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Humans are an increasingly dominant driver of Earth’s biological commu-

nities, but differentiating human impacts from natural drivers of ecosystem

state is crucial. Herbivorous fish play a key role in maintaining coral domi-

nance on coral reefs, and are widely affected by human activities, principally

fishing. We assess the relative importance of human and biophysical (habitat

and oceanographic) drivers on the biomass of five herbivorous functional

groups among 33 islands in the central and western Pacific Ocean. Human

impacts were clear for some, but not all, herbivore groups. Biomass of brow-

sers, large excavators, and of all herbivores combined declined rapidly with

increasing human population density, whereas grazers, scrapers, and detriti-

vores displayed no relationship. Sea-surface temperature had significant

but opposing effects on the biomass of detritivores (positive) and browsers

(negative). Similarly, the biomass of scrapers, grazers, and detritivores

correlated with habitat structural complexity; however, relationships were

group specific. Finally, the biomass of browsers and large excavators was

related to island geomorphology, both peaking on low-lying islands and

atolls. The substantial variability in herbivore populations explained by natu-

ral biophysical drivers highlights the need for locally appropriate management

targets on coral reefs.
1. Introduction
Humans are increasingly a dominant global force influencing the structure and

function of ecosystems through the removal of key species and functional

groups, habitat modification, and the effects of pollution and climate change

[1–3]. Coral reef ecosystems are especially vulnerable to such human-forcing [4],

and whereas anthropogenic impacts are globally pervasive, they occur against a

backdrop of high natural variability in reef systems caused by differences in the

environment and biogeographic context. Oceanic productivity, water temperature,

habitat area, reef geomorphology, and larval connectivity can have substantial

impacts on coral reef fish assemblages [5–10]. For example, the natural fish carry-

ing capacity of a coral reef has been shown to double along a gradient of increasing

oceanic productivity [11]. Understanding the relative influence of human versus

natural drivers is key to assessing the current status of these ecosystems.

Here, we focus on one component of coral reef systems, namely herbivorous

fishes in the Pacific Ocean. Despite some uncertainty, particularly in the Indo-

Pacific, about the relative importance of herbivory in mediating coral–algal

dynamics [12–16], herbivorous fishes are widely recognized to play an important

role in maintaining the competitive dominance of reef calcifiers (e.g. hard corals

and crustose coralline algae), over other benthic components (e.g. fleshy macroal-

gae) [17–20]. For example, following climate-induced coral bleaching, fished

reefs with reduced herbivore populations have a greater propensity to become

dominated by macroalgae [21]. For that reason, some coral reef management
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strategies now focus specifically on protecting or restoring her-

bivorous fish populations [22,23]. There is a need, therefore, to

better understand the role of the natural environment in deter-

mining distribution patterns of herbivorous fishes [8,24–26]

independent of local human impacts on coral reefs. Indeed,

the upper bounds of herbivore biomass will be determined

by a reef’s local biophysical setting, and once identified,

will allow for realistic fisheries management strategies to

address the widespread effect of fishing on this trophic group

[7,8,11,27–30].

Herbivorous reef fish assemblages vary with local envi-

ronmental factors. For instance, parrotfish tend to be more

abundant and species rich on barrier reefs compared with

atoll, and fringing or low coral cover reefs [31]. Intra-island

variation in herbivore species composition and behaviour is

also evident among different reef habitats. Typically, the abun-

dance and feeding activity of grazing surgeonfishes and large

parrotfishes is lower on nearshore coastal reefs compared with

wave-exposed offshore reefs [32,33]. Conversely, browsing

herbivores are often more abundant on wave-protected back

reef habitats, when compared with the exposed fore-reef

areas [32,34,35]. Furthermore, herbivore biomass and rates of

herbivory tend to be the greatest on the reef crest, and both

decrease across the reef flat and down the reef slope [35–38].

