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Neuroinflammation in traumatic brain 
injury: A chronic response to an acute 
injury
Samantha J. Schimmel, Sandra Acosta, Diego Lozano1

Abstract:
Every year, approximately 1.4 million US citizens visit emergency rooms for traumatic brain injuries. 
Formerly known as an acute injury, chronic neurodegenerative symptoms such as compromised 
motor skills, decreased cognitive abilities, and emotional and behavioral changes have caused the 
scientific community to consider chronic aspects of the disorder. The injury causing impact prompts 
multiple cell death processes, starting with neuronal necrosis, and progressing to various secondary 
cell death mechanisms. Secondary cell death mechanisms, including excitotoxicity, oxidative stress, 
mitochondrial dysfunction, blood–brain barrier disruption, and inflammation accompany chronic 
traumatic brain injury (TBI) and often contribute to long‑term disabilities. One hallmark of both acute 
and chronic TBI is neuroinflammation. In acute stages, neuroinflammation is beneficial and stimulates 
an anti‑inflammatory response to the damage. Conversely, in chronic TBI, excessive inflammation 
stimulates the aforementioned secondary cell death. Converting inflammatory cells from pro‑inflammatory 
to anti‑inflammatory may expand the therapeutic window for treating TBI, as inflammation plays a role 
in all stages of the injury. By expanding current research on the role of inflammation in TBI, treatment 
options and clinical outcomes for afflicted individuals may improve.  This paper is a review article. Referred 
literature in this paper has been listed in the references section. The data sets supporting the conclusions 
of this article are available online by searching various databases, including PubMed. Some original points 
in this article come from the laboratory practice in our research center and the authors’ experiences.
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Introduction

A traumatic brain injury (TBI) is an 
injury caused by excessive force to the 

head that may cause external brain injury, 
brain dysfunction, or death.[1-4] Every TBI is 
different, so duration of the damage may be 
either temporary or permanent.[2-4]

Clinically,  the Glasgow coma scale 
classifies the severity of TBI based on 
patient consciousness, motor skills, verbal 
abilities, and eye reflexes (the scale 
classifies scores of 3–8 as severe TBI, 

9–13 as mild TBI, and 14–15 as moderate 
TBI, also known as a concussion).[1,3,5-8] 
The severity of TBI cases may also be 
classified based on technological imaging 
machines and patients’ existing health 
conditions.[9-12] While animal and human 
TBI pathologies are different, both display 
neuroinflammation postinjury.[5,9-12]

Recent evidence suggests that TBI is 
not just an acute injury, as it shares 
chronic symptoms with diseases such as 
Parkinson’s and Alzheimer’s.[13-18] The 
neuroinflammation associated with both 
chronic and acute TBI symptoms may be a 
central component of the injury, presenting 
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researchers with a potential target when creating new 
treatments.[2-6]

In the United States, 30% of all injury-related deaths 
are from TBI.[3,4] Annually, these injuries kill about 
50,000 people, cause 1.4 million people to seek medical 
services, cause 235,000 hospitalizations, and leave 85,000 
surviving individuals disabled.[19-21] The widespread 
nature of TBI – it is estimated that 3.2–5.3 million 
people suffer from it has cost the US about $37.8 billion 
dollars ($4.5 billion for hospital and long-term treatments, 
$20.6 billion from disability or work complications, and 
$12.7 billion from untimely deaths).[22] Socially speaking, 
TBI profoundly affects friends and families of afflicted 
individuals.

Because of the large amount of people vulnerable to 
TBI,[23,24] more research is needed to come up with an 
effective treatment. The following study looks into 
neuroinflammation as a target for new treatments 
because of its occurrence in both acute and chronic stages 
of the injury.

Clinical Manifestations of Traumatic Brain 
Injury

Approximately 30%–80% of TBI victims suffer from 
symptoms following the initial injury.[25] These symptoms 
often go away within the following hours or days, but 
occasionally individuals will be faced with post-TBI 
symptoms for years or the rest of their lives.[26] Factors 
such as increased severity of the injury, being female, 
older age, low socioeconomic status, and mental 
disorders all contribute to the intensity and duration of 
post-TBI symptoms.[25,27]

The study focuses on mild TBI symptoms, due to the 
high prevalence of them, but TBI may also injure axons, 
bruise the brain, or even cause comas.

