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Abstract: Bimetallic catalysts are gaining attention due to their characteristics of promoting reactivity
and selectivity in catalyzed reactions. Herein, a new catalytic N-formylation of secondary amines
using AuPd–Fe3O4 at room temperature is reported. Methanol was utilized as the formyl source
and 1.0 atm of O2 gas served as an external oxidant. The bimetallic catalyst, consisting of Au and Pd,
makes the reaction more efficient than that using each metal separately. In addition, the catalyst can
be effectively recycled owing to the Fe3O4 support.

Keywords: formylation; gold nanoparticle; heterogeneous catalysis; methanol; bimetallic catalyst;
recyclable catalyst

1. Introduction

Formamide groups are important in organic chemistry because of their abundance
in natural products or utility as a valuable intermediate in synthesis (Scheme 1a), and
pharmaceuticals (Scheme 1b) [1]. For example, this moiety is found in N-formylloline, an
alkaloid produced by grass [2], and acts as an intermediate in biochemical processes, such
as methanogenesis [3]. Some examples of formamide-containing drugs are benfotiamine
(diabetic neuropathy) [4], leucovorin (toxic effects of methotrexate and pyrimethamine) [5],
vincristine (anticancer) [6], and fursultiamine (thiamine deficiency) [7]. Considering the
prevalence and importance of the formamide functionality, many researchers have de-
veloped efficient methods for attaching a formyl group to an amine [8–10]. One of the
most direct methods to synthesize formamides is the direct N-formylation of amines with
a formate ester, organosilicon reagent, formic acid or cyanide [8,9,11–14]. However, this
process generates halide byproducts, and more environmentally friendly methods using
green formyl sources have been actively pursued [15–17].

Among formyl sources, methanol is an ideal C1 source because of its availability
and ecofriendly properties compared with other reagents [18,19]. It is one of the most
popular C1 sources in organic reactions, such as methylation [20–24], formylation [25–27],
and methoxylation [28–30], forming C–C, C–N, and C–O bonds, respectively. Therefore,
developing a new catalytic route for the synthesis of formamides with methanol as a
sustainable building block would be a valuable addition to the synthetic toolbox.

Currently, there are a handful of catalytic N-formylation reactions of amines with
methanol in the literature (Scheme 2). Both homogeneous and heterogeneous catalysts
have been widely used for this transformation. Homogeneous catalysts are one of the most
popular tools, owing to their high reactivities (Scheme 2a) [31–33]. For example, Glorius
and coworkers reported the N-formylation of amines catalyzed by the Ru–NHC catalyst in
2013 [34]. In 2017, the Milstein group achieved the acceptorless dehydrogenative coupling
of methanol and amines using a manganese catalyst [35]. Hong and coworkers reported
the N-formylation of amines with methanol in the presence of ruthenium catalysts in 2015
and 2019 [36,37]. In addition to these representative examples, various transition metal
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catalysts have been employed in N-formylation [38–44]. However, despite their merits,
homogeneous catalysts are generally difficult to recover and show low stability compared
to heterogeneous catalysts. Therefore, heterogeneous catalysts have been considered as
alternatives because of their recyclability and ease of handling (Scheme 2b) [26,45–47]. Au-
containing heterogeneous catalysts have often been employed as highly efficient catalysts
for the oxidation of alcohols and their coupling reactions with other reactants [48–51].
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(b) pharmaceuticals.

For example, in 2009, Sakurai and coworkers reported the N-formylation of ani-
lines using Au nanoclusters stabilized by poly(N-vinylpyrrolidone) (Au:PVP) [52]. In the
same year, Ishida et al. developed the N-formylation of benzylamine using supported
Au nanoparticles, such as Au/NiO or Au/Al2O3 [53]. Using hydrogen peroxide as an
oxidant, Reddy developed the room-temperature N-formylation of amines using a copper
catalyst [54]. In 2013, the reaction of aliphatic amines using AuNPore under 1.0 atm of
O2 gas was developed by Tanaka et al. [55]. However, most of these reactions require
high temperatures or high O2 gas pressures. Therefore, the development of a simple
experimental procedure under relatively mild conditions is still required.
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Based on our continuous efforts toward the development of metal nanoparticle–
Fe3O4 catalysts, such as Pd–Fe3O4 [56], we developed a series of heterogeneous transition
metal nanocatalysts for efficient organic transformations [57–62]. In particular, bimetallic
combinations of various transition metals on an Fe3O4 support have been very useful
catalysts for efficient, selective organic transformations [63–67]. Because Au nanoparticle
catalysts have been widely used in a variety of oxidative reactions, we prepared bimetallic
AuPd–Fe3O4 nanoparticle catalysts for selective redox reactions and developed the efficient
reductive amination of nitroarenes and aldehydes [65] and oxidative conversion of 5-
hydroxymethylfurfural to furan-2,5-dimethylcarboxylate [66].