These patterns in herbivorous fishes are variously attributed

to the availability and quality of food and shelter, in addition

to the wave energy and sedimentation regimes experienced

[34,38–40]. The implication of this localized among- and

within-habitat variation is that the need for, and potential

effectiveness of, fishery management interventions are highly

dependent on natural bounds set by the location’s biophysical

setting [41].

Here, we make use of a consistent monitoring dataset from

33 islands and atolls across the central and western Pacific to

better understand the relative role of anthropogenic impacts

and biophysical drivers (habitat and physical environmental

conditions) in structuring herbivore populations on coral

reefs. These islands span large gradients of human population

density (0–27 people per hectare of reef) [11,42] and biophysi-

cal condition [43], allowing us to separate the relative effect of

those in driving variation in herbivore biomass.
2. Methods
(a) Fish assemblage and reef habitat surveys
We used coral reef monitoring data collected between 2010 and

2015 across 33 Pacific islands and atolls (electronic supplementary

material, table S1). The surveys were performed for the National

Oceanic and Atmospheric Administration (NOAA) Pacific Reef

Assessment and Monitoring Programme (Pacific RAMP), a long-

term ecosystem monitoring effort focused on United States and

United States-affiliated coral reefs [44]. Data from two underwater

visual census techniques were used, the stationary point count

(SPC) and the towed-diver (tow) survey method (Coral Reef

Ecosystem Program; Pacific Islands Fisheries Science Center

(2016). National Coral Reef Monitoring Program: stratified

random surveys (StRS) of reef fish, including benthic estimate

data of the U.S. Pacific Reefs since 2007. NOAA National Centers

for Environmental Information. Unpublished Dataset. [15

August 2016], https://inport.nmfs.noaa.gov/inport/item/24447.

Coral Reef Ecosystem Program; Pacific Islands Fisheries Science

Center (2016). Towed-diver surveys of large-bodied fishes of

the U.S. Pacific Reefs since 2000. NOAA National Centers for
Environmental Information. Unpublished Dataset. [15 August

2016], https://inport.nmfs.noaa.gov/inport/item/5568). The

SPC was used to estimate the biomass of herbivorous fishes,

whereas the latter was used to estimate biomass of large (more

than 50 cm in total length) piscivores. Piscivore biomass was

used to investigate what effect, if any, piscivores may have in exert-

ing top-down control on herbivore populations [45]. The tow

estimates of piscivore biomass were used in preference to the

SPC owing to the concern that small-scale surveys can overesti-

mate the biomass of large roving predators, such as sharks and

jacks [46].

A total of 3 309 SPC surveys were conducted by experienced

surveyors. Survey site locations were selected per sampling unit

(typically an island/atoll, occasionally, a cluster of small islands

or for large islands, island subsection) by means of a randomized

stratified design [47]. The target sampling domain of Pacific

RAMP is hard bottom habitat in depths less than 30 m, and

site allocation is stratified by reef zone (fore reef; back reef;

lagoon) and depth (0–6 m; 6–18 m; 18–30 m). Only data from

the fore-reef habitat were used to remove any biases associated

with interhabitat differences on herbivorous fish assemblages;

the fore reef is the most comparable reef habitat present across

all islands. At each survey site, a pair of divers conducted simul-

taneous adjacent counts in which they first compiled lists of

all fish species present within their survey area (7.5 m radius

cylinder) during a 5 min interval. After the timed interval,

divers proceeded to count and size all fishes from the species

list within their survey area. Divers then visually estimated

benthic cover and reef complexity, the mean vertical substrate

height from the reef plane in the survey cylinder.

