength stabilization of the system.

We study the nature of the stabilization for the short wavelength regime with a reduced model.
We follow the asymptotic analysis outlined in (6.3)–(6.6). The limit k → ∞ of the reduced OS
equation (6.4) removes all the advection terms

a1ω(D2 − 1)2ψ (0) = (D2 − 1)2ψ (0), on 0< z<∞. (6.23)

The leading-order solution of (6.23) and (6.8)–(6.10) is given by

ψ (0) =
2

[
e−z(0) − e−z(0)√1+a1ω

]
1 −

√
1 + a1ω(0)

, ω(0) = −2a1 + 2i − 2iV + 2i
√

(1 + a1i)2 − 2a1iV, (6.24)

where all square roots are taken with non-negative imaginary parts (see the electronic
supplementary material for more details). The out-of-plane flow-field is coupled to the in-plane
solution, unlike in the previous cases of advection and diffusion. Since the square root in (6.24) has
a non-negative imaginary part, the eigenvalue has a negative real part, i.e. ωr < 0. The real part of
the eigenvalue remains negative even if we ignore the out-of-plane contribution C(k, θ ), i.e. V = 0.
Our analysis thus suggests that fluid acceleration stabilizes short-wavelength perturbations.

We summarize the physical intuition for the stabilizing effect of acceleration in figure 9b. The
key insight, shown in figure 6b, is that the bed-form migration speed scales with the wavenumber
(ωi ∼ k). As k increases, the speed of bed-form migration becomes comparable to the rate of
momentum diffusion due to fluid viscosity. The relative motion between the fluid velocities
that diffuse toward the ice and the bed-form migration results in a left-skew of the velocity.
The skewed velocity field creates a corresponding phase lag in the bed stress that stabilizes
short-wavelength perturbations in the system.

(e) The most unstable perturbation wavelength
We define the wavenumber ku as the one corresponding to the sediment transport eigenvalue with
the largest positive real part. Since perturbations at this wavenumber grow at the fastest rate, the
corresponding wavelength λu = 2πk−1

u is indicative of the initial spacing for the bed heterogeneity
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generated by the morphological instability described in this paper. We perform a study for how
λu varies over the three independent non-dimensional parameters: Re, the Reynolds number; L,
the grain-to-film size ratio, and α, the surface slope. We set θ = 0.01, which implies that most of
the perturbation is across-flow.

Since the model does not resolve the long-term evolution of the emerging spatial heterogeneity
at the bed, it is unlikely that λu matches field observations of spacing between canals or other
evolved structures. However, potential laboratory experiments may provide a means to validate
our model results.

Figure 11 shows the results of the sensitivity analysis. The shaded rectangular region on the
left represents the regime where (3.10) is not satisfied, indicating that the bed stress is insufficient
to erode the sediment. The stress threshold scales with grain size (∼ L) as it becomes increasingly
difficult for the fluid to erode larger grains (figure 2b).

The contour values of λu, shown in figure 11, suggest that the most unstable wavelength is
within one order of magnitude of the film thickness itself. The value of λu generally decreases
with Re and increases with α. The region of stability shrinks as L increases.

7. Discussion
In §6, we identified an instability where a meltwater film grows unstably by carving into the
sediment layer beneath. Our main motivation is to understand the initiation of efficient drainage
elements for which the main axes are approximately aligned with the main flow direction, as is
the case for canals incised into the till [32,33]. This kind of drainage element would emerge as
out-of-bed perturbations that are near-transverse to the main flow direction. We show that these
perturbations are indeed unstable, and that this instability occurs prior to the onset of turbulence.