Herein, we report a new and efficient protocol for secondary amine N-formylation
through methanol oxidation, using AuPd–Fe3O4 as a reusable catalyst (Scheme 2c). Methanol
serves not only as the formylating agent, but also as the solvent, and the reaction proceeds
at room temperature under 1.0 atm of O2 gas as an external oxidant.
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2. Materials and Methods

All commercially available chemicals were used as received without further purifica-
tion. HAuCl4·3H2O (+49% Au basis) and PdCl2 (99% purity) were purchased from Alfa
Aesar (Ward Hill, MA, USA). N-methyl-1-phenylmethanamine and polyvinylpyrrolidone
(PVP) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Cesium hydroxide
monohydrate was purchased from Acros Organics (Pittsburgh, PA, USA). Fe3O4 NPs were
purchased from DK nano technology (Beijing, China).

3. Results
3.1. Catalyst Characterization

The bimetallic AuPd–Fe3O4 catalyst was synthesized following a procedure previ-
ously developed in our laboratories [65]. Adding palladium(II) chloride (PdCl2) in ethy-
lene glycol, gold(III) chloride trihydrate (HAuCl4·3H2O) in water, and aqueous sodium
borohydride solution dropwise sequentially to a Fe3O4 solution in water and stirring
under 60 ◦C for 5 h afforded AuPd–Fe3O4 nanoparticles. These were characterized by
scanning electron microscopy (SEM, Figure S1) by JSM-7800F Prime (JEOL Ltd., Tokyo,
Japan), energy-dispersive X-ray spectroscopy (EDS, Figures S2 and S3) by JSM-7800F Prime
(JEOL Ltd., Tokyo, Japan), high-resolution transmission electron microscopy (HR-TEM,
Figures S4 and S6) by JEM-3010 (JEOL Ltd., Tokyo, Japan), scanning transmission electron
microscopy (STEM, Figure S5) by JEM-ARM200F (JEOL Ltd., Tokyo, Japan), and X-ray
photoelectron spectroscopy (XPS, Figure S7) by AXIS SUPRA (Kratos Analytical Ltd.,
Manchester, UK). The binding energy peaks of Pd 3d in Pd–Fe3O4 were positioned at
339.8 and 334.6 eV, corresponding to Pd(0) species. Au 4f peaks appeared at 86.9 and
83.3 eV for Au–Fe3O4, indicating the presence of Au(0) species. For AuPd–Fe3O4, the
Pd 3d peaks appeared at 339.6 and 334.3 eV and the Au 4f peaks appeared at 86.8 and
83.1 eV, slightly lower than those of the corresponding monometallic nanoparticles. This
phenomenon appears to stem from the interaction of Pd and Au, changing the electronic
structure because of the formation of an AuPd alloy [68–71]. The lowered binding energy
of Au(0) is expected to result from the electron transfer from Pd to Au. However, the reason
why the Pd(0) peak shifted to a slightly lower value is not fully understood. SEM, HR-TEM,
and STEM images show that Au and Pd were successfully deposited as an alloy on the
iron oxide support (Figures 1 and 2a and Figure S5), with the Au and Pd atoms randomly
distributed. AuPd–Fe3O4 X-ray diffraction (XRD) data obtained by D8 Advance (Bruker,
Billerica, MA, USA) compared with those of both Au–Fe3O4 and Pd–Fe3O4 revealed that
the AuPd–Fe3O4 is made up with Au−Pd bimetallic alloy dispersed on the Fe3O4 surface
(Figure 2b and Figure S9). Inductively coupled plasma-atomic emission spectroscopy
(ICP-AES) data obtained by OPTIMA 8300 (Perkin-Elmer, Waltham, MA, USA) revealed
that the AuPd–Fe3O4 nanoparticles (NPs) consist of 8.92 wt% Au and 5.19 wt% Pd at a
molar ratio of 1.00:1.08 (Figure S8).
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Figure 2. (a) STEM-EDS image and (b) XRD data of AuPd–Fe3O4 catalyst.

