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Abstract

Background: Dysregulation of alternative splicing (AS) is a critical signature of cancer. However, the regulatory
mechanisms of cancer-specific AS events, especially the impact of DNA methylation, are poorly understood.

Methods: By using The Cancer Genome Atlas (TCGA) SpliceSeq and TCGA data for ten solid tumor types, association
analysis was performed to characterize the potential link between cancer-specific AS and DNA methylation. Functional
and pathway enrichment analyses were performed, and the protein-protein interaction (PPI) network was constructed

with the String website. The prognostic analysis was carried out with multivariate Cox regressions models.

Results: 15,818 AS events in 3955 annotated genes were identified across ten solid tumor types. The different DNA
methylation patterns between tumor and normal tissues at the corresponding alternative spliced exon boundaries
were shown, and 51.3% of CpG sites (CpGs) revealed hypomethylated in tumors. Notably, 607 CpGs were found to be
highly correlated with 369 cancer-specific AS events after permutation tests. Among them, the hypomethylated CpGs
account for 52.7%, and the number of down-regulated exons was 173. Furthermore, we found 38 AS events in 35
genes could serve as new molecular biomarkers to predict patient survival.

Conclusions: Our study described the relationship between DNA methylation and AS events across ten human solid
tumor types and provided new insights into intragenic DNA methylation and exon usage during the AS process.
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Background

Alternative splicing (AS) is one of the conserved biological
processes diversifying the transcriptome and proteome [1].
Pre-mRNA splicing is a key step of gene expression in
which introns within nascent RNA are removed, and exons
are ligated to form mature mRNA [2]. It is estimated that
more than 90% of human genes with multiple exons
undergo AS during pre-mRNA maturation, highlighting
the importance of AS in determining gene function (3, 4].
Recently, AS has been implicated as an important signature
to understand tumorigenesis, cancer progression, and re-
sistance to therapy [5]. Several lines of evidence have shown
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that the disruption of AS is frequently associated with the
inactivation of tumor suppressors and activation of onco-
genes [6, 7]. For example, Bcl-x, an apoptosis regulator, is
found to be switched from its pro-apoptotic into anti-
apoptotic splicing isoforms in a number of cancer types [8,
9]. Another well-characterized example is CD44, whose dif-
ferent splicing isoforms have been associated with tumor
evasion and metastasis [10, 11]. Moreover, Kahles and col-
leagues have recently provided a comprehensive landscape
of AS events across different tumor types [12]. Other stud-
ies have also reported the prognostic value of AS events in
multiple cancer types, such as ovarian cancer [13], breast
cancer [14], glioblastma [15] and gastrointestinal adenocar-
cinomas [16], suggesting a predominant role of splicing
dysregulation in cancers.
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The splicing reaction is generally regulated by cis-ele-
ments within the pre-mRNA and trans-acting splicing fac-
tors that bind to these cis-elements [17]. Alterations of
splicing factors, mutations in spliceosomal proteins, and
regulation exerted by pre-mRNA cis-elements can all con-
tribute to the splicing alterations in cancers [18—20]. Add-
itionally, epigenetic modification has been recently
proposed as another regulator of alternative pre-mRNA
splicing patterns [11, 21, 22]. The genome-wide mapping
analysis has unveiled that DNA methylation was a strong
marker for exon boundaries and suggested the possible
role of DNA methylation in exon definition and splicing
regulation [23, 24]. Anastasiadou et al. have reported that
the increased CpG methylation was frequent in alterna-
tively spliced sites [25]. In support, by studying wild-type
and methylation deficient embryonic stem cells, Yearim
et al. have found that DNA methylation could affect the
splicing of more than 20% of alternative exons [26].

The global change of splicing in tumor tissues in com-
parison to their normal tissue counterparts is increasingly
appreciated. However, the regulatory mechanisms under-
lying cancer-specific AS events, especially the influence of
DNA methylation on AS, remain poorly understood. To
figure out the association between AS events and DNA
methylation of alternatively spliced exons, we first com-
pared the transcriptome-wide splicing between tumor and
matched normal tissues across ten solid tumor types. Fur-
ther, we compared the DNA methylation of CpG sites
(CpGs) at the boundaries of alternatively spliced exons. Fi-
nally, we utilized correlation analysis and permutation test
to assess whether there is an association between DNA
methylation and cancer-specific AS events. By these means,
we expect to explore the role of methylation in exon usage
during transcriptional process and carcinogenesis.

Methods

Overall workflow

The overall workflow of the present study is shown in Fig. 1.
Using TCGA SpliceSeq dataset for ten solid tumor types, AS
events were analyzed in 580 paired tumor-normal tissues.
Then, the methylation levels of CpGs at the boundaries of
alternatively spliced exons were compared between 641 nor-
mal and tumor samples from TCGA. Subsequently, we cor-
related cancer-specific AS events with methylation features
and observed a significant association between them. To fur-
ther understand the function and mechanism of the genes
containing methylation-associated cancer-specific AS events,
functional enrichment, and network analyses were applied.
Finally, we found that a set of cancer-specific AS events
could serve as reliable prognostic biomarkers for cancers.

Data acquisition
Data on transcriptome alterations were downloaded from
TCGA SpliceSeq portal (http://bioinformatics.mdanderson.
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org/TCGASpliceSeq/). TCGA SpliceSeq is a web-based
bioinformatics resource containing the mRNA splicing pat-
terns of 33 types of TCGA cancers and adjacent normal
samples. SpliceSeq can be used to calculate the “percent
spliced in” (PSI) value for each splicing event in each cancer
sample [3], which provides a clear view of the splice junc-
tion and the proportion of exons included in different sam-
ples. PSI values were utilized to quantify seven types of AS
events: exon skip (ES), alternate donor site (AD), alternate
acceptor site (AA), retained intron (RI), mutually exclusive
exons (ME), alternate terminator (AT) and alternate pro-
moter (AP) [27]. In the present study, AS events (379,749
in total) that have PSI values in more than 75% of samples
were included.

Data of somatic mutations, copy number variations,
mRNA expression, and DNA methylations were down-
loaded from publicly released TCGA level 3 data (proc-
essed data from USCS Cancer Genome Browser). In this
study, ten types of cancers were included: breast invasive
carcinoma (BRCA), colon adenocarcinoma (COAD), head
and neck squamous cell carcinoma (HNSC), kidney renal
clear cell carcinoma (KIRC), kidney renal papillary carcin-
oma (KIRP), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), prostate adenocarcinoma (PRAD) and thyroid
carcinoma (THCA). Ilumina Human Methylation 450
BeadChip (450K array) was used for DNA methylation
data. Patient clinical information was also downloaded
from TCGA dataset. The sample size of each cancer is
summarized in Additional file 1: Table S1.

Gene coordinates and RefSeq annotations were obtained
from UCSC (Jul 2013 release, hg 19) [28]. All the features
of exons and introns referred to RefSeq genes. The ‘exon
boundary’ was determined as 200 nucleotides in size for in-
tronic regions and 39 nucleotides for exonic regions [29].

Identification of cancer-specific AS events and methylated
CpGs

Wilcoxon paired test was applied to compare the PSI
values between tumor tissues and matched adjacent nor-
mal tissues. In each cancer type, we identified cancer-
specific AS events that satisfied the following criteria: (1)
the distributions of PSI values were significantly different
between tumor and normal tissues (FDR < 0.05); (2) the
change of PSI values (|24PSI|) between tumor and normal
tissues was greater than 0.1. Differentially methylated
CpGs were detected by applying a paired t-test, setting the
absolute average methylation change (|2meth|)>0.1 and
FDR <0.05 as selection criteria. All statistical analyses
were performed using R software (version 3.6.0).

Correlation analysis and permutation test
Patients with both splicing information and methylation
data were used for correlation analysis. Covariance analysis
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model, after adjusting for copy number variants and som-
atic mutation in tumor, as well as Spearman correlation
analysis in normal tissues, were performed to investigate
the correlations between PSI and DNA methylation re-
spectively. In order to infer their statistical significance, we
further carried out the permutation test. The number of
permutations was 1000, and we considered the permutation
P<0.05 was statistically significant. In the present study,
the aovperm() function in R package “permuco” and spear-
man_test() function in package “coin” were used for permu-
tation tests.

Functional enrichment analysis

Gene Ontology (GO) enrichment and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analyses were
conducted on genes with methylation-associated cancer-
specific AS events using “ClusterProfiler” package in R
software [30]. GO and KEGG enrichment analyses were
based on the threshold of FDR < 0.05.

Protein-protein interaction analysis
Genes with significantly methylation-associated AS events
were analyzed through the protein-protein interaction (PPI)
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network. The PPI analysis was constructed with the Search
Tool for the Retrieval of Interacting Genes/Proteins
(STRING, https://string-db.org/cgi/input.pl) [31]. The con-
fidence score > 0.4 and the maximum number of interac-
tors = 0 were set as the selection criteria.

Survival analysis

To assess the prognostic value of cancer-specific AS events
and methylated CpGs, we performed survival analysis by
using the “survival” package in R. The Cox proportional
hazard model was utilized to test the interactions between
different variables and overall survival in multivariate ana-
lysis by adjusting for age, gender, TNM stage and adjuvant
therapy (including chemotherapy and radiotherapy). P <
0.05 was considered as the threshold for significance.

Results

Identification of cancer-specific AS events in common
solid tumors

To systematically characterize abnormal AS events in
common solid tumors, we compared PSI values between
tumors and matched adjacent normal tissues. We found
that 15,818 AS events in 3955 annotated genes were sig-
nificantly altered in cancer vs. normal tissues. Splicing
alterations were most abundant in KIRC and LUAD,
while least in COAD (Additional file 1: Table S2). For
KIRC, a total of 2678 differential AS events in 1550
genes were identified, including 81 AAs in 74 genes, 91
ADs in 83 genes, 1190 APs in 643 genes, 535 ATs in
286 genes, 611 ESs in 474 genes, 12 MEs 12 genes, and
142 RIs in 137 genes. For LUAD, a total of 2212 differ-
ential AS events in 1369 genes were identified (Fig. 2a).

For the seven AS events types, we found that AP and ES
took up 44.0 and 21.2% of the AS events, respectively,
followed by AT (19.9%). In addition, we observed that the
numbers of AS events with increased vs. decreased PSI
values were similar, with the exception of RI and AD
events. (Fig. 2b).

Notably, one gene could possess more than one
cancer-specific AS events. The numbers of genes that
possess differential AS events in varied cancer types are
depicted in Fig. 2c.

Identification of differentially methylated CpGs at exon
boundaries

To examine the differences of DNA methylation, we re-
trieved methylation data of CpGs at exon boundaries
from TCGA data portal. After comparing between
tumor and matched normal tissues, we identified a large
amount of CpGs with differential methylation levels
(Fig. 3a). Totally, 1180 CpGs were detected, among
which KIRC displayed the highest number of CpGs, in-
cluding 5 CpGs in AA, 3 CpGs in AD, 186 CpGs in AP,
23 CpGs in AT, 15 CpGs in ES and 18 CpGs in RI
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(Additional file 1: Table S3). We also observed that the
proportions of hypomethylated CpGs in different solid
tumors were similar, with the exception of COAD
(32.4%) and PRAD (10.9%) (Fig. 3b). When comparing
the differentially methylated CpGs in varied types of AS
events, 833 CpGs were identified in AP type, of which
48.6% were hypomethylated. The proportions of hypo-
methylated CpGs in other types of AS were similar, ran-
ging from 43.9% in ES to 66.7% in AD (Fig. 3c). Taken
together, hypomethylation was a more frequently ob-
served form of differential methylation in tumor tissues,
compared to hypermethylation.

Correlation between cancer-specific AS events and DNA
methylation

To explore possible regulatory mechanisms of cancer-
specific AS, we further applied correlation analysis between
the PSI values and methylation levels of CpGs at alterna-
tively spliced exon boundaries. A significant association
between PSI and DNA methylation was observed from the
covariance analysis model after adjusting for covariates, in-
cluding copy number variants and somatic mutation. After
performing the permutation test, 891 CpGs were found to
be highly correlated with 483 cancer-specific AS events
(permuted P < 0.05) (Additional file 1: Table S4). To better
determine whether the changes in AS resulted from chan-
ged methylation levels or vice versa, we also performed as-
sociation analysis in the normal tissues. Results showed
that the methylation levels of 607 CpGs were not signifi-
cantly correlated to PSI in the normal tissues after permu-
tation tests (permuted P<0.05) (Additional file 1: Table
S4). The number of PSI-associated CpGs is presented in
Fig. 4a. Among them, 320 CpGs were hypomethylated, and
287 were hypermethylated in tumor tissues. Expect for
COAD, LIHC, LUAD, LUSC, and PRAD, the hypomethy-
lated CpGs account for more than half of AS-associated
CpGs in cancers (ranging from 54.5 to 95.7%)(Add-
itional file 2: Figure S1-A). Among the exons, 173 exons
were down-regulated (ranging from 35.7% in THCA
to57.6% in LUSC) in the tumor tissues (Additional
file 2: Figure S1-B).

Though the regions of splicing-related CpGs showed
differently across varied chromosomes and regions (Fig.
4b), some common features in different tumor types
were sill discovered. The common AS events having
similar relationships with CpGs, which changed in at
least three cancer types are shown in Table 1. This result
suggested that there were indeed a significant number of
AS-associated CpGs shared by multiple cancer types.
Taking ZNF577 and ¢g11269599 as examples, we found
that the exon 1.2 and exon 1.3 of ZNF577 showed in-
creased PSI values in five cancer types when comparing
tumors to the cognate normal tissues. The CpG site,
¢g11269599, also showed significantly hypermethylated
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Fig. 2 Cancer-specific AS events across human solid tumors. a Bar plot showing the numbers of cancer-specific AS events in different tumors
split according to types of event. b Bar plot showing the numbers of cancer-specific AS events in seven different types of AS. ¢ The UpSet plot of
interactions between the seven types of cancer-specific AS events. One gene may have several types of AS events
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Fig. 3 Differentially methylated CpGs at alternatively spliced exon boundaries in multiple tumors. a Volcano plot showing a comparison of the
methylation level of CpGs for tumor tissues versus adjacent normal tissues. This plot depicts the biological significance (|4meth|) = 10%) on the X
axis and the statistical significance (—log10 FDR) on the Y axis. b The proportion of hypomethylated and hypermethylated CpGs at cancer-specific
alternative spliced exon boundaries in different tumors. ¢ The proportion of hypomethylated and hypermethylated CpGs at cancer-specific

in HNSC, KIRC, KIRP, LUSC, and PRAD. The correla-
tions between both aforementioned were also observed
consistently in the five cancer types (Fig. 4c). The prefer-
ence of a specific splice variant by several cancer types
could help to confirm the link between AS and DNA
methylation [32].

Gene functional enrichment analysis and network construction
We further conducted GO analysis on genes containing
methylation-related cancer-specific AS events for differ-
ent cancer types. Results showed that these genes were
enriched in different GO terms across different cancers.
In COAD, high enrichment of genes was associated with
cellular components, including sarcolemma and basal
part. In THCA, genes were mainly associated with mo-
lecular functions, including hormone binding and acyl-
CoA ligase activity (Additional file 1: Table S5). KEGG
pathway analysis was also performed. Only the pathway
“Glycerophospholipid metabolism” was found signifi-
cantly enriched by genes in LIHC (Additional file 1:
Table S6). These results suggested that the activity of

these genes might be in an independent manner in dif-
ferent cancer types.

Moreover, we constructed a PPI network using the
STRING database. In the PPI network, NCK1 and DOKI
were the top hub genes in the HNSC network. PIK3R1
PRKACA and LCK were the top three hub genes in the
LUSC network. However, in other cancers, no PPI net-
works were constructed with statistical significance
(Additional file 3: Figure S2).

Survival analysis of AS events and CpGs

We then explored whether the associated AS events and
CpGs could be effectively used as a prognostic signature for
each cancer. Cox regression analysis was performed adjust-
ing for age, gender, TNM stage and adjuvant therapy, and
results showed that 10.3% (38/369) AS events could signifi-
cantly distinguish patients with longer versus shorter sur-
vival prognoses (Table 2). Because splicing of introns could
be regulated under a co-transcriptional mechanism [33], an
alteration in gene expression may affect AS of correspond-
ing genes. Thus, we examined mRNA expression of genes
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Table 1 Splicing events and DNA methylation altered in the same direction in at least three cancer types

Gene name Tumor types altered significantly CpG site Exon Type of AS The direction
of the correlation

ZNF577 HNSCKIRCKIRP,LUSC,PRAD €g11269599, cg10635122, cg03562414 1213 RI +

KIRCKIRP,PRAD g 10783469, cg24794228, 923010048, 1213 RI +
cg16731240

EGFLAM BRAC,HNSCKIRC,THCA €g21201393 1213 RI +

ANK3 COAD,LUAD,LUSC €g22601415 20.1 AP -

DNASE1L1 KIRCKIRP,THCA €g21459545 28 AP -

LTB4R2 KIRCLUSC,PRAD cg07164388 3.1 AP -

PIK3R1 HNSCLUSC,THCA €g25091228 1213 RI +

TNFRSF10C HNSCKIRCKIRP,PRAD cg14015044 9 AP -

Abbreviations: BRAC Breast invasive carcinoma, HNSC Head, and neck squamous cell carcinoma, KIRC Kidney renal clear cell carcinoma, KIRP Kidney renal papillary
carcinoma, LUAD Lung adenocarcinoma, LUSC Lung squamous cell carcinoma, PRAD Prostate adenocarcinoma, THCA Thyroid carcinoma, AS Alternative splicing, AP
Alternate promoter, Rl Retained intron, AT Alternate terminator

“+" represents the positive correlation between PSI values and DNA methylation in the tumor tissues. “-" represents the inverse correlation between PSI values
and DNA methylation in the tumor tissues
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containing cancer-specific AS events and found that the
majority of them (85.71%, 30/35) were not significantly as-
sociated with survival, suggesting that these AS events are
partially influenced by their gene expression (Table 2).
Additionally, we evaluated DNA methylation of CpGs at
the survival-related AS exons boundaries. 14 (20.6%) CpGs
in 8 (21.1%) AS exons were found significantly associated
with the overall survival of cancer patients. (Table 2).

Discussion

Collectively, we performed a comprehensive analysis of
the relationship between cancer-specific AS events and
DNA methylation. We found that approximately half of
the AS events were AP and ES types in human solid tu-
mors. The boundaries of alternatively spliced exons were
more likely to be hypomethylated in tumor tissues com-
pared with adjacent normal tissues. Association analyses
and permutation tests revealed that cancer-specific AS
events were significantly correlated with DNA methyla-
tion. Our research provided a novel perspective of the
regulatory mechanism of cancer-specific AS.

It is well accepted that AS plays an important role in
multiple cellular processes and development programs,
as well as contributing to tumorigenesis [34, 35]. None-
theless, to our knowledge, few studies have investigated
the role of DNA methylation as a regulator of the
cancer-specific AS. Recently, Laurent et al. have demon-
strated that methylation differences were more promin-
ent at the exon-intron boundaries [36]. Other studies
also found that DNA methylation links with the inclu-
sion rate of alternative exons [26, 37]. These findings
supported the hypothesis that AS could be functional by
cis-regulation of DNA methylation. With the advantage
of high-throughput data, TCGA data portal provides op-
portunities for the integration analyses of multi-omics
data. TCGA Splice Seq, web-based bioinformatics, pro-
viding a clear view of the mRNA splicing patterns of 33
tumor types, across a dataset of more than 10,000
TCGA samples. Ryan et al. identified and calculated
each potential splicing event across 33 types of cancer to
establish TCGA SpliceSeq database, while did not evalu-
ate the potential mechanism and clinical usage of AS
events [27]. In the present study, we integrated AS
events from SpliceSeq and TCGA data together to com-
prehensively explore potential regulatory mechanisms of
DNA methylation for cancer-specific AS. We performed
an association analysis between cancer-specific AS
events and CpGs at their exon boundaries. The param-
eter selected in this study was based on previous reports
[38-40], especially Castle’s study, in which they exam-
ined the exon neighborhoods in the size of 200 nucleo-
tides for intronic regions and 39 nucleotides for exonic
regions to identify splicing cis-regulatory elements in se-
quences [29].
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In the present study, to ensure the AS difference re-
sulted from DNA methylation, we excluded CpGs show-
ing evidence of associations with AS in normal tissues. By
using such analysis, we identified a number of PSI-related
CpGs, whose locations appeared differently across varied
chromosomes and regions in different cancers. Moreover,
the higher proportion of decreased methylation levels of
AS-associated CpGs were observed in the majority of solid
cancer types, except for COAD, LIHC, LUAD, LUSC, and
PRAD. We speculated that this was due to the heterogen-
eity among tumor samples. It is well known that the spli-
cing process is predominantly tissue- and cancer-specific
[12, 41]. Meanwhile, DNA methylation is also demon-
strated to be varied across tumor types [42]. It is worth to
note that several cases showing the same pattern of
changes were identified across different cancer types.
These signatures were potential candidates for actively se-
lected variants, which might drive tumorigenesis. For ex-
ample, we found the consistent changes of AS event and
cgl1269599 in gene ZNF577 (zinc finger protein 577)
across several tumor types. Zinc finger proteins are com-
monly involved in transcriptional regulation of genes, but
the mechanism of how DNA methylation affects AS of
ZNF577 has not been clarified and needs to be determined
in further studies [43].

Recently, several studies have given insight into the
regulation of DNA methylation in AS. It has been sug-
gested that DNA methylation at exonic regions could
affect the binding of methyl-sensitive DNA-binding pro-
teins, such as MeCp2, CTCF, and HP1 [37, 44-46].
MeCp2 was found to be enriched in spliced exons, which
could facilitate the recruitment of histone deacetylase,
thus causing Pol II pause and exon inclusion [46]. In 2011,
Shukla et al. found the DNA methylation-mediated spli-
cing of CD45 pre-mRNA, which inhibited CTCF binding
[37]. HP1 could bring several splicing factors to methyl-
ated exons [26]. In addition, DNA methylation had also
been reported to determine nucleosome positioning and
affected the transcriptional elongation rate [47].

We also investigated the prognostic values of the cancer-
specific AS events by conducting Cox regression. We found
38 methylation-related cancer-specific AS events could sig-
nificantly distinguish patients with longer versus shorter
survival prognoses. It should be noted that these identified
signatures were overrepresented in renal carcinoma. Renal
carcinoma has various histological and molecular subtypes
and is characterized by poor prognosis and high recurrence.
Until now, several molecular biomarkers have been investi-
gated for renal carcinoma, while none of them have been
used in clinical practice [48, 49]. Therefore, the identifica-
tion of novel and effective prognostic biomarkers is import-
ant for patients suffering from renal carcinoma. The
signatures identified in the present study in renal cancers
were not well reported previously and could provide the
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Table 2 Multivariate Cox proportional hazard model analyses of associations between alternative exons, methylation of
corresponding CpG and cancer patients’ survival

Tumor  Gene expression PSI Methylation level
type Gene p HR(95%Cl) Alternative Exon P HR(95%Cl) CpGs P HR(95%Cl)
BRAC  FAXDC2 0558 096 (0.84,1.10) 3 0036 398 (1.09,004) cg18260397 0428 057 (0.14,2.31)
COAD  OBSCN 0753 097(0.78120) 118 0001 020 (0.20,0.08) €g25318301 0380 048 (0.09,249)
€g03669282 0581  0.72 (0.23,2.31)
HNSC  ABL2 0489  1.10(0.84,142) 2 0020 459 (1.27,16.58) €g03471346 0095 040 (0.14,1.17)
HNSC ~ DNASEILT 0003 145 (1.13,1.86) 3.1 0007 440 (1.49,12.95) €g21459545 0788  0.84 (0.25,2.90)
HNSC  RARA 0393 116 (0.82,163) 5 0009 008 (0.01,0.54) €g05824218 0350 193 (049,7.64)
KRC ~ ATGI6L2 0104  1.14(097,010) 4.1:42 0011 679 (1.5529.83) €g21806242 0187 1392 (0.28,698.07)
KIRC ~ EGFLAM 0957 100 (0.851.17) 20.1 0047 043 (0.18,0.99) €g21201393 0197 473 (045,50.22)
KRC  EVL 0004 147 (1.13190) 3 0027 032 (0.12,088) 918621299 0885 0.84 (0.07,947)
KIRC ~ FMNLI 0318  1.13(0.89,142) 13.1 0010 359 (1.37,944) €g19735250 0261 295 (0.45,19.42)
KRC  NAV2 0276  1.17(0.88,154) 17 0014 9694 (248378707)  cg19222784 0857 082 (0.106.76)
€g20949700 0997  1.00 (0.13,7.54)
KRC  SIGIRR 0668 106 (0.80,1.40) 2 0041 629 (1.0836.63) €g02585906 0.173 0.4 (0.03,1.88)
€g23029021 0005 0.8 (0.01,047)
KRC ~ TBCID14 0908 098 (0651.46) 4 0024 26.17 (1.52,44963) cg16851482 0778 144 (0.12,17.83)
KRC ~ ZNF577 0975  100(0.82122) 1213 0009 605 (1.57,23.33) €g03562414 0471 159 (045,562)
cg10635122 0320 2.3 (0.50,8.22)
cg11269599 0007 739 (1.743147)
cg10783469 0214 273 (0.56,13.32)
€g16731240 0030 441 (1.16,16.78)
€g23010048 0053  4.04 (0.98,1661)
24794228 0228 228 (0.60,8.69)
KIRP Cl%rf25 0012 050 (0.29,086) 24 0006 001 (0.00,0.26) cg16613938 0665 055 (0.04,8.14)
€g23291200 0980 094 (0.01,163.12)
KIRP CABP1 00004 072 (060,087 3.1 0004 5940 (3.63,972.14) €g24292016 0011  0.02 (0.00,042)
€g25969992 0011  0.04 (0.00,049)
KIRP CALD1 0632  088(052,149) 2 0013 885 (1.5849.62) €g04874031 0007 14957 (3.97,5636.65)
916253634 0019 14862 (2.24,9849.90)
924956866 0027  97.96 (1.70,5637.50)
KIRP CALD1 0632 088052149 5 0013 0.11 (0.02,063) cg04874031 0007 14957 (3.97,5636.65)
916253634 0019 14862 (2.24,9849.90)
€g24956866 0027  97.96 (1.70,5637.50)
KIRP ccLos 0918 101082125 2 0009 7.17 (1.643137) cg04187185 0365 050 (0.11,2.26)
916324633 0027 1072 (1.31,87.54)
KIRP CIRBP 0004  038(020073) 8283 0011 8229 (2.75246057)  cg02644867 0480 351 (0.11,113.99)
KIRP DNASEILT 0118  2.15(0.82563) 3.1 0030 2990 (1.40,637.29) €g21459545 0251 032 (0.05,2.24)
€g22562219 0081  0.08 (0.01,1.36)
€g24834461 0224 020 (0.02,2.63)
KIRP PIGQ 0703  088(046,168) 3 0047 005 (0.00,0.96) cg03815552 0575 023 (0.00,38.74)
KIRP SLC9A3R2 0650  1.11(0.70,1.78) 3 0020 005 (0.00,062) cg08601673 0263  0.16 (0.01,3.97)
KIRP  TM4SF18 0001 058 (041,081) 2.1 0015 004 (0.00,0.55) cg11011913 0087 498 (0.79,31.30)
LHC ~ CIQINFI 0580  1.03(0931.13) 5 0008 027 (0.10,0.70) €g23882796 0553 124 (061,2.51)
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Table 2 Multivariate Cox proportional hazard model analyses of associations between alternative exons, methylation of

corresponding CpG and cancer patients’ survival (Continued)

Tumor  Gene expression PSI Methylation level
type Gene p HR(95%Cl) Alternative Exon P HR(95%Cl) CpGs P HR(95%Cl)
LUAD  GALK2 0013 158(1.10226) 3.1 0002 1329 (2.53,69.98) €g08036668 0219 042 (0.11,1.67)
LUSC ~ AHCYL2 0158  1.14(095136) 3 0031 188 (1.06,3.33) cg15664152 0933  1.03 (0.51,2.06)
LUSC  AQPI 0022 1.13(1.02126) 7.1 0046 351 (1.02,12.06) cg07135629 0952  1.04 (0.32,341)
€g04551925 0790  0.86 (0.28,2.65)
cg10132917 0645 129 (044,382)
cg11827925  0.141 5 (0.80,4.73)
€g04372674 0049 222 (1.004.89)
€g25075794 0047 220 (1.01,4.79)
925230363 0038 242 (1.05,557)
LUSC  AQPI 0022 113(1.02126) 7.1 0046 351 (1.02,12.06) 926923410 0052 242 (0.99,5.90)
cg15373767 0122 207 (082,5.21)
cg18080604 0049  2.74 (1.00,7.50)
€g09676669 0078 231 (0.91,584)
LUSC  ARHGAP24 0279 092 (0.80,1.07) 6 0042 14584 (120,17,74846) 14376467 0908 1.04 (0.52,2.09)
cg13889934 0997 1.00 (048,2.11)
921446955 0892  1.05 (049,2.24)
LUSC  ERG 0738  103(086124) 5 0038 225 (1.054.86) cg01613817 0581  0.78 (0.32,1.91)
LUSC  FAXDC2 0285 107(094122) 5. 0047 209 (1.01,4.31) €g02379533 0624  0.76 (0.25,2.28)
LUSC  GCNT2 0970 100 (0.89,1.12) 6.1 0012 221 (1.194.11) cg13411789 0146 066 (0.37,1.16)
LUSC  ILIRN 0721 098(0.89,1.08) 3 0046 055 (0.31,099) cg11783497 0833 1.1 (042,2.89)
LUSC  NAVI 0569 096 (0.851.09) 6 0024 049 (0.26,091) cg01411786 0765 1.16 (044,3.03)
€g05091570 0982  0.99 (0.39,2.50)
cg13877974 0356 055 (0.15,1.97)
€g16023122 0334 048 (0.11,2.13)
cg01828733 0350 059 (0.19,1.79)
LUSC  PLEC 0133 1.13(096132) 4 0006 2329 (2.50,216.60) €g00329447 0117 053 (0.24,1.17)
€g06452769 0033 041 (0.18,0.93)
PRAD  EXOC7 0346  061(0221.70) 82 0038 4029 (122132936)  cg04470878 0660 486 (0.00,5523.54)
PRAD  FHADI 0358  1.14(0.86,153) 152 0041 026 (0.07,095) €g07312051 0675  5.04 (0.00,9748.17)
PRAD  PCDHA9 0592 094 (0.751.17) 12 0007 1470 (2.12,102.01) cg18029321 0548 2837 (0.00,1,537,765.42)
THCA  EGFLAM 0828 106 (065173) 20.1 0028  0.10 (0.01,0.78) €g21201393 0705 197 (0.60,64.65)

Abbreviation: KIRC Kidney renal clear cell carcinoma, KIRP Kidney renal papillary carcinoma, LUSC Lung squamous cell carcinoma, HR Hazard ratio
The Cox regression model adjusted for age, gender, TNM stage, and adjuvant therapy

basis for further study into the pathomechanisms and serve
as potential therapeutic targets. Additionally, 14 CpGs at
the exon boundaries of 8 survival-related AS also showed
significant association with overall survival, even after
adjusting for age, gender, TNM stage, and adjuvant therapy.
These results led us to speculate that the identified CpGs
might be the specific cancer drivers, and serve as prognostic
biomarkers for cancers.

By the integrated analyses of multi-dimensional data, our
study revealed a deeper understanding of cancer-specific
AS events and their relationships with DNA methylation

across different solid tumor types. Another strength of our
study was the pan-cancer analysis, which could reveal simi-
larities and specificities across different cancer types, as well
as enabled the elimination of false-positive and false-
negative calls made in several single-tumor-type projects
[50]. Finally, we provided novel mechanisms and thera-
peutic perspectives for either one or several cancer types.
The present study has several limitations. First, our study
investigated the methylation-splicing features across mul-
tiple cancer types instead of the difference within cancer. In
addition, we only studied the differentially methylated
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CpGs between tumor and normal tissues, which could miss
the CpGs with hyper- or hypo-methylation in tumors that
were associated with either down- or up-regulation of PSI.
Finally, our research was based on the public data which
lacked several important clinical features, such as a history
of drug use, and has not been studied in survival analysis.
Therefore, further research is needed to clarify and demon-
strate the nature of the regulation of methylation in AS.

Conclusion

Opverall, our analyses identified a significant association
between DNA methylation and cancer-specific AS
events. The present study contributes to the understand-
ing of the role of methylation in exon usage during tran-
scriptional process and carcinogenesis. Finally, this
relatively small set of AS events and CpGs will facilitate
the discovery of critical regulators, which are responsible
for splicing dysregulation in cancers and thus can be
used as new therapeutic biomarkers.
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