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Abstract: Metastatic liver tumors have presented challenges with the use of checkpoint inhibitors
(CPIs), with only limited success. We hypothesize that regional delivery (RD) of CPIs can improve
activity in the liver and minimize systemic exposure, thereby reducing immune-related adverse
events (irAE). Using a murine model of colorectal cancer liver metastases (LM), we confirmed high
levels of PD-L1 expression on the tumor cells and liver myeloid-derived suppressor cells (L-MDSC).
In vivo, we detected improved LM response at 3 mg/kg on PTD7 via portal vein (PV) regional
delivery as compared to 3 mg/kg via tail vein (TV) systemic delivery (p = 0.04). The minimal effective
dose at PTD7 was 5 mg/kg (p = 0.01) via TV and 0.3 mg/kg (p = 0.02) via PV. We detected 6.7-fold
lower circulating CPI antibody levels in the serum using the 0.3 mg/kg PV treatment compared to the
5 mg/kg TV cohort (p < 0.001) without increased liver toxicity. Additionally, 3 mg/kg PV treatment
resulted in increased tumor cell apoptotic signaling compared to 5 mg/kg TV (p < 0.05). Therefore,
RD of an anti-PD-1 CPI therapy for CRCLM may improve the therapeutic index by reducing the total
dose required and limiting the systemic exposure. These advantages could expand CPI indications
for liver tumors.

Keywords: liver metastasis; regional delivery; PD-1; PD-L1; myeloid-derived suppressor cells;
systemic delivery; bioluminescence

1. Introduction

The immuno-oncology space is evolving rapidly. Checkpoint inhibitors (CPIs) have
revolutionized the treatment of certain solid tumors, including melanoma and non-small
cell lung cancer. Rather than directly attacking the tumor, CPIs harness the power of
the endogenous immune system by preventing the exploitation of the immune-evasive
mechanisms tumors employ through the CTLA-4 and PD-1/PD-L1 pathways [1–3].

After the approval of ipilimumab for melanoma by the Food and Drug Administra-
tion (FDA) in 2011, additional CPIs such as nivolumab, atezolizumab, pembrolizumab,
avelumab, durvalumab, and cemiplimab became available to an ever-growing list of indica-
tions including other cutaneous malignancies, urogenital, pulmonary, and small and large
bowel carcinomas amongst others [4–18]. These molecules improved patient outcomes
with durable tumor responses, improved progression-free survival, and increased overall
survival rates in previously treatment-refractory cancers [19–22]. With the exception of
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successes with hepatocellular carcinoma and mismatch repair (MMR) deficient stage IV
adenocarcinomas, the clinical impact of CPIs on liver tumors have been limited.

In addition to the limited efficacy offered by CPIs in treating hepatic malignancies,
immune-related adverse events (irAEs) limit the application of these potent therapies. The
severity of irAEs range from mild constitutional symptoms to severe organ failure and
permanent debilitating effects such as pituitary insufficiency [23–27]. Emergence of severe
irAEs may preclude continuation of an otherwise effective therapy, which limits the poten-
tial for durable control of advanced solid tumors. This delicate balance between managing
irAEs and tumor control is an ongoing challenge facing clinicians, and minimizing the
frequency of side effects can only improve the impact of CPIs further.

To overcome this barrier, we developed a preclinical model of murine colorectal
cancer liver metastasis (CRCLM) to study a regional delivery (RD) technique. This has the
benefit of limiting systemic exposure, thereby avoiding uptake in non-target tissues. We
hypothesized that RD of CPIs would improve the therapeutic index compared to systemic
delivery (SD) by enhancing intrahepatic effect while limiting extra-hepatic exposure.

2. Materials and Methods
2.1. Animals

Six to ten-week-old C57BL/6 J male mice were purchased from Jackson Laboratories
(Bar Harbor, ME). All mice were housed under pathogen-free conditions in Roger Williams
Medical Center (RWMC). Procedures and animal handling and care were carried out based
on an experimental protocol reviewed and approved by the RWMC Institutional Animal
Care and Use Committee (IACUC) using standard guidelines and under the supervision of
a licensed veterinarian.