Our analysis indicates that the physics of the bed instability is similar to that of granular ripple
formation [40,43]. However, the bed structure that emerges from the instability we discuss is
distinct from ripples. It is near-transverse to the main flow direction, whereas ripples constitute
bed perturbations in the along-flow direction. Although we do not explicitly study the case
of ripples, we expect a meltwater film on soft erodible till to exhibit both ripples [44] as well
as near-transverse variability, resulting in a spatially heterogeneous drainage structure. The
emerging bed-form may eventually evolve into efficient drainage elements such as till-incised
canals [32,33], but the long-term evolution of the system is beyond the scope of our linearized
stability analysis.
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(a) Hydrodynamics induces short-wavelength stabilization of films
Morphological instabilities of flow over erodible beds are classical topics in fluid dynamics and
hydrology as reviewed, for example, by [40,43]. Kennedy [37,43] was among the first to explain
the dynamics of the granular ripple instability. He identified that the instability arises from the
phase advance of the bed shear stress over the bed-form, which is a result of near-bed flow
advection being countered by the shear stress at the bed. However, the potential flow model used
by Kennedy [37] aligned the bed-form and the bed stress exactly, thus requiring an externally
imposed phase advance to activate the ripple instability. Shallow water models predicted stability
of the bed at all wavelengths since they could not resolve the differences between mean flow
and near-bed flow [42]. Rotational flow models which resolve the vertical flow velocities,
e.g. [38,39], addressed the phase advance problem successfully, and we follow this modelling
approach to understand the evolution of meltwater films. Results from previous rotational flow
models [38,39,41,44] are consistent with the advection-induced instability mechanism discussed
by Kennedy [37,43] and presented in this paper (figure 9a).

The theory of flow over erodible beds was originally intended for analyses of granular ripples
on beaches and riverbeds [40]. Therefore, most film models assume a free surface boundary at the
top [38,39,41]. Since our model represents meltwater films capped by ice, i.e. a fixed lid boundary
condition, it does not exhibit the stabilizing effect of a free surface at subcritical flow [40], nor does
it prompt the formation of antidunes at supercritical flow [41,44]. The lack of stabilization from a
free surface suggests that alternate mechanisms operate to stabilize films with fixed lids.

The direction of the bed perturbation presents another difference between our study and
others. We focus on bed structures near-perpendicular to the main flow because we are interested
in the initiation of canals with axes approximately aligned with the film flow direction. Most
previous studies [37–39], by contrast, analyse ripple formation along the film flow direction. Our
results show that bed structures near-perpendicular to the main flow are unstable. However,
the study by Devauchelle et al. [44], which includes oblique perturbations as well as a fixed lid
boundary condition, reports that the film stabilizes bed structures that are near-perpendicular
to the main flow. This disagreement between our findings and [44] stems from the differences
between the respective mechanisms of bed-form stabilization within the underlying models.

As discussed in the review by Charru et al. [40], most models of flow over erodible beds
introduce two sediment-based mechanisms to add stability to the system: a saturation lag in the
bed-load density, which imposes a minimum bed-form wavelength, and a gravity effect, where
an uneven bed tends to flatten itself diffusively due to grain motion along small-scale bed slopes.
Devauchelle et al. [44] obtain stability for short wavelengths as well as for near-perpendicular
perturbations as a result of these two mechanisms. The saturation lag mechanism is supported
by experimental [71] and observational evidence [72] in the case of aeolian dunes, but it is not
clear how effective it would be for a non-turbulent thin meltwater film where grain saltation
is suppressed. The gravity effect is based on experimental studies of grain incipient motion for
flow over an inclined bed, e.g. [73,74]. This effect is most pronounced when the system is near
the threshold Shields stress, and it vanishes as the bed stress becomes large [40]. The strength
of the gravity effect is a source of uncertainty since there is no comprehensive study on how
it varies with grain properties such as diameter, density, shape and cohesion. The uncertainty
is magnified in the case of subglacial sediments, for which observational records are sparse
and varied.

Our model invokes neither of these sediment-based stabilization mechanisms. Instead, we
show the hydrodynamics itself stabilizes short wavelengths through the acceleration–diffusion
mechanism outlined in figure 9b. The stabilizing feedback arises from resolving the linear time-
evolution response of the hydrology to the perturbation. Figure 9b shows that the bed stress lags
the bed-form when the rate of momentum diffusion via viscosity is comparable to the bed-form
migration speed. Previous models [38,39,41,44] are unable to reproduce this phase lag, because
they assume quasi-steady flow, namely that the fluid flow adapts instantaneously to any changes
in the bed. Quasi-steady flow is justified by arguing that hydrology operates significantly faster
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than sediment transport (γ 	 1). While the assumption may be true for the mean flow of the film,
the separation of time scales is unlikely to hold in the vicinity of the bed. Our results from figure 6
show that even a three-order magnitude difference (γ ∼ 10−3) maintains the acceleration-based
stabilization effect at wavelengths around 0.1 times the film size.