3.2. Reaction Optimization

Following successful preparation of AuPd–Fe3O4, we sought the optimum reaction
conditions for the N-formylation of amines under oxidative conditions. We chose methanol
as the formyl group source because it can be readily oxidized to formaldehyde, forming an
hemiaminal upon reaction with an amine. We hypothesized that the resulting hemiaminal
could be further oxidized to an N-formyl group under catalytic oxidation conditions with
AuPd–Fe3O4 catalyst.

Because the formylation of amine by methanol requires the oxidation of methanol
to an hemiaminal and subsequent dehydrogenation of the hemiaminal, an appropriate
oxidant should be selected. Various oxidants have been used for alcohol oxidation [72–74].
O2 gas was chosen as the oxidizing agent to avoid chemical waste problems [75–81].

Initially, a primary amine, such as benzylamine, was mixed with 1.4 mol% of AuPd–
Fe3O4 (2.8 mol% of total metal contents except for Fe) and methanol under 1.0 atm of O2
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gas, but no N-benzylformamide product was detected, while the starting material remained.
Subsequently, we added 3.0 equivalents of sodium hydroxide, which led to the formation of
N-benzylformamide in 25% yield after 18 h. In addition, several unknown high-molecular-
weight products, along with a small amount of benzonitrile, were detected from liquid
chromatography-mass spectrometry (LC-MS) analysis of the crude mixture. These results
suggest that the base plays an important role in the conversion of the amine substrate.
According to a report from Mallat group [75], bases are known to facilitate hydrogen
abstraction in alcohol dehydrogenation with Au catalysts. However, because the reaction
of a primary amine did not yield a clean formylation product, we focused our attention on
the formylation of secondary amines. Our first reaction of N-methyl-1-phenylmethanamine
with methanol, in the presence of AuPd–Fe3O4 with sodium hydroxide as a base, yielded
the desired N-benzyl-N-methylformamide in 65% NMR yield (Scheme 3).
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Scheme 3. Initial observation of formamide under AuPd–Fe3O4.

Based on these initial findings, various reaction conditions were tested, and the results
are presented in Table 1 and Tables S1– S3. Using N-methyl-1-phenylmethanamine (1a) as a
standard substrate, we tested various reaction conditions with methanol as the formylating
agent. Using only iron oxide as a catalyst and sodium hydroxide as a base resulted no
progress of the reaction at all (entry 1). However, a reaction with 2.8 mol% Pd–Fe3O4
catalyst furnished N-benzyl-N-methylformamide (2a) at a 55% yield (entry 2). Reactions
with other monometallic catalysts, such as Au–Fe3O4, showed low reactivity (entry 3).
The use of the AuPd–Fe3O4 bimetallic catalyst afforded the product in 65% yield (entry 4).
Without a base, the reaction was sluggish (entry 5). When the O2 balloon was replaced
with an air balloon, the reactivity lowered to afford the desired product at only 43% yield
(entry 6). By changing the base to cesium carbonate, we observed a yield similar to that
of the reaction using sodium hydroxide (entry 7). However, other inorganic bases were
not as effective as hydroxide bases. The reaction using cesium hydroxide monohydrate
afforded 90% yield under the same conditions (entry 8). Furthermore, the reaction yield
was maintained when the reaction was scaled up to 0.50 mmol (entry 9). The reaction
was complete in 4 h when the substrate concentration was increased from 0.20 to 1.0 M,
resulting in 89% yield (entry 10). A reaction using ethanol instead of methanol afforded
the acetylated product in 42% yield (entry 11). The catalyst loading could be low as
0.40 mol% without significant loss of yield, which is translated to high turnover number
(TON) (entry 12 and Table S3).

