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Abstract

Background: The Francisella tularensis protein MglA performs complex regulatory functions since it influences the
expression of more than 100 genes and proteins in F. tularensis. Besides regulating the igl operon, it has been
suggested that it also regulates several factors such as SspA, Hfq, CspC, and UspA, all important to stress
adaptation. Therefore, it can be hypothesized that MglA plays an important role for Francisella stress responses in
general and for the oxidative stress response specifically.

Results: We investigated the oxidative stress response of the ΔmglA mutant of the live vaccine strain (LVS) of F.
tularensis and found that it showed markedly diminished growth and contained more oxidized proteins than the
parental LVS strain when grown in an aerobic milieu but not when grown microaerobically. Moreover, the ΔmglA
mutant exhibited an increased catalase activity and reduced expression of the fsl operon and feoB in the aerobic
milieu. The mutant was also found to be less susceptible to H2O2. The aberrant catalase activity and gene
expression was partially normalized when the ΔmglA mutant was grown in a microaerobic milieu.

Conclusions: Altogether the results show that the ΔmglA mutant exhibits all the hallmarks of a bacterium
subjected to oxidative stress under aerobic conditions, indicating that MglA is required for normal adaptation of F.
tularensis to oxidative stress and oxygen-rich environments.

Background
Francisella tularensis is a facultative intracellular, gram-
negative coccobacillus, which causes the potentially
lethal disease tularemia. This zoonotic disease is trans-
mitted via vectors such as ticks and mosquitoes and
infects predominantly mammals such as small rodents,
hares and rabbits [1]. The subspecies tularensis and
holarctica also give rise to human infections. The patho-
gen is highly contagious, requiring as few as 10 bacteria
to cause human infection, and subspecies tularensis
causes a very aggressive disease with high mortality in
humans if untreated [2]. The high virulence, ease of
spread, and potentially high mortality of tularemia has
led to the classification of F. tularensis as one of six
category A select agents, i.e., the agents most likely to
be used for bioterrorism [3]. In experimental infections,
F. novicida and F. tularensis LVS are often used since
both show significant virulence in small rodents but still

are classified as BSL2 pathogens. The former species
very rarely causes human infections and the latter is a
human vaccine strain of subspecies holarctica origin [4].
An important virulence trait of F. tularensis is its abil-

ity to survive and multiply in an array of different cell
types including hepatocytes and professional phagocytes
[5]. The intracellular lifestyle relies on escape from the
phagosome and the subsequent proliferation in the cyto-
plasm [6]. The mechanism of escape from the phago-
some is not known but requires expression of the global
regulator MglA (macrophage growth locus) [7]. This is
most likely through its positive regulation of the genes
belonging to the intracellular growth locus (igl) and
other genes of the Francisella pathogenicity island.
MglA together with an ortholog, SspA, forms a complex
that directly interacts with the RNA polymerase [8] con-
ferring a complex regulatory role that leads to the con-
trol of more than 100 genes and proteins in F.
tularensis [9,10]. Besides the igl operon, it has been sug-
gested that the activities of several stress-regulated fac-
tors, such as SspA, Hfq, CspC, and UspA, are linked to
the MglA-dependent regulation [10]. Thereby, it plays
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an important role for the intracellular growth and stress
responses in general and for the adaptation to oxidative
stress response specifically.
Iron is essential for the survival of almost all living

organisms. Limiting the amount of iron accessible to
pathogens is therefore an important part of the host
defence system [11]. Thus, it is essential for successful
pathogens to circumvent this and they have evolved
various strategies, such as the usage of siderophores,
which are high affinity iron chelators synthesized in
response to iron starvation [12]. Siderophore produc-
tion in Francisella is dependent on proteins encoded
in the fsl operon (Francisella siderophore locus)
[13-15]. Besides the fsl operon, the ferrous iron trans-
port protein FeoB may contribute to the iron seques-
tration in F. tularensis. Similar to most other genes
related to iron uptake in bacteria, the fsl operon and
feoB are under the negative control of Fur [[15,16];
Honn et al., unpublished]. When sufficient iron is
available, Fur binds to a Fur box and thereby sup-
presses gene expression, whereas under low iron con-
centrations, Fur is released and transcription resumes.
The iron uptake by the pathogens has to be fine-tuned
since an excess of iron could be detrimental by poten-
tiating the toxicity of H2O2 through the Fenton reac-
tion, which generates highly reactive hydroxyl radicals
and anions [17]. In fact, regulation of iron uptake, and
oxidative stress are intimately linked, as evidenced by
the regulation of iron uptake-related genes in, e.g.,
Escherichia coli. In this bacterium, oxyR is activated by
H2O2 and causes an upregulation of Fur and catalase
expression and this reduces the concentration of iron
and H2O2 and thereby diminishes the Fenton reaction
[18].
In the present study, we investigated how the ΔmglA

mutant of LVS coped with oxidative stress. To this end,
the accumulation of oxidized proteins in LVS and
ΔmglA during growth was assessed and it was further
tested if growth under microaerobic conditions affected
oxidative stress parameters.