2.2. Murine CRCLM Model

C57BL/6 J mice were anesthetized using aerosolized isoflurane (3–5%, Patterson
Veterinary, Devens, MA, USA) and 2.5 × 106 MC38-CEA cells with a luciferase reporter
protein (MC38-CEA-luc) were delivered via splenic injection to generate CRCLM. This
was followed by splenectomy to confine tumor growth to the liver. Post-operatively,
buprenorphine (0.05–0.1 mg/kg) or buprenorphine SR (0.5–1 mg/kg) (Patterson Veterinary,
Devens, MA) was injected subcutaneously for analgesia and treated with SQ 0.9% saline.

2.3. Bioluminescence Monitoring and Quantification

Anesthetized mice received 100 µL of XenoLight D-Luciferin via intraperitoneal (IP)
injection and were placed individually in the IVIS machine to monitor the tumor progres-
sion. Each mouse was imaged three days after tumor inoculation to establish baseline
tumor burden before treatment and subsequently on each post-treatment day (PTD). Tumor
bioluminescence (TB) was quantified as total flux (protons/s) using LivingImage 4.7.2 soft-
ware (PerkinElmer, Waltham, MA) with values that were normalized to the baseline (PTD0)
bioluminescence value (photons/s). TB < 1.0 × 105 photons/s at PTD0 was considered
as background and, thus, mice needed a TB of >1.0 × 105 photons/s for inclusion in the
study.

2.4. CPI Delivery

Tumor-bearing mice were treated with 0.3 mg/kg, 1.0 mg/kg, 3.0 mg/kg, or 5.0 mg/kg
of a Rat IgG2a Isotype anti-mouse PD-1 antibody (Clone: RMP1-14, Bio X Cell, Lebanon,
NH) via the portal vein (PV) for RD or tail vein (TV) for SD. Mice treated with phosphate
buffered saline (PBS) via PV served as vehicle control. Doses were selected based on the
standard weight-based dosing used in human trials. For PV delivery, a sterile catheter
composed of polyurethane tubing (0.017in ID × 0.037in OD) attached to a 30G access
needle (Nipro, Bridgewater, NJ, USA) was connected to a 25G blunt tipped needle (Instech
Laboratories, Inc., Plymouth Meeting, PA, USA) and 10 mL syringe (BD, Franklin Lakes,
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NJ, USA) for infusion. The syringe was placed in an automated pressure injector (Harvard
Apparatus, Holliston, MA, USA) and desired volumes were set accordingly.

Once the injection catheter was prepared, an exploratory laparotomy was performed
on tumor-bearing mice. The PV was cannulated with the 30G needle and advanced
until just proximal to the bifurcation of the right and left hepatic branches with the liver
retracted cranially. The access needle was removed following the delivery of the doses by
maintaining manual pressure over the insertion site for hemostasis. Next, the organs were
replaced in their anatomic positions and the fascia was closed with 4-0 Vicryl (Ethicon,
Somerville, NJ, USA) followed by skin clips for the skin. The mice in the TV cohort were
anesthetized as mentioned above and placed in a restraint chamber with tails submerged
in warmed water to dilate the lateral tail veins. Once sufficient dilation was achieved, a
30 G 1⁄2” needle was attached to a 1 mL syringe (BD, Franklin Lakes, NJ, USA) and therapy
was delivered. Analgesia and fluid replacement were provided post-operatively and all
mice placed in a warmed chamber.

2.5. Cell Isolation

Liver non-parenchymal cell (L-NPC) isolation was performed as previously described
with several modifications [28]. Mice were euthanized via terminal cardiac puncture,
and, immediately following, the liver was explanted and a portion of the tissue was
placed directly into a gentleMACS™ C tube with RPMI 1640 and enzymes from the
Tissue Dissociation Kit for mechanical disruption with the gentleMACS™ dissociator
(Miltenyi Biotec, Bergisch Gladbach, Germany). Samples were incubated at 37 ◦C for 40 min
prior to the second round of dissociation and the resulting cell suspension was washed
through a 70 µm MACS SmartStrainer (Miltenyi Biotec, Bergisch Gladbach, Germany) with
RPMI 1640. Hepatocytes were separated via low-speed centrifugation followed by density
gradient separation using 40% Optiprep (Sigma-Aldrich, St. Louis, MO, USA) and Gey’s
Balanced Salt Solution (Sigma-Aldrich, St. Louis, MO, USA). The remaining cells were
ACK lysed (Gibco by Life Technologies, Grand Island, NY, USA) and blocked with 1 µg of
anti-FcγR III/II mAb2.4G2 (Miltenyi Biotec, Bergisch Gladbach, Germany). CD45+ cells
were isolated by using CD45 immuno-magnetic beads (Miltenyi Biotec, Bergisch Gladbach,
Germany) to obtain L-NPC without liver sinusoidal endothelial cells (LSEC). In general,
30% CD11b+ L-MDSC are present in CD45+ cells. Isolated cells were stained immediately
for flow cytometry or cryopreserved for later studies.