Physically, between 25% and 90% of patients with 
mild-TBI claim to suffer from headaches postinjury and 
several other patients experience nausea, dizziness, sleep 
disruptions, and visual and auditory complications.[25,26] 
In addition, damage to the frontal or temporal lobe may 
cause TBI patients to experience seizures, which may 
prove to be an obstacle to treatment and diagnosis due 
to confusion with epilepsy.[25]

Regarding cognitive symptoms, TBI patients may 
suffer from attention deficit, memory impairment, and 
overall executive function deficit.[26] These symptoms are 
likely caused by injuries to the frontal lobe, subcortical 
systems, white matter tracts, and axons; these structures 
and systems are partially responsible for information 
processing, stamina, and mental speed.[28,29]

Patients of mild TBI may also experience several 
behavioral (or personality) changes following the 
injury. These changes include mood shifts, irritability, 
aggression, lack of motivation, selfishness, depression, 
anxiety, and posttraumatic stress disorder.[25,26,28,30,31] 
TBI patients are also at an increased risk of developing 
several neurodegenerative disorders (such as Parkinson’s 
disease and Alzheimer’s disease).[15-17,32,33]

Finally, many patients present with epilepsy-like 
symptoms such as partial seizures that affect cognition, 
emotional processes, and inflammatory responses.[25]

Secondary Cell Death and 
Neuroinflammation

Following TBI, several detrimental processes begin to 
affect the injured brain. Mechanical injury damage to 
neurons, axons, glia, and blood vessels initiates the 
primary injury.[34] The degree of primary injury varies 
in each case of TBI and usually causes direct neural cell 
loss and necrotic cell death.[35]

Primary injury next triggers various biochemical 
cascades that usually cause secondary cell death and 
prolonged neurodegeneration. These cascades occur 
seconds to minutes after the initial insult and can last 
anywhere from days to years following injury.[35,36] 
The secondary cellular injuries primarily affect the 
site of injury and neighboring tissues but have the 
potential to spread throughout the brain.[3] Secondary 
cell death processes consist of excitotoxicity, oxidative 
stress, mitochondrial impairment, damaging of the 
blood–brain barrier (BBB), and inflammation.[2,5,14,31,37-42] 
The aforementioned processes often interact to further 
increase progressive neurodegeneration.[37]

Excitotoxicity, a secondary cell death mechanism 
that may follow TBI, is characterized by the secretion 
of intracellular glutamate (a neurotransmitter) into 
extracellular spaces by injured nerve cells.[43] The 
increased glutamate in the synaptic space overstimulates 
amino-3-hydroxy-5-methylisoxazole-4-propionic acid 
and N-methyl-d-aspartate subtype glutamate receptors, 
which in turn allows a flood of sodium and calcium 
ions into the cell.[43,44] The increased calcium ions then 
activate protein phosphatases, phospholipases, and 
endonucleases to fragment DNA and other membranes 
and structures of the cell, eventually causing cell death 
by necrosis and apoptosis.[45] In addition, the excess 
glutamate causes the creation of additional nitric oxide, 
free radicals, and prodeath transcription factors.[46]

Oxidative stress is another secondary cell death 
mechanism attributed with abnormal levels of two free 
radicals, reactive oxygen species (ROS), and reactive 
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nitrogen species (RON).[47] Free radicals are extremely 
reactive, causing their level to stay low and be regulated 
by enzymes and antioxidants.[48] The increase in ROS 
and dysfunction of antioxidants following TBI[49] 
causes an increase in ROS and RON levels, a dangerous 
occurrence that disrupts normal cell function due to the 
radicals’ oxidative abilities.[50] Furthermore, ROS cause 
lipoperoxidation of cell membranes. Lipoperoxidation 
damages various organelles and cellular structures 
causes mutations by fragmenting DNA and intrudes 
neutrophils to further increase production of ROS.[48,49] The 
above processes all contribute to widespread neuronal 
cell death in TBI inflicted brains.