Knowing that hydroxide bases were effective, we performed further investigations
with bases (Table 2 and Table S2). Without a base, only 14% yield of 2a was obtained
(entry 1). Reactions employing LiOH·H2O and NaOH resulted in 60% and 65% yields,
respectively, of the desired products (entries 2 and 3). The use of slightly stronger hy-
droxide bases, such as KOH or CsOH·H2O, ensured 75% and 91% yields, respectively
(entries 4 and 5). However, carbonate bases were not as effective as hydroxide bases
(entries 6 and 7). Reaction yields obtained with other bases, including KOtBu, K3PO4, and
CsF, were moderate (entries 8–10). In summary, CsOH·H2O was the optimal base.
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Table 1. Screening data of the N-formylation of amine 1.
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1 - 14 6 K2CO3 54
2 LiOH·H2O 60 7 Cs2CO3 69
3 NaOH 65 8 KOt Bu 69
4 KOH 75 9 K3PO4 60
5 CsOH·H2O 91 10 CsF 39

1 Reaction conditions: 1a (0.20 mmol), AuPd–Fe3O4 (1.4 mol%), base (3.0 equiv), O2 (1.0 atm), methanol (1.0 mL),
r. t., 18 h. 2 Determined from 1H NMR spectral analysis through the use of mesitylene as an internal standard.

3.3. Effect of Alloy Bimetallic Catalyst vs. Combination of Two Metal Catalysts

To investigate the distinctive advantage of the bimetallic nanocatalyst, several control
experiments were conducted (Table 3). Because we used 1.4 mol% of AuPd–Fe3O4 to
obtain the optimum results with 1a, reactions with 2.8 mol% of either Au–Fe3O4 (entry 1)
or Pd–Fe3O4 (entry 2) were performed under the standard reaction conditions to test
the reactivity of each monometallic catalyst. The N-formylation reactions of N-methyl-1-
phenylmethanamine, employing either Au or Pd catalysts, were not as efficient as that
employing the AuPd catalyst (entry 4), giving 51% and 57% yields of 2a, respectively. To
further investigate the alloy nanocatalyst, we examined the reactions of other substrates,
such as N-methyl-1-(p-tolyl)methanamine, 1-(4-methoxyphenyl)-N-methylmethanamine,
N-methyl-1-(3-nitrophenyl)methanamine, and 3-(methylaminomethyl)benzonitrile. With
2.8 mol% of Au–Fe3O4 (entry 1) or 2.8 mol% of Pd–Fe3O4 (entry 2), the reactions of sec-
ondary amines showed lower yields than those using AuPd–Fe3O4 (entry 4). These results
indicate that both Au and Pd within the alloy catalyst contribute to product formation
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through a synergistic effect [82–86]. When we used 1.4 mol% each of both Au–Fe3O4
and Pd–Fe3O4, interestingly the reaction of N-methyl-1-phenylmethanamine afforded
90% yield of the desired product (entry 3). The fact that similar product yields were ob-
tained from the reactions employing AuPd and the combination of the Au and Pd toward
N-methyl-1-phenylmethanamine was an exception rather than a general trend, as can be
seen in the reactions of various substituted N-methylarylmethanamines. Reactions of
other substrates with both Au–Fe3O4 and Pd–Fe3O4 provided the corresponding products
with much lower yields than those obtained with the bimetallic AuPd catalyst. To rule
out the possibility of homogeneous catalysis with both Au and Pd leached out into the
solution, we carried out a filtration experiment [59,60]. The solution from a reaction of
N-methyl-1-phenylmethanamine with 1.4 mol% AuPd-Fe3O4 under the optimized condi-
tion after 0.5 h was filtered through a syringe filter. The filtrated solution was then stirred
for 6 h under O2 atmosphere, and the progress of the reaction was checked. There was no
further increase in the reaction yield. This result shows that the homogeneous solution did
not drive the reaction further without the nanocatalyst, indicating that there is no catalysis
from any homogeneous metal species. Next, we also tested the kinetics in the reaction of
N-methyl-1-phenylmethanamine, employing either Au, Pd, a mixture of Au and Pd, or
AuPd catalyst (Figure S14). The differences in the reaction rates indicate that there is a
distinctive synergistic effect within the bimetallic catalyst, as the reaction employing this
catalyst proceeded the fastest. Thus, considering both the product yields and the initial
kinetics, there is an advantage in employing the bimetallic alloy catalyst, instead of using
the monometallic catalysts separately.