A total of 861 tow surveys were analysed. Surveys were hapha-

zardly located on reef areas at a depth of 10–20 m, with the broad

goal of spreading sites as widely as possible around each island;

circumnavigating the island where practical. A pair of divers

(one fish, one benthic surveyor) were towed behind a small boat

travelling approximately 2 km for each 50 min survey. During

each tow, the fish diver recorded the number and size of all species

more than 50 cm in total length within a belt-transect extending

5 m on either side and 10 m in front of the diver, from the seafloor

to the surface. Full details on the tow survey method are available

in [46].
(b) Data processing
The weight per individual fish was calculated using length-to-

weight relationships from FishBase and other sources [48,49]. To

date, much of the evidence of human impacts on herbivore popu-

lations relative to regional biophysical variation considers these

herbivorous fishes as a single trophic guild or broad taxonomic

groups [8], although, see [24]. Collectively, these studies point to

differences in the expected richness and biomass of herbivorous

fishes, either in toto or of specific families, based on habitat, island

type, and biogeographic region [7,8]. There is, however, increasing

evidence that different herbivore functional groups perform com-

plimentary roles in reef processes [50], have different dietary and

habitat requirements [8,51,52], and are likely to respond differently

to local biophysical settings. Therefore, we classified herbivorous

fishes functionally (sensu [53]) and incorporated new dietary data

specific to the study area. Five groups resulted: ‘browsers’, ‘gra-

zers’, ‘detritivores’, ‘large excavators/bioeroders’, and ‘scrapers/

small excavators’ (electronic supplementary material, S2).

For the SPC surveys, site-level herbivorous fish biomass

(g m22), hard coral cover, and reef complexity were calculated

by averaging the two diver replicates conducted at each site

location. Data were inspected for site-level outliers, site-level obser-

vations of any of the fish metrics that were more than 97.5% of

the interquartile range, were capped at that 97.5% value (electro-

nic supplementary material, S3.1). Island-scale averages of the
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site-level metrics were calculated, first by averaging values within

each depth stratum per island, and then weighting the mean

estimates by the total area of each stratum per island [54,55].

Island-level tow estimates of piscivore biomass were calculated

as equally weighted means of each tow per island across years.

Species richness per functional group was estimated by generating

species accumulation curves for each island, using the rarefaction

method in the R package vegan [56].
lishing.org
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(c) Quantifying human and biophysical predictors
We used the published estimates of the following human

and biophysical covariates, derived at the island level: human popu-

lation density, chlorophyll a (mg m23) as a proxy for phytoplankton

biomass and oceanic productivity, total area of reef habitat, sea-sur-

face temperature (SST 8C), wave energy (kW m21), and island type

(electronic supplementary material, table S3.2). Island types were

based on geomorphology, and classed as either high (e.g. basalt

island) or low lying (e.g. carbonate island or atoll). Islands were

also grouped by region (Hawaii, Central Polynesia, Gilbert, Ellis,

and Marshall Islands, and Tropical Northwest Pacific [57]).

To determine anthropogenic impacts on herbivorous fishes,

we used human population density (the number of people

resident per island (from the 2010 US census) divided by the

area of fore-reef habitat per island from Geographic Information

System (GIS) habitat layers maintained by Pacific RAMP (elec-

tronic supplementary material, S.3.3). For the remote-sensing

data, we used the lower climatological mean of SST from the

PATHFINDER v.5.0 dataset, and the climatological mean of chloro-

phyll a derived from the moderate resolution imaging

spectroradiometer. The wave energy metric used was the clima-

tological mean from NOAA’s Wave Watch III wave model.

Details on the methods used to generate island-specific biophysi-

cal metrics are described in full in [43].
(d) Modelling
We fitted the generalized additive mixed-effects models

(GAMMs) of island-level herbivore biomass (electronic sup-

plementary material, S3.1) in R (www.r-project.org), using the

gamm4 package [58]. All models included region as a random

effect to account for autocorrelation among islands within regions

[59]. Wake is the only replicate in the Marshall, Gilbert, and Ellis

Islands region, therefore, we report summary fish metrics for

Wake (biomass and richness) but excluded it from the statistical

modelling (total number of island replicates ¼ 33). For total fish

biomass and functional group biomass separately, we fitted

GAMMs for all possible combinations of the predictor variables

using the UGamm wrapper function, in combination with the

dredge function in the MuMIn package [60].