A third secondary cell death process observed in some TBI 
cases is mitochondrial dysfunction.[51] Post-TBI, the ROS 
regulators become damaged, allowing for an increased 
production of ROS from the electron transport chain.[52,53] 
The excess ROS cause lipid-peroxidation mediated 
oxidation damage to mitochondrial membranes, 
disrupting normal mitochondrial function.[54] Another 
function of mitochondria, working as a calcium 
buffer to maintain homeostasis, becomes impaired 
due to excitotoxicity.[36,55] Excess calcium ions cause 
the calcium-dependent mitochondrial permeability 
transition pore to stay opened, altering the mitochondrial 
membrane potential.[55] This altered membrane potential 
halts the production of ATP and causes the destruction 
of the mitochondria. Faulty mitochondria then release 
several toxins and apoptotic factors into the cell, 
eventually resulting in cell death.[56]

The breakdown of the BBB is another powerful secondary 
cell death process following TBI.[43,51,57] The BBB, made of 
endothelial cells that interact with glia and astrocytes, is 
a selective barrier to the brain that prevents the entry of 
bloodborne pathogens and immune cells.[58] Disruption 
of the BBB occurs when the primary injury weakens 
cell junctions through the upregulation of protein 
matrix metallopeptidase 9 (MMP-9), which digests 
tight junctions to allow the entry of peripheral immune 
cells and circulating factors.[59,60] These factors and cells 
alter the interactions between endothelial and glial cells 
in the brain, increasing the permeability of the BBB.[58] 
These immune cells also increase osmotic pressure, 
which causes edema and intracranial pressure.[61] BBB 
dysfunction contributes to neural cell death, cognitive 
impairments, and is an obstacle for treatment.[59]

Finally, the major cause of secondary cell death following 
TBI is neuroinflammation.[2-4,14,18,31,41] Neuroinflammation 
follows the initial impact and may persist up to 
17 years post-TBI.[62] Neuroinflammation increases 
neural cell death by interfering with endogenous repair 
mechanisms and acts through immune cells, microglia, 
cytokines, chemokines, and other inflammatory 

molecules.[63] Initially, an inflammatory response is 
activated to repair damaged cells and protect the brain 
from invading pathogens.[37] Following the activation 
of the inflammatory response, inflammatory cells, 
neutrophils, monocytes, and lymphocytes cross the BBB 
and release prostaglandins, pro‑inflammatory cytokines, 
and other inflammation regulators.[64,65] These regulators 
further recruit microglia and immune cells to the brain 
by increasing the expression of chemokines and cell 
adhesion molecules.[64,65]

Microglia cells, which are systemic macrophages, 
initially benefit the brain post-TBI by separating 
healthy and injured tissues to limit the spread of 
damage.[66] Microglial activation, however, becomes 
excessive and causes the release and upregulation 
of several pro-inflammatory cytokines, increased 
production of neurotoxic molecules and free radicals, 
and increased expression of major histocompatibility 
complex class II (MHCII+).[4,35,37] The pro‑inflammatory 
cytokines released tumor necrosis factor alpha (TNF)-α, 
interleukin (IL-1) β, IL-6, IL-12, and interferon δ) 
increase the inflammatory response by weakening the 
BBB.[4,37,58,60] The production of unnecessary neurotoxic 
molecules and free radicals initiates additional cell 
death mechanisms.[4,35] Finally, the overexpression of 
MHCII+ contributes to neurodegeneration. Glial cells 
also contribute to an increased inflammatory response, 
as they express and produce chemokines that upregulate 
adhesion molecules.[67] This upregulation eases leukocyte 
migration across the BBB, causing a further intensified 
immune response.[67]

While microglia often promotes inflammation, 
t h e y  o c c a s i o n a l l y  d e c r e a s e  i n f l a m m a t o r y 
responses.[4,66] Whether or not microglia promotes or 
decrease inflammation depends on their phenotype (which 
is determined by their microenvironment). [4,66] 
Microglia with M1 phenotypes occur in the presence 
of lipopolysaccharide and interferon γ and stimulate 
the production of pro‑inflammatory cytokines while 
discouraging production of anti-inflammatory 
cytokines (i.e., IL-10).[68] In contrast, microglia develops 
the M2 phenotype when in contact with cytokines IL-4 
or IL-13.[68] M2 microglia decreases inflammation by 
reducing the production of pro‑inflammatory cytokines 
and promoting the production of anti‑inflammatory 
molecules (IL-10, transforming growth factor 1 β, 
suppressor of cytokine signaling).[4,66]

Astrocytes are also involved in injury sites post-TBI 
by working with neurotrophic factors to upregulate 
neurotrophic factors that aide in axonal repair, increase 
cell proliferation, aid in neuronal survival, and inhibit 
programmed cell death.[66,69,70] In addition, astrocytes 
reduce glutamate excitotoxicity by regulating extracellular 
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glutamate levels.[66] While astrocytes produce beneficial 
effects post-TBI, excessive amounts of them often create 
a glial scar.[66,71] A glial scar is a physical and chemical 
barrier that surrounds the injury site and is created when 
astrocytes produce an inhibitory cellular matrix.[66,71] 
While glial scars do protect healthy portions of the brain 
from the neurotoxins of the injury site, it is damaging 
because it prevents efficient repair of damaged tissue.[66,71]