Table 3. Comparison on the Effect of Alloy Bimetallic Catalyst and Combination of Two Metal
Catalysts 1.
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Entry Catalyst 3
Product Yield with Various R Group (%) 2

H 4-Me 4-OMe 3-NO2 3-CN

1 4 Au 51 61 27 25 23
2 5 Pd 57 28 18 8 5
3 6 Au + Pd 90 62 34 26 32
4 7 AuPd 91 69 83 73 59

1 Reaction conditions: 1 (0.20 mmol), catalyst, CsOH·H2O (3.0 equiv), O2 (1.0 atm), methanol (1.0 mL), r. t.,
18 h. 2 Yields were determined from 1H NMR spectral analysis through the use of mesitylene as an internal
standard. 3 Catalyst composition: Au–Fe3O4 (5.47 wt% Au), Pd–Fe3O4 (8.20 wt% Pd), AuPd–Fe3O4 (11.7 wt% Au,
6.23 wt% Pd, Au:Pd = 1:0.99). 4 Au–Fe3O4 (2.8 mol%) used. 5 Pd–Fe3O4 (2.8 mol%) used. 6 Au–Fe3O4 (1.4 mol%),
Pd–Fe3O4 (1.4 mol%) used. 7 AuPd–Fe3O4 (1.4 mol%) used.

3.4. Substrate Scope

Using the optimized condition, we tested the N-formylation of various secondary
amines bearing substituted aromatic rings, using 0.25 M of substrate over 18 h (Scheme 4).
From the reaction of unsubstituted N-methyl-1-phenylmethanamine, N-formylated product
was obtained in 84% (2a). Substrates bearing a methyl group on the aromatic ring furnished
a good product yield, regardless of its position (2b–2d). Reactivity was maintained in the
case of a substrate with two methyl groups on the aromatic ring (2e). High yield (87%) was
also observed from a sterically hindered substrate possessing methyl groups at positions 2
and 6 (2f) when the reaction was run at 0.20 M (0.20 mmol scale). The reactions of substrates
possessing a strong electron-donating methoxy group resulted in good yields (81% and
83%, 2g and 2h, respectively). The reaction of N-methyl-1-(naphthalen-1-yl)methanamine
also resulted in good yield (80%, 2i). When an electron-withdrawing group exists on the
aromatic ring, good to moderate yields of the desired products were obtained (85%, 83%,
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61% and 58% for 2l–2o, respectively). Reactions of substrates bearing fluorine(s) resulted in
acceptable product yields (73% and 79% for 2j and 2k, respectively). Interestingly, reactions
of amines with trifluoromethyl groups at the 3 or 4 position on the aromatic ring furnished
good yields (85%, 83%, and 75% for 2l, 2m, and 2q, respectively) compared with other
electron-deficient amines. Reactions of substrates possessing other electron-withdrawing
substituents, such as nitro- or cyano- groups, yielded products with 61% and 58% yields (2n
and 2o), respectively. In addition, the reaction of N-methylaniline resulted in the desired
formylated product in 82% yield (2p). We confirmed that not only N-methylamines, but
other N-alkyl-substituted secondary amines are also good substrates for the reaction, as
shown in the case of 2q and 2r, with the reaction of N,N-dibenzylamine, resulting in 73%
yield (2r). In the reactions of non-benzylic secondary alkylamines, products were obtained
in moderate yields (55%, 57%, and 66%, 2s–2u, respectively). We hypothesized that the
reactions could be run at higher concentrations and thus expedited. When reactions were
conducted at 1.0 M, most were completed in 6–8 h instead of 18 h at 0.20 M. The reactions
of several substrates maintained their yields at higher concentrations in shorter reaction
times, and the results are shown in the supporting information (Table S6).