We calculated Akaike’s information criterion, corrected

for small sample size (AICc) and the AICc-based relative impor-

tance weights (wi) to assess the conditional probability of each

model. We report the model-average estimates for each predictor

term based on the top-ranked models for each fish metric, top-

ranked models being those with more than 0.05 Akaike weight.

To test for influential data points and to check for model stability,

we performed a jack-knife sensitivity test, calculating the percentage

of times sequentially deleting single response variable data points

produced the same top-ranking model structure (sensu [61]).

Finally, to visualize the effect of predictor terms on the

herbivorous fish responses, we used the coefficients from the

top-ranked models for each response variable separately to

generate a predicted dataset. We set all other predictor terms to

their median value then generated smoother terms for the pre-

dictor of interest and plotted these against the untransformed,

unscaled fish metrics [11].
3. Results
Across the western central Pacific, a large degree of variability

exists in the biomass and composition of herbivorous fish

assemblages, including the species richness within functional

groups. Generally, there is greater biomass and richness of

detritivores in Central Polynesia, and a greater biomass of

browsers in the unpopulated northerly latitudes (figure 1 and

electronic supplementary material, S4.1). Functional group

biomass and richness was positively related in large exca-

vators/bioeroders, scrapers/small excavators, and detritivores

(electronic supplementary material, figure S4.2 and table S4.2).

Major drivers of this spatial variation in total herbivor-

ous fish biomass were identified as reef complexity, hard

coral cover, and human population density (electronic

supplementary material, table S5). The original smoothers

fitted to the functional group and total herbivore biomass

values are in the electronic supplementary material,

figure S5. Total herbivore biomass plateaued at intermediate

complexity, decreased at highest coral cover, and continually

decreased with human population density (electronic sup-

plementary material, figure S5). The best-fit model that

contained these three biological variables had high explana-

tory power and stability (approx. 69% variability explained

in total herbivore biomass, 94% jack-knife stability; electronic

supplementary material, table S5). When functional groups

were modelled individually, the top candidate models

showed similar stability. Specifically, the dominant predictors

identified from the variable importance (vi) estimates from

the top candidate model of the entire dataset matched those

identified from the jack-knifing method (electronic supplemen-

tary material, table S5). The amount of variance explained by

the top-ranking models of herbivore biomass for each func-

tional group (figure 2) was as follows: browsers (84%);

detritivores (84%); grazers (73%); scrapers/small excavators

(36%); and large excavators/bioeroders (59%; electronic sup-

plementary material, figure S5).

The relationship between the top predictor terms and

herbivore biomass was distinct for different functional

groups. Biomass of large excavators/bioeroders (all parrot-

fishes more than 35 cm in total length) and browsers was

significantly greater at low islands/atolls when compared

with high islands (figure 3 and electronic supplementary

material, table S5). These were also the only functional

groups for which human population density was a strong pre-

dictor of biomass (figure 3 and electronic supplementary

material, table S5), with both groups declining rapidly from

low-to-mid human population density.

The dominant drivers of variability in browsers, detritivo-

res, grazers, and scrapers/small excavators were biophysical.

These data showed that reefs in warmer waters have lower

browser biomass and greater detritivore biomass and species

richness (figure 3 and electronic supplementary material,

table S5). Increased detritivore, grazer and scraper/small

excavator biomass was evident from low-to-mid habitat com-

plexity. The biomass of grazers continued to increase at high

complexity locations, whereas for detritivores and scrapers/

small excavators the biomass either plateaued or was reduced

at high complexity (figure 3). Locations with a larger amount of

fore-reef habitat had greater biomass of detritivores, whereas

areas with intermediate wave energy and high chlorophyll

a had increased grazer biomass (figure 3 and electronic

supplementary material, table S5).