In a real meltwater film setting, both the hydrology-based mechanism and the sediment-based
mechanisms likely contribute to the stability of the system. The latter, however, appear to manifest
only in specific regimes such as in the presence of saltating flow or, in case of the gravity effect,
when the system is close to the critical Shields threshold [40]. Nevertheless, it is possible that the
sediment-based mechanisms stabilize near-perpendicular perturbations in meltwater films and
limit the instability to the formation of oblique drainage elements such as bars [44].

(b) Drainage elements on soft beds versus hard beds
Walder & Fowler [32] and Ng [33] suggest that efficient drainage systems on soft subglacial
sediment beds take the form of canals that are incised into the till. Canals are commonly observed
in the subglacial setting (e.g. Rutford Ice Stream, West Antarctica [35]), but it is unclear which
processes lead to their formation. If thin meltwater films collapse by carving into the ice as
a consequence of Walder’s instability [19,22], Röthlisberger channels [24] will dominate the
early evolution of the hydrological system. This study presents an alternate framework where
meltwater films on soft beds develop spatially heterogeneous drainage elements by eroding the
till beneath. We suggest that the emerging heterogeneity at the bed may eventually lead to the
formation of till-incised canals, but explicitly studying this evolution is beyond the scope of our
linearized stability analysis.

Subglacial drainage systems with a dynamic till have been studied previously, but the
initiation of such systems has not been addressed directly. Ng [33] describes the coupled dynamics
of hydrology and till in fully developed subglacial canals. He presents equilibrium conditions
of a till-incised canal system that spans tens of kilometres. At this length scale, canal dynamics
is dictated by large-scale mass fluxes of water and sediment rather than smaller scale features
such as bed geometry and vertical flow profiles. Our model provides a complementary approach
in the sense that we study meltwater films at the length scale of the film thickness and resolve
bed geometry and near-bed flow dynamics. By studying canals in the context of an overarching
spatially heterogeneous drainage system, it may be possible to alleviate some of the difficulties in
defining meaningful physical conditions that define the edges of the canal [33].

Kyrke-Smith & Fowler [21] develop a model to understand the evolution of meltwater films
on soft beds, where they include the processes of till erosion and deformation and meltwater
generation. Since Walder’s mechanism of film expansion via dissipation is known to make
meltwater films unstable, [21] introduces the framework of supporting clasts, developed by
Creyts & Schoof [23], to suppress Walder’s instability. The key insight from Creyts & Schoof [23] is
that clasts distributed within the till bear the majority of the ice overburden stress, and this stress
localization leads to faster closure of the ice roof, thus adding stability to the film.

While the framework of supporting clasts is well-suited to subglacial water systems over hard
beds, it is not clear that the framework translates to plastic beds. The failing basal till underneath
ice streams [9,10,31] is unlikely to support clasts in the same way as a hard bed. Our study mimics
the set up of Walder’s instability [22], where a thin film of meltwater separates the ice and the soft
sediment. While the assumption of protruding clasts introduces static roughness to the bed, the
instability described in this study leads to dynamic roughness in the form of emerging spatial
heterogeneity at the bed. This dynamic roughness, at least initially, is purely a consequence of
the coupled dynamics of hydrology and sediment transport: the water fluxes are far too low to
introduce any Walder-type interaction with the ice.

Our study highlights a contrast to the condition of stability that arises from the supporting
clasts framework of Creyts & Schoof [23]. For hard beds, Creyts & Schoof argue that the largest
clast size controls the onset of instability within the meltwater film, since the ice overburden stress
localizes over the largest clasts as the film grows. For soft erodible beds, our study suggests that
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sediment grains with the smallest size control the onset of instability, since they are the easiest to
erode. While our study does not directly account for multiple grain sizes, work by [75] suggests
the possibility that film flow can channelize by preferentially eroding smaller-sized grains. Based
on our findings, we hypothesize physical differences between hard and soft beds, where the
smallest grain size controls stability for soft beds, unlike in the hard-bed case where stability
is controlled by the largest clast size.