3.5. Mechanistic Investigation

Based on the results of optimization and the substrate scope investigation, we con-
ducted several kinetic experiments and control experiments to probe the reaction mecha-
nism (Figures S15 and S16, and Table S7). To summarize the results, the amine substrate
(1) is consumed under oxidative condition in the presence of AuPd–Fe3O4 catalyst in
methanol. The oxidation of methanol in the presence of the catalyst by the assistance of a
base generates mostly HCHO and a small portion of HCO2Me, which rapidly react with
an amine to furnish N-formamide (2). The formation of HCO2H from methanol was ruled
out because almost no HCO2H was detected from the control oxidation of methanol. Both
methanol and the resulting hemiaminal intermediate (3) are oxidized by the AuPd–Fe3O4
catalyst. These results are presented in Scheme 5.

3.6. Effect of Au:Pd Ratio and Various Supports

To further investigate the correlation between the Au:Pd ratio and the product yield,
we synthesized catalysts with various Au:Pd ratios and tested them using 2.0 mol% of
catalyst under the same reaction condition (Table 4 and Figure S10). The ~1:1 atomic ratio
of Au and Pd was found to be the best combination. Additionally, to test the effect of
iron oxide, we synthesized several AuPd catalysts with various supports for comparison
(Tables S4 and S5 and Figure S13). AuPd on the iron oxide support showed the highest
reactivity for N-formylation.

3.7. Recycling Test

Because heterogeneous catalysts are employed for easy recovery and reuse, the re-
cyclability of AuPd–Fe3O4 was tested based on the optimized condition (Figure 3). In
the recycling experiment with 1a, the catalytic activity was maintained without signifi-
cant loss of yield. Based on our previous report [66], a strong base disintegrates the iron
oxide support, resulting in poor recyclability. However, the catalytic activity was some-
how maintained for 9 cycles. When the SEM and HR-TEM images of the catalyst after
10 cycles were examined, Au and Pd particles appeared to be significantly agglomerated
(Figures S11 and S12). Additionally, the ICP-AES data of the used catalyst showed lower
Au and Pd contents (wt%) (Figure S8). Therefore, considering the excess amount of strong
base and oxidative environment that can be detrimental to the catalyst, our reaction system
has some reusability advantages.
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Table 4. Reactivity comparison of various AuPd catalysts 1.
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Entry Catalyst Yield 2

1 Au1Pd0.23–Fe3O4 76
2 Au1Pd0.39–Fe3O4 76
3 Au1Pd1.08–Fe3O4 91
4 Au0.65Pd1–Fe3O4 79
5 Au0.39Pd1–Fe3O4 69

1 Reaction conditions: 1a (0.20 mmol), catalyst (2.0 mol%), CsOH·H2O (3.0 equiv), O2 (1.0 atm), methanol (1.0 mL),
r. t., 18 h. 2 Determined from 1H NMR spectral analysis through the use of mesitylene as an internal standard.
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3.8. Gram Scale Reaction

We subsequently performed a gram-scale reaction (Scheme 6). At a 10 mmol scale,
the reaction of 1r afforded 2r in 72% yield, demonstrating the viability of the reaction in
organic synthesis.
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4. Conclusions

In conclusion, we developed a novel catalytic system for the mild synthesis of for-
mamides in good-to-moderate yields. Utilizing a reusable AuPd bimetallic nanocatalyst,
we synthesized formamides at room temperature under atmospheric pressure of O2. The
use of methanol as the formyl source, instead of toxic or polluting reagents, bodes well for
sustainable organic synthesis. During the investigation of various catalysts, the bimetallic
alloy AuPd–Fe3O4 catalyst proved to be superior to either of the monometallic catalysts.
Based on the product yield and initial kinetics, there appears to be a synergistic effect
between the Au and Pd during the reaction. The broad substrate scope could enlarge the
N-formylation reaction library. The formamide yield was the highest when the Au:Pd ratio
was ~1:1. In addition, the AuPd on the Fe3O4 support proved to be more effective than
AuPd catalysts on other supports. Furthermore, the reaction was scalable to the gram scale.
This new method avoids the requirements of high temperature and high pressure of O2
gas. Moreover, the good recyclability of the catalyst broadens the potential applications of
the reaction.
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