http://www.r-project.org
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4. Discussion
Our results are consistent with the growing understanding that

regional variability in the biophysical attributes of coral reef

ecosystems acts to determine ecological state independent of

local human impacts [11,61,62]. Specifically, our findings

confirm clear anthropogenic impacts to herbivorous fishes

across the Pacific, but importantly also show that (i) effects

are functional-group-specific, and (ii) the biophysical attributes

of reefs, especially SST and large-scale geomorphological habi-

tat complexity also drive herbivorous coral reef fish assemblage

states. Prior to this study, quantitative evidence for anthropo-

genic impacts on herbivorous fishes, while simultaneously

accounting for large-scale natural variability in fish assembla-

ges, has been sparse [8,30,31]. To the best of our knowledge,

this is the first ocean basin-scale study quantifying the relative

effects of human versus natural biophysical drivers of

herbivorous fish functional group biomass.

In the absence of fisheries-dependent data on subsistence,

recreational and commercial take, human density, and
distance to market have proven to be useful proxies for the

influence of humans on coral reef fishes [11,63,64]. Our

results show a steep and rapid decline in the biomass of

large excavators and browsers with increasing human popu-

lation density. This pattern is consistent with other global and

regional assessments documenting the negative effect of fish-

ing on herbivores [27,28]. Herbivorous fishes, in particular

large excavating parrotfishes, and browsing surgeonfishes,

are highly desired fisheries targets in the Pacific [65–68].

Our results demonstrate the sensitivity of populations of

these large herbivores to fishing mortality, presumably

owing to their large maximum body size and for some

species, late age at maturity and the disproportionate contri-

bution of large old females to population replenishment

[65,69–72]. The vulnerability of these two functional groups

to human impacts is particularly important as they contribute

disproportionately to reef processes [50,73,74].

Herbivores vary in richness, abundance, and biomass by

island geomorphology [8,31]. Our results show approximately

24–45% greater biomass of large-excavating and browsing
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fishes at low-lying islands (carbonate) and atolls, compared

with high islands (basalt). There was no evidence for an

island-type effect for the remaining functional groups,

although consistent with a previous study [8], we found that

the biomass of detritivores (all acanthurids) was positively

associated with reef area. It may be that this island-type differ-

ence in biomass is driven by differential species-specific habitat

requirements. For example, lagoonal habitat for settlement or

nursery areas [75] is only present within atoll systems. The

implications of our analyses are that large-scale habitat differ-

ences should be considered before comparing herbivorous

fish assemblages across different island types.

Here, we found no consistent relationship between the bio-

mass of different herbivore functional groups and the cover

of hard corals, but still an overall relationship between coral

cover and total herbivore biomass. Our results suggest that in

areas of coral cover greater than 22–24% the total herbivore

assemblage will tend to be reduced in biomass, whereas the

biomass of grazers, detritivores, and scrapers/small excavators

increases with habitat complexity, with peak biomass for scra-

pers and detritivores at intermediate complexity. Previously, a

nonlinear association between coral species richness and fish

community abundance has been shown [76], as has a reduction

in abundances of small- and medium-sized herbivores at low

habitat complexity [77]. Taking these effects of complexity

and coral cover together, it seems plausible that this reflects

the opposing changes in the availability of refugia and food

with coral cover. In general, high coral cover, and associated

structural complexity, reduces the foraging efficiency of preda-

tors [77–79]. Furthermore, the availability of shelter reduces
the energy that fishes must allocate to swimming in high

flow water environments [34], giving them an energetic advan-

tage. As such, more complex environments support higher

fish abundances [80]. However, increases in coral cover are

accompanied by concomitant decreases in cover of other

benthic organisms, such as turf, endolithic and macroalgae

[81]. These algal assemblages, and associated detritus, are

the primary food sources for herbivores, and as such food

availability may limit population size in areas of high coral

cover. This notion is supported by several studies that have

documented increases in the abundance and biomass of herbi-

vorous fishes following extensive coral mortality and reduced

structural complexity [82–84].