2.6. Flow Cytometry and Antibodies

Isolated L-MDSC and tumor cells were stained with antibodies specific for murine
CD11b, Ly6C, Ly6G, PD-L1, and human CD66 to assess MDSC and tumor phenotypic
expression of PD-L1. Unstained cells and isotype controls were used for setting laser
voltages. Results were analyzed with FlowJo 10.6.1 (Tree Star Inc., Ashland, OR, USA) and
gating performed using isotype controls.

2.7. Serum Studies

Mice were sacrificed via terminal cardiac puncture. Collected blood was allowed
to coagulate for 4–6 h at 4 ◦C. Serum was separated from the blood by spinning in a
microcentrifuge for 10 min at 2000 rcf and the serum was transferred to a 1.5 mL Eppendorf
tube, diluted with deionized water to a total volume of 200 µL, and sent to the RWMC
clinical laboratory for complete metabolic panel and bilirubin analysis. For analysis of
serum cytokines, serum was diluted 2-fold and analyzed by Beckman Coulter (BC; Brea,
CA, USA) AU system using BC AU system ALT, AST, and Bilirubin reagents according to
the manufacturer’s protocol. Data were analyzed using REMISOL Middleware software
(BC, Brea, CA, USA). Remaining serum was used for enzyme-linked immunosorbent assay
(ELISA) or cryopreserved. A sandwich ELISA was performed to detect anti-PD1 antibody
(ThermoFisher, Waltham, MA, USA) according to the manufacturer’s protocol.
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2.8. Western Blots

Tumors were washed twice with ice-cold PBS and lysed with RIPA buffer (Life Tech-
nologies, Carlsbad, CA, USA) supplemented with protease inhibitor cocktail (Roche Diag-
nostics, Basel, Switzerland), as described previously [29]. Protein was quantified by using
Bradford protein assay (ThermoFisher, Waltham, MA, USA). Lysates were denatured using
Laemmli sample buffer (Bio-Rad, Hercules, CA, USA). The immunoblots were analyzed
and quantified using ImageJ software. Antibodies to Ki-67 (SolA15; eBiosciences, San
Diego, CA, USA), PD-L1 (B7-H1; R&D Systems, Minneapolis, MN, USA), PD-1, cleaved
caspase 9, and GAPDH (D7D5W, D3Z2G, and D4C6R; Cell Signaling Technology, Danvers,
MA, USA) were used at a 1:500 dilution.

2.9. Statistics

Statistical analysis was performed using Prism 8 (GraphPad Software, San Diego, CA,
USA). Data are displayed as mean ± standard error of the mean (SEM) with corresponding
values of n. Statistical significance was calculated using the students’ t-test and ANOVA.
Values with p ≤ 0.05 were determined to be significant. Group-based Grubbs’ test was
performed on bioluminescence to mathematically identify outliers which were excluded
from the study. Using both criteria, n = 1–2 animals were excluded from analysis in each of
the eight groups uniformly.

3. Results
3.1. Liver Metastases Promote Immunosuppression in the Tumor Microenvironment via the
PD-1/PD-L1 Axis

Previous publications by our group have detailed the high levels of PD-1 expression of
tumor-infiltrating lymphocytes (TILs) within the solid tumor microenvironment (TME) [30].
When bound by PD-L1, a signaling cascade results in profound immunosuppression,
limiting the tumor-killing ability of the TILs. We hypothesized that CRCLM cells would
mediate immunosuppression through the PD-1/PD-L1 axis and create a TME that further
exacerbated this. To confirm expression levels of PD-L1 in the liver TME, we examined
tumor and suppressor cell expression of this protein. After 48 h in culture, 84.8 ± 0.64%
of MC38-CEA-luc cells expressed PD-L1 (Figure 1a). We confirmed the high expression
of 90.73 ± 2.1% of PD-L1 in granulocytic MDSC (G-MDSC) and 44.9 ± 2.8% in monocytic
MDSC (M-MDSC) (Figure 1b).