8. Conclusion
The linearized stability analysis in this paper highlights that water transport over soft beds is
associated with dynamic bed-form evolution in the subglacial till. The analysis elucidates the
conditions under which a spatially heterogeneous drainage structure carved into the sediment
can emerge from a flat bed as a result of a morphological instability. Our theory would be
testable against idealized laboratory experiments of thin film flow over granular beds in a Hele–
Shaw cell, which, to our knowledge, are not currently available. Comparing the fastest growing
wavelengths of this instability to observations of subglacial morphologies in the field [76] would
require follow-up work that captures the nonlinear evolution of the incipient bed-form into its
fully fledged form, for example, through a depth-resolved, direct numerical simulation.
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Appendix A. Small angle approximation
The system of equations that describe our model of meltwater film stability is given by
(5.24)–(5.26), along with the exact linearized Exner equation (5.18) in streamfunction notation
(5.23)

ωr′ = −iκF̄kD2ψ − iκk1(SdF̄ − F̄)Du′ at z = 0. (A 1)

The Orr–Sommerfeld solver described in §5c cannot resolve the term Du′(0) since that term
represents the contribution of the flow field outside the Squire plane to the bed-form evolution
within the Squire plane. Instead, our approach is to approximate Du′(0) for small θ (5.19).
We perform a quadratic expansion around θ = 0,

ω=ω(0) + θω(1) + θ2ω(2) + O(θ3) (A 2)

and

f (z) = f (0)(z) + θ f (1)(z) + θ2f (2)(z) + O(θ3), (A 3)

where f (z) stands for a generic variable u′, v′, w′, p′, U ′, ψ .
The need for second-order accuracy in θ is suggested by figure 12. It shows that the numerical

solution (denoted by tilde) for the sediment transport eigenvalue ω̃ of (5.24)–(5.27) satisfies ω̃∼ θ2.
Under a quadratic expansion, we are guaranteed that ω − ω̃= O(θ3), where ω is the exact solution
for the system (5.24)–(5.26), (A 1), ensuring that ω̃ is a sufficiently accurate approximation of ω.

http://zapad.stanford.edu/ineel/meltwater-film-stability
http://zapad.stanford.edu/ineel/meltwater-film-stability
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Figure 12. Numerical solution for the sediment transport eigenvalue ω̃ varies as O(θ 2). The hydrodynamic eigenvalues are
independent of θ . k = 1, Re= 20, L= 10−3,α= 10−3. (Online version in colour.)

To ensure that the error is at most O(θ3), we replace Du′ in (A 1) with Du(0) + θDu(1),

ωr′ = −iκF̄D2ψ + C(k, θ ) + O(θ3), (A 4)

where V = (SdF̄/F̄) − 1, and C(k, θ ) is the correction term given by (5.21),

C(k, θ ) = −ikθκVF̄(Du(0) + θDu(1)).

Since the difference between the exact Exner equation (A 1) and the approximated version
(A 4) is an O(θ3) constant, the difference between the corresponding exact solution (ψ ,ω) and
the approximated solution of (ψ̃ , ω̃) (5.24)–(5.26), (A 4), is O(θ3) as well. See the electronic
supplementary material for related error perturbation simulations.

To obtain the values of Du(0)(0) and Du(1)(0) in (A 4), we expand the underlying variables
ψ ′(z), u′(z),ω in orders of θ and solve the corresponding equations in succession. The system of
exact equations (5.24)–(5.26), (A 1), (5.5), (5.8), (5.9) to zeroth order is

γω(0)(D2 − k2)ψ (0) = 1
Re

(D2 − k2)2ψ (0) on 0< z< 2, (A 5)

ω(0)r′ = −ikκF̄D2ψ (0) at z = 0, (A 6)

ψ (0) = 0, Dψ (0) = 0, u(0) = 0 at z = 2, (A 7)

ψ (0) = 0, Dψ (0) = 0, u(0) = −Lr′Dū at z = 0 (A 8)

and γω(0)u(0) = ikψ (0)Dū + 1
Re

[
D2 − k2

]
u(0) on 0< z< 2. (A 9)

We recall that r′ is a complex number that represents the amplitude and phase of the bed-form
perturbation. Given the linearity of the system, ψ (0)(z) and u(0) scale with r′.