Material and methods
Bacterial strains
Francisella tularensis LVS, FSC155, was obtained from
the American Type Culture Collection (ATCC 29684).
The ΔmglA mutant of LVS has been described pre-
viously [7,19]. For complementation in trans, the intact
mglA gene was amplified by PCR and cloned to
pKK289Km [20], resulting in plasmid pKK289Km mglA.
The resulting plasmid was then introduced into ΔmglA
by cryotransformation and the resulting strain desig-
nated FUU301. The katG mutant has been previously
described [21].

Growth experiments
For liquid cultures, the F. tularensis strains were placed
on McLeod agar plates (MC plates) that were incubated
overnight under aerobic (20% O2 + 0.05% CO2) or
microaerobic condition (10% O2 + 10% CO2) in an incu-
bator with O2 + CO2 control (Sanyo, Loughborough,
UK). Bacteria from these plates were suspended in the
Chamberlain’s chemically defined medium (CDM), or in
iron-depleted CDM (C-CDM), to an optical density at
A600 nm (OD600) of ≈ 0.15. The latter media was used
for depletion of the internal iron pool of the bacteria
and was prepared as described previously [22]. The cul-
tures were incubated overnight at 37°C and a rotation of
200 rpm under aerobic or microaerobic conditions.
Thereafter, cultures were diluted in fresh CDM to an
OD600 of 0.2 and cultivated as described above in the
respective milieu. Iron-depleted bacteria were diluted in
C-CDM to which 1,000 ng/ml FeSO4 had been added.
Dilution and handling of the bacteria during the experi-
ment were performed aerobically. Samples from these
cultures were used to measure the levels of oxidized
proteins, catalase activity, iron pool, gene expression
and susceptibility to H2O2 of the bacteria.
For growth test on solid medium, the F. tularensis

strains were richly streaked on MC plates that were
incubated in 37°C and 5% CO2 over night. Bacteria were
harvested, serially diluted in PBS and 100 μl of a dilu-
tion estimated to give approximately 100 colony forming
units per plate were evenly spread on MC plates. The
plates were incubated at 37°C in an aerobic or micro-
aerobic milieu and the colony size scored after 2, 3, and
6 days of incubation.

OxyBlot assay
The OxyBlot Protein Oxidation Detection Kit (Chemi-
con International) is based on a method for detection of
carbonyl groups introduced into proteins by oxidative
reactions. The carbonyl groups are derivatized to 2,4-
dinitrophenylhydrazone (DNP-hydrazone) by use of 2,4-
dinitrophenylhydrazine (DNPH) and can thereafter be
detected by immunostaining. The OxyBlot kit was used
to compare the amount of oxidized proteins in LVS and
ΔmglA grown in an aerobic or a microaerobic milieu.
Samples were collected at an OD600 of 0.6-0.7 and the
bacteria were lysed using a buffer containing 2 M
thiourea, 7 M urea, 4% CHAPS (3-[(3-Cholamidopropyl)
dimethylammonio]-1-propanesulfonate), 0.5% ASB-14
(amidosulfobetaine-14), 1.0% DTT, 0.5 × protease inhi-
bitor, and 1% b-mercaptoethanol. The amounts of pro-
tein in the samples were determined by use of the
Bradford assay (Fermentas, St. Leon-Rot, Germany). The
assay was carried out according to the manufacturer’s
protocol for Standard Bradford assay in microplates.
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Equal amounts of proteins were taken from each sample
for derivatization and synthesis of negative controls
according to the manufacturer’s protocol. Briefly, sam-
ples were incubated with 1 × DNPH solution for 15 min
at RT to allow derivatization of carbonyl-groups to
DNP-hydrazone, after which a neutralization solution
was added. Negative controls were prepared as the sam-
ples with the exception that they were treated with
dH2O instead of 1 × DNPH solution, and therefore lack
DNP-hydrazone. Negative controls were synthesized in
order to ensure the specificity of the antibodies used for
detection of DNP-moieties in oxidized proteins. Samples
were blotted to PVDF membranes using a Bio-Dot
Microfiltration Apparatus (BioRad), immunostained
using a primary Rabbit anti-DNP antibody and a sec-
ondary Goat Anti-Rabbit IgG (HRP-conjugated) anti-
body; and developed with chemiluminescence to
visualize the DNP-modifications, as directed by the
instructions provided in the OxyBlot Kit. Samples were
blotted at a concentration of 2.5 ng of protein in the
first well followed by two-fold dilutions thereof.

Catalase assay
LVS and ΔmglA were cultivated overnight in CDM and
thereafter sub-cultured in CDM