Vaccines 2021, 9, x 4 of 14 
 

 

Brea, CA, USA). Remaining serum was used for enzyme-linked immunosorbent assay 
(ELISA) or cryopreserved. A sandwich ELISA was performed to detect anti-PD1 antibody 
(ThermoFisher, Waltham, MA, USA) according to the manufacturer’s protocol.  

2.8. Western Blots 
Tumors were washed twice with ice-cold PBS and lysed with RIPA buffer (Life Tech-

nologies, Carlsbad, CA, USA) supplemented with protease inhibitor cocktail (Roche Di-
agnostics, Basel, Switzerland), as described previously [29]. Protein was quantified by us-
ing Bradford protein assay (ThermoFisher, Waltham, MA, USA). Lysates were denatured 
using Laemmli sample buffer (Bio-Rad, Hercules, CA, USA). The immunoblots were an-
alyzed and quantified using ImageJ software. Antibodies to Ki-67 (SolA15; eBiosciences, 
San Diego, CA, USA), PD-L1 (B7-H1; R&D Systems, Minneapolis, MN, USA), PD-1, 
cleaved caspase 9, and GAPDH (D7D5W, D3Z2G, and D4C6R; Cell Signaling Technology, 
Danvers, MA, USA) were used at a 1:500 dilution. 

2.9. Statistics 
Statistical analysis was performed using Prism 8 (GraphPad Software, San Diego, 

CA, USA). Data are displayed as mean ± standard error of the mean (SEM) with corre-
sponding values of n. Statistical significance was calculated using the students’ t-test and 
ANOVA. Values with p ≤ 0.05 were determined to be significant. Group-based Grubbs’ 
test was performed on bioluminescence to mathematically identify outliers which were 
excluded from the study. Using both criteria, n = 1–2 animals were excluded from analysis 
in each of the eight groups uniformly. 

3. Results 
3.1. Liver Metastases Promote Immunosuppression in the Tumor Microenvironment via the PD-
1/PD-L1 Axis 

Previous publications by our group have detailed the high levels of PD-1 expression 
of tumor-infiltrating lymphocytes (TILs) within the solid tumor microenvironment (TME) 
[30]. When bound by PD-L1, a signaling cascade results in profound immunosuppression, 
limiting the tumor-killing ability of the TILs. We hypothesized that CRCLM cells would 
mediate immunosuppression through the PD-1/PD-L1 axis and create a TME that further 
exacerbated this. To confirm expression levels of PD-L1 in the liver TME, we examined 
tumor and suppressor cell expression of this protein. After 48 h in culture, 84.8 ± 0.64% of 
MC38-CEA-luc cells expressed PD-L1 (Figure 1a). We confirmed the high expression of 
90.73 ± 2.1% of PD-L1 in granulocytic MDSC (G-MDSC) and 44.9 ± 2.8% in monocytic 
MDSC (M-MDSC) (Figure 1b).  

 
Figure 1. PD-L1 expression on tumor cells and MDSCs. (a) Gating strategy of PD-L1 expression on MC38-CEA tumor
cells. Isotype controls were used for PD-L1 and CD66 for setting gates. After doublet cell exclusion, co-staining with CD66
(CEA) and PD-L1 antibodies showed high expression of PD-L1 on tumor cells. Evaluation of expression was performed in
biological replicates (n = 3). (b) Gating strategy of PD-L1 expression on G- and M-MDSCs. Isotype controls were used for
setting gates. After doublet cell exclusion, G-MDSC was identified as CD11b+Ly6GhiLy6Clo and M-MDSC was identified as
CD11b+Ly6GloLy6Chi phenotypes, respectively. Green box denotes M-MDSC and blue box denoted G-MDSC. Evaluation of
expression was performed in biological replicates (n = 4).
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3.2. Anti-PD-1 Antibody Effective as In Vivo Checkpoint Inhibitor Therapy against Tumors