We first solve for ψ (0)(z) and ω(0). As discussed in §6, the system has multiple solutions, most
of them corresponding to hydrodynamic modes. Substituting ω(0) with a suitable negative value
within the range indicated by figure 12 will lead to the computation of the hydrodynamic modes
to zeroth order, although that system of equations is not algebraically solvable.

The sediment transport mode stands out from the other modes in sign, magnitude and
the profile of the corresponding streamfunction ψ(z) (figure 5). Figure 12 suggests that as θ
approaches 0, the sediment transport eigenvalue converges to 0. The choice of ω(0) = 0 thus leads
to the corresponding sediment transport mode of the system (A 5)–(A 8), namely ψ (0)(z) = 0.
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The equation for u(0)(z) then reduces to a second-order linear ODE with constant coefficients.
The zeroth-order solution is given by

ω(0) = 0, ψ (0)(z) = 0, u(0) = −2Lr′ exp(−kz) − exp(k(z − 4))
1 − exp(−4k)

, (A 10)

where we substitute the steady-state term Dū(0) = 2 in (A 9).
We compute the first correction term Du(0)(0) from (A 10),

Du(0)(0) = 2r′Lk(1 + exp(−4k))
1 − exp(−4k)

. (A 11)

The value of Du(0)(0) is real and positive for all k, and its asymptotic properties are

lim
k→0

Du(0)(0) = Lr′ and lim
k→∞

Du(0)(0)
k

= 2Lr′. (A 12)

The system of equations (5.24)–(5.26), (A 1), (5.5), (5.8), (5.9) to first order in θ is given by

0 = (D2 − k2)2ψ (1) on 0< z< 2, (A 13)

ω(1)r′ = −ikκF̄D2ψ (1) − ikκVF̄r′Du(0) at z = 0, (A 14)

ψ (1) = 0, Dψ (1) = 0, u(1) = 0 at z = 2, (A 15)

ψ (1) = 0, Dψ (1) = −2Lr′, u(1) = 0 at z = 0 (A 16)

and γω(1)u(0) = −ikūu(0) + ikψ (1)Dū − 2ik
ΠRe

p(0) + 1
Re

[
D2 − k2

]
u(1) on 0< z< 2. (A 17)

Note that the zeroth-order pressure field p(0)(z) is uniformly 0 for the sediment transport mode
since the underlying flow field is uniformly zero (ψ (0)(z) = 0).

The equations describe a linear ODE with constant coefficients for ψ (1). Upon solving for ψ (1),
(A 14) provides us with the value of ω(1). We note that ω(1) is purely imaginary (see the electronic
supplementary material). We then substitute ψ (1)(z) and ω(1) in (A 17) and solve a linear ODE
with constant coefficients to compute u(1)(z).

Our computations for the sediment transport eigenvalue show that ω(0) = 0, and ω
(1)
r = 0,

where ω=ωr + iωi. Our expansion thus indicates that ωr = O(θ2), which is consistent with
figure 12. The above order analysis suggests that the zeroth-order system represents the flow
field outside of the Squire plane. Given that ω(1) is imaginary, the first-order system represents
the bed-form transport due to diffusive processes in the flow field. It is the second-order system
that represents the destabilizing advective processes within the film flow.

The full expression for the second correction term Du(1)(0) in (A 4) is given in the electronic
supplementary material. This term is imaginary for all k, and its asymptotic properties are

lim
k→0

Du(1)(0)
k

= 8
15

ir′LRe and lim
k→∞

k2Du(1)(0) = 1
2

LRer′. (A 18)

Substituting the asymptotic properties (A 12) and (A 18) in (5.21) yields

lim
k→0

C(k, θ )
k

= −iθκVF̄Lr′ and lim
k→∞

C(k, θ )
k2 = −2iθκVF̄Lr′. (A 19)
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