The increased biomass of grazers in the areas of moderate

wave exposure and increased oceanic productivity could also

be related to food availability. Both algal and detrital mass

tends to decrease with increasing wave energy and the high-

est edible algal mass occurs at moderately exposed reefs [85].

The positive association between chlorophyll a and grazer

biomass could be owing to greater food availability for graz-

ing fishes, specifically nutrients and sinking detrital particles

such as phytodetritus, faeces, or dead planktonic material

[77]. If this were the case, then one might expect to see a

similar effect on detritivore biomass, however, we did not.

Instead, the dominant biophysical driver of variability in

detritivore biomass was SST.

Notably, detritivores and browsers showed opposing

responses to SST, with browser biomass being negatively and

detritivore biomass positively related to SST. Similar decreases

in the biomass of browsing fishes with decreasing latitude,

and hence SST, are evident in both the Atlantic [25] and southern

Pacific Ocean [86]. Temperature fundamentally constrains the

metabolic processes of ectotherms, and various hypotheses

have been proposed to explain how temperature might impact

the performance and fitness of individuals [87]. For instance,

the temperature–size rule predicts ectotherms to be smaller in

warmer waters, owing to reduced mean body size, earlier matu-

ration, and increased initial growth rates [88–90]. While the

temperature-constraint hypothesis relates to the interacting

effects of temperature and food quality on fish physiology

[25,91]. Here, we found increased browser biomass in cooler

waters and increased detritivore biomass in warmer waters.

Whether these trends in the standing stock of these functional

groups relate to larger individuals and/or intraspecific variabil-

ity in life-history characteristics across the temperature gradients

surveyed would require location-specific, age-based studies on

individual species.

The different effect of temperature on these functional

groups could also be a response to the very different dietary

strategies of these fishes. Browsing acanthurids, such as Naso
unicornis and kyphosids, are the only functional group that

hindgut ferment, which allows these fish to gain energy from

refractory fleshy macroalgal carbohydrates, including manni-

tol [92–95]. Macroalgae, the preferred food of browsers, is

more abundant on reefs in cooler climes in the Pacific [61]

and thus browser biomass may be tracking the availability of

their target resource. It is difficult to ascertain the primary

nutrient sources of detritivores that feed on the epilithic algal

matrix (EAM) [96]. The EAM contains a mixture of filamentous

algal turfs, cyanobacteria, macroalgal spores, microalgae (dia-

toms and dinoflagelletes), heterotrophic bacteria, sediment,

and organic detritus [97]. Stomach content analyses of the det-

ritivore Ctenochaetus striatus reveal large amounts of loose plant
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cells, sediment, and algal filaments while the composition of

short-chain fatty acids in Ctenochaetus striatus and Ctenochaetus
strigosus guts are indicative of a diet of diatoms and bacteria

[51,98]. Whether detritivorous fish biomass tracks spatial varia-

bility in the abundance and production of their target resource

remains to be established.
5. Conclusion
Our findings highlight that coral reefs’ biophysical setting

strongly determine their carrying capacity and community

composition of herbivorous reef fishes. Human impacts are

superimposed over the backdrop of these naturally occurring

drivers. Herbivore-focused management interventions are

likely to become more widely implemented owing to the

perception that greater herbivore biomass promotes reef resili-

ence. Our results show large natural differences in the capacity

of individual reefs to support herbivore populations and

therefore, it is unlikely that all reefs will respond similarly

to particular interventions, such as prohibition of fishing.

Moreover, our results show that herbivore functional groups
respond in different ways along gradients of those natural bio-

physical drivers. Locally appropriate management targets for

herbivore functional group biomass must therefore factor in

the natural bounds set by the reef’s biophysical setting.
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