We previously reported that L-MDSC inhibits CAR-T-dependent tumor cytotoxicity
in vitro, which gets reversed by targeting STAT3 that induces apoptosis in L-MDSC [31,32].
To investigate whether a similar effect in TME is observed with anti-PD-1 treatment, we
challenged mice with intra-splenic MC38-CEA-luc to generate LM followed by treatment
on day 3 with varying concentrations (0.3–5 mg/kg) of anti-PD-1 treatment delivered
via TV or PV as shown in Figure 2a. Our in vivo results revealed improved response at
3 mg/kg on PTD7 via PV as compared to 3 mg/kg via TV (p = 0.04) and compared to vehicle
control (p = 0.001) (Figure 2a). Significant differences were seen in TB for all escalating
doses delivered via PV compared to vehicle control and only in 5 mg/kg TV compared to
vehicle control (PTD7 p < 0.05). The minimal effective dose at PTD7 was 5 mg/kg (p = 0.01)
via TV and 0.3 mg/kg (p = 0.02) via PV compared to vehicle control indicating a lower
dose requirement via RD to achieve similar anti-tumor activity as observed with SD. No
significant difference between delivery routes, PV or TV, was observed for any time point
for any of the lower doses (0.3 mg/kg, 1 mg/kg).

3.3. Reduction in Systemic Exposure with Low Dose Regional Delivery

Using an ELISA assay, the serum of treated mice was assessed for levels of circulating
anti-PD-1 antibody and all doses were detectable compared to the vehicle control cohort
(p < 0.001 for all comparisons, Figure 2b). This study revealed that serum levels of the anti-
PD-1 agent increased in a dose-dependent fashion, regardless of route of delivery. When
comparing similar doses, there were no significant differences found between 3 mg/kg PV
vs. 3 mg/kg TV (3233.10 vs. 2714.09 ng/mL, p = 0.17). However, the lower RD doses at
0.3 mg/kg PV and 1 mg/kg PV both resulted in significantly less detected antibody in
circulation compared to all higher doses regardless of route of delivery (0.3 mg/kg PV,
p < 0.001 for all comparisons, 1.0 mg/kg PV, p < 0.01–p < 0.001). There was a 6.7-fold reduc-
tion in comparing 0.3 mg/kg PV to the minimum efficacious systemic dose of 5 mg/kg TV
(p < 0.001). Additionally, the 3 mg/kg TV cohort revealed lower amounts of antibody than
5 mg/kg TV (p = 0.03), indicating an increase in circulating anti-PD-1 antibody does not
necessarily correlate to improved response (Figure 2a).

3.4. Equivalent Hepatic Toxicity Comparing Delivery Methods with Similar Doses

Serum was assessed for liver toxicities by performing liver function tests (LFT) includ-
ing aspartate transaminase (AST) and alanine transaminase (ALT) of each treatment group.
Significant differences were seen in LFTs when performing ANOVA analysis across all
groups (AST p = 0.005, ALT p = 0.004, Figure 3). This is likely influenced by the elevations in
AST and ALT seen in the vehicle control and 1 mg/kg TV cohorts, which when examined
with the bioluminescence data is suggestive of hepatic damage secondary to tumor burden
rather than toxicity from treatment. The equivalent AST and ALT levels when comparing
higher dose SD and the RD doses also supports this conclusion while indicating that RD
techniques do not appreciably result in additional liver tissue damage. Importantly, there
was no significant increase in AST or ALT due to the administered doses via PV or TV as
compared to vehicle control, indicating no anti-PD-1 related liver toxicity.

3.5. PD-1 Inhibition Promotes Apoptotic Signaling in Tumor

To evaluate the apoptosis/proliferation of tumor cells due to PD-1 inhibition, LM
tumor lysates from PTD3 were isolated from three mice that received 3 mg/kg via either
TV or PV, and vehicle control groups, respectively. These groups were selected to allow a
direct comparison between delivery routes using the same doses. Western blot analysis
showed significantly low PD-1 protein expression in 3 mg/kg PV as compared to vehi-
cle control (p < 0.05) which confirmed increased inhibition of PD-1 in PV as compared
to TV or vehicle control with no change in PD-L1 expression in the tumors (Figure 4).
Interestingly, the level of cleaved caspase 9 in 3 mg/kg PV was induced, suggesting in-
creased apoptosis as compared to vehicle control and 3 mg/kg TV groups (p < 0.05). There
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was also a decreasing trend, though not significant in Ki67 expression in 3 mg/kg PV
as compared to 3 mg/kg TV and vehicle control. Raw data of western blots that were
used for Figure 4 with quantification for individual bands for each protein is available in
Supplementary Figure S1.
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via a sandwich ELISA against Rat IgG2a proteins. The 0.3 mg/kg PV dose demonstrated significantly lower circulating
levels against all other doses regardless of route of delivery while the 1.0 mg/kg PV dose also showed significantly reduced
amounts compared to higher doses regardless of route of delivery. There was no significant difference seen between
circulating levels of antibody when comparing the 3.0 mg/kg dose directly between PV and TV. Furthermore, 3.0 mg/kg
TV did show statistically significant levels lower than 5.0 mg/kg TV, but this did not translate into appreciable differences
in efficacy.
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elevations in these two groups suggests that the LFT elevation is a result of increased tumor burden when correlated with
the bioluminescence data.
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Figure 4. PD-1 blockade inhibits tumor growth by decreasing proliferation and increasing apoptosis in TME. Tumor lysates
from vehicle control, 3 mg/kg PV and 3 mg/kg TV were analyzed by Western blot with antibodies against PD-1, PD-L1,
cleaved caspase-9, Ki-67. GAPDH was used as a loading control. Triplicate samples were loaded (n = 3 mice/group) and the
signals were quantified using densitometric analysis and normalized with GAPDH protein expression. Results are shown
as mean ± SEM.