Neuroinflammation‑based Therapies

Since the primary injury is only treatable through 
preventative methods, most research focuses on secondary 
cell death. The delayed onset of neuroinflammation, 
compared to other secondary cell death processes, makes 
it a desirable treatment target.[72] Since neuroinflammation 
does not occur immediately after the injury, there is a 
greater therapeutic window for the administration of 
treatments. Future treatments ought to focus on methods 
to enhance the protective effects of neuroinflammation 
while simulataneously eliminating detrimental side effects.

One potential drug that may be used to target TBI-related 
inflammation is minocycline, a safe tetracycline derivative 
with anti-inflammatory characteristics that can pass 
through intact BBBs.[73-77] In animal studies, minocycline 
improved outcomes by decreasing inflammation and 
tissue damage.[77,78] Minocycline controls inflammation 
through several mechanisms by acting with other 
inflammatory regulators to decrease the concentrations 
of pro‑inflammatory cytokines and chemokines. This 
in turn reduces nitric oxide presence and prevents the 
over activation of microglia.[77,78] Because microglia 
promotes the pro-inflammatory cytokines IL-1 β, 
IL-6, and MMP-9, the reduction of microglial activity 
reduces inflammation.[78-80] Even though minocycline 
has numerous anti‑inflammatory properties, it has not 
proven to be very beneficial in TBI cases. Novel studies 
will need to examine whether the drug does not work 
in TBI or if the lack of therapeutic effect is due to factors 
such as dosage and method of administration.[78,81]

Melatonin, a hormone produced from the pineal gland 
with neuroprotective properties, may also prove useful 
in treating TBI.[82-92] Melatonin is a lipophilic enzyme, 
meaning that it can cross cell membranes, that decreases 
inflammation by inhibiting microglial activation and 
reducing pro-inflammatory cytokine concentrations 
(i.e., IL-1 β and TNF-α).[89,90] While some experimental 
trials have shown melatonin to reduce brain edema 
and cortical neuron degeneration, no cognitive benefits 
have been proven.[91] A possible reason for the lack of 
observed cognitive improvement is incorrect treatment 
dosages,[81] suggesting that melatonin may be able to 
repair inflammation‑based secondary damage. Before 
melatonin can be translated into a clinical setting, studies 

will need to test the hormone’s long-term effects and 
safety in TBI-models.

Statins, cholesterol-lowering drugs, displayed 
anti‑inflammatory, and neuroprotective properties in 
a mouse model of subarachnoid hemorrhage.[93] Statins 
decrease microglia and astrocyte activation: microglia by 
inhibiting the signaling pathways of toll-like receptor 4, 
nuclear factor kB (NF-kB), and G-proteins and astrocytes 
through the inhibition of epidermal growth factor 
receptors.[38,94,95] The reduced amount of microglia and 
astrocytes leads to a reduction of pro-inflammatory 
cytokines IL-1 β and TNF-α and intracellular adhesion 
molecules.[38,93,95] Statins have shown therapeutic effects 
in both animal and human TBI models. Preclinical 
studies have cited improved neuronal survival, growth, 
and differentiation[38] while clinical studies using 
rosuvastin over 10 days reported slight improvements in 
disorientation and amnesia.[96] While statins are relatively 
safe and predictable, more preclinical studies using the 
drug in TBI cases are needed to enhance clinical outcomes.

Another potential treatment option for TBI cases 
are stem cells, unspecialized cells with regenerative 
properties.[2,3,97] Stem cells have lots of potential in 
TBI because of their high degree of proliferation, 
ability to provide trophic support to surviving host 
cells, regulation of inflammation, and their potential 
to differentiate into and replace specific cells (such 
as neurons).[2,3,98-102] Stem cell therapy has been 
shown to improve cognitive and motor abilities, 
decrease inflammation and cell death, and promote 
regeneration.[3,103] Stem cells are either derived from 
adults, embryos, and fetuses. Adult stem cells are less 
likely to form tumors, easier to control, and raise less 
moral questions; embryo and fetal stem cells show 
higher degrees of plasticity, release more trophic 
factors, and show higher degrees of proliferation.[2,3,71]