4. Discussion

CPIs have revolutionized the management of solid tumors. Since the first use of ipili-
mumab for metastatic melanoma in 2011, both the number of drugs and the diversification
of applications have dramatically increased [4–18,25]. This class of therapy functions to
inhibit checkpoint molecules within the solid TME, one of the potent immune-evasive
mechanisms utilized by tumors to evade immunity [1,33–37]. Through use of CPI therapy,
the endogenous immune system can function through tumor recognition and upregulation
of antigen-specific responses. We confirmed here previously published data showing high
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levels of PD-L1 on MC38-CEA-luc tumor cells, and L-MDSC in the TME supports the use
of this model for our studies [28].

CPI-related autoimmune-like toxicities such as colitis, dermatitis, and hepatitis are
caused by SD of the antibodies that activate immune response in both tumor lesions and
healthy organs. RD techniques have been used to increase delivery, overcome physiologic
barriers at the target site, and increase effective drug concentration. The pharmacologic
rationale and advantage for this approach over traditional SD is to avoid the uptake of
therapy throughout the rest of the body before reaching the target site [38]. Applications
have included peripheral cutaneous malignancies, peritoneal malignancies, pancreatic
ductal adenocarcinomas, and CRCLM, with methods ranging from isolated limb perfusions
to organ-specific vascular delivery [39–51]. When applied appropriately, meaningful
clinical outcomes have been seen with improved therapeutic efficacy and tumor control.
In line with this, our experimental model produced CRCLMs that had enhanced control
when RD was employed with similar efficacy to higher dose SD.

With regards to achieving sufficient therapeutic concentrations, multiple dose-range
finding studies have investigated optimal CPI dosing [52–59]. Both preclinical models and
clinical trials have demonstrated that there is no meaningful increase in efficacy between
doses with over 100-fold differences and that lower doses already saturate the majority
of the relevant receptors up to 100% [60–67]. The data indicate that lower doses may
be equally as effective, especially when targeted appropriately using techniques such
as RD. Our data support these hypotheses as RD results in similar efficacy even with
over 10-fold lower concentration to the minimum effective systemic dose up to one week
after treatment.

Variation of biological effect is dependent on which ligand, PD-L1 or PD-L2, binds
to PD-1. One model shows reverse roles of PD-L1 and PD-L2 signaling in activation of
natural killer T cells [68]. Inhibition of PD-L2 leads to enhanced T helper 2 cell activity,
while PD-L1 binding to CD80 has been shown to inhibit T-cell responses [69]. Blocking
PD-1 facilitates inhibition of signaling via both PD-L1 and PD-L2 axis. From a toxicity
standpoint, irAEs directly associated with CPI therapy have presented novel clinical chal-
lenges. Despite the incredible successes in the solid tumor arena, CPIs has been associated
with an alarmingly high frequency of irAEs with studies and reviews reporting incidences
including all grades up to 85%, though this is variable depending on specific therapies
and clinical applications [2,23,27]. A likely explanation for the high incidence of irAEs
is the non-specific binding of CPIs to naturally occurring receptors present throughout
the body that normally serve to regulate against self-antigen recognition, activation, and
autoimmunity [70–73]. When standard infusion of CPI therapy via SD occurs, there are
high levels of systemic exposure, increasing the risk of irAEs. RD strategies avoid these
undesirable effects by directing therapy to the target site while maintaining therapeutic
efficacy. Additionally, PD-1 detection decreased following 3 mg/kg PV showed compared
to 3 mg/kg TV, possible due to neutralization of PD-1 in the liver TME. Increase PD-1
engagement following PV infusion may have further caused an increase in tumor cell
apoptosis that enabled lower effective doses with RD.

Limitations of our study include the absence of complete responses CPI treatment.
While the RD groups and high-dose SD groups helped to slow tumor progression relative to
vehicle control, there remained a persistent increase in tumor burden. A number of factors
likely contribute to this, but we speculate that the elevated interstitial fluid pressures (IFPs)
associated with solid tumors plays a significant role in this. The distorted architecture and
lymphovascular disarray results in pressures much higher than mean circulating pressures,
resulting in the inability of immune cells to enter the TME [74]. Though we were able to
disrupt the PD-1/PD-L1 axis with respect to tumor cell engagement, the activated natural
immune cells may have still been unable penetrate the stroma to act against the tumor. In
order to achieve control of tumor growth and eradicate disease, we believe a combinatorial
approach with CPIs may prove beneficial [14,75]. The FDA approved PD-1 inhibitor,
pembrolizumab (KEYTRUDA, Merck & Co., Inc., Kenilworth, NJ, USA), on 16 June 2020
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for the treatment of solid tumors with high tumor mutational burden (TMB). Studies show
correlation of TMB with response to anti-PD-1 therapies, supported by a pooled analysis of
27 tumor types [76]. It is unclear whether TMB itself or the resulting influx of activated
T cells accounts for the higher response rates to CPI. If the latter, combinatorial approaches
may enable deeper CPI responsiveness through induction of more permissive or “hot”
tumor microenvironments.

Additionally, a complete dose-range finding study was not performed, particularly
with regards to the RD cohort where no minimum effective concentration was found.
Doses below 0.3 mg/kg may have resulted in similar therapeutic efficacy and control of
CRCLM while further reducing systemic exposure, both of which are additional benefits
worthy of further exploration with lower dosing. Finally, though liver toxicity and clinical
status of the mice did not appear to be impacted by the dosing or delivery route of the
anti-PD-1 antibody, further examination of extra-hepatic autoimmune effects would be
warranted given reported cases in the clinical arena. However, preclinical mouse models
of CPI therapy with solid tumors do not always recapitulate the human response and are
generally more resistant to development of irAEs and careful study design to assess these
variables must be considered to augment our experiments [70,77–80]. In summary, we
show that RD of anti-PD-1 antibody can overcome the SD related autoimmune toxicities
and provide comparable anti-tumor efficacy with over 10-fold lower concentration as
compared to the minimum effective systemic dose.

5. Conclusions

Applications for CPI therapies have rapidly increased in the treatment of solid tumors,
with some indications as potential first or second-line options. However, the use of CPIs has
been associated with high frequencies of irAEs related to dosing and delivery routes. RD of
CPI represents a viable option to address both these issues as our model has demonstrated
similar therapeutic efficacy using these techniques with significantly lower doses and
systemic exposure. We believe that these data can be translational and support using
regional delivery to improve outcomes and reduce side effects for CPI therapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vaccines9080807/s1, Figure S1: Raw data of Western Blots.
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Abbreviations
ALT Alanine transaminase
AST Aspartate transaminase
CPI Checkpoint inhibitor
CRCLM Colorectal cancer liver metastases
ELISA Enzyme-linked immunosorbent assay
FDA Food and Drug Administration
G-MDSC Granulocytic myeloid-derived suppressor cells
IACUC Institutional Animal Care and Use Committee
IP Intraperitoneal
irAE Immune-related adverse events
LFT Liver function tests
L-MDSC Liver myeloid-derived suppressor cells
L-NPC Liver non-parenchymal cells
MMR Mismatch repair
M-MDSC Monocytic myeloid-derived suppressor cells
PBS Phosphate buffered saline
PTD Post-treatment day
PV Portal vein
RD Regional delivery
RWMC Roger Williams Medical Center
SD Systemic delivery
SEM Standard error of mean
TB Tumor bioluminescence
TILs Tumor infiltrating lymphocytes
TMB Tumor mutational burden
TME Tumor microenvironment
TV Tail vein
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