Mesenchymal stem cells (MSCs) are particularly 
attractive for TBI treatments because they travel to 
the site of injury, regulate inflammation, proliferate, 
and activate other inflammatory cells.[104-106] MSCs 
likely control inflammation through TNF‑α-stimulated 
gene/protein 6 (TSG-6). TSG-6, promoted by TNF-α 
and IL‑1, is an anti‑inflammatory protein that inhibits 
the signaling pathway involved with toll-like receptors 
and NF-kB, inactivates parts of hyaluronan, and 
modifies T-cell behavior.[104,107,108] Because NF-kB 
regulates genes involved in inflammation and the 
synthesis of pro-inflammatory cytokines, inhibiting 
NF-kB impedes both the NF-kB signaling pathway 
and the following pro‑inflammatory effects.[107] TSG-6’s 
inactivation of hyaluronan and modification of T‑cell 
behavior also decreases inflammation, as hyaluronan 
is a pro‑inflammatory molecule and T‑cells go from 
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producing pro‑inflammatory cytokines (interferon γ) to 
anti‑inflammatory cytokines (IL‑4).[107,108]

In addition, MSCs strengthen the BBB by reducing 
the synthesis of several chemokines implicated in 
increased BBB permeability (CXCL2, CCL2, and 
RATNES). These chemokines are often produced by 
neurons and microglia and may contribute to immune 
and inflammatory responses.[104] CXCL2 contributes 
to neutrophil infiltration, CCL2 is a chemoattractant 
that incites immune cell relocation, and RANTES 
aids in T-cell activation.[104,109] MSCs use transforming 
growth factor β to downregulate the chemokines, 
in particular, CCL2. Transforming growth factor β 
works by activating Smad3, which in turn reduces 
transcription of CCL2. The reduction of the chemokines 
serves as an anti‑inflammatory method because of a 
subsequent reduction in the harmful effects of leukocytes, 
neutrophils, and microglia post-TBI.

A major issue with stem cell transplantations is the stem 
cells’ low survival rate in the injured area.[110] If stem cells 
are used in conjunction with treatments that can improve 
the host environment, it is likely that a better therapeutic 
outcome will occur. One potential second treatment 
option is granulocyte-colony stimulating factor (G-CSF), 
a cytokine able to augment the benefits of endogenous 
stem cells.[3] G-CSF as an unaccompanied treatment 
slightly decreases inflammation, improves motor 
dysfunctions, decreases brain edema, and regulates 
glutamate levels. In addition, treatment consisting 
of only human umbilical cord blood cells increases 
neurogenesis and slightly decreases hippocampal cell 
death. When the two treatments are combined, however, 
neurogenesis greatly improves, cell death significantly 
decreases, and therapeutic effects last longer.[3]

The US Food and Drug Administration has approved 
the usage of G-CSF as a drug due to its ability to enlist 
endogenous stem cells from the bone marrow into the blood 
stream for the purpose of promoting neuroprotection.[3] 
Furthermore, G-CSF is likely able to cross the BBB, bind 
to the G-CSF receptor on neurons and microglia, and 
promote therapeutic effects. These effects include a 
decreased concentration of inflammatory cytokines, 
increased angiogenesis in the brain, and decreased 
apoptosis.[3] Furthermore, bone marrow derived stem 
cells may indirectly affect the central nervous system by 
secreting trophic growth factors, chemokines, and cytokines 
that aid in neuroprotection and neuroregeneration.[3]

Future Direction of Anti‑inflammation as a 
Therapy for Traumatic Brain Injury

Regulating neuroinflammation appears to be a strong 
potential treatment option for dealing with TBI, as it can 

be both detrimental and beneficial to the recovering brain. 
Immune cells, astrocytes, cytokines, and chemokines are 
all important to the brain’s recovery, but contribute to 
secondary death when present in excessive levels. Ideally, 
a treatment would be able to regulate the activation 
and deactivation of these cells to provide their needed 
benefits and avoid their hindrances. Additional studies 
are warranted to reveal cell death pathways relevant to 
inflammation, which should reveal insights on potential 
strategies in sequestering inflammation and its associated 
neurodegenerative processes. A complete understanding 
of TBI, inflammation, and disease progression will prove 
beneficial in improving clinical outcomes for TBI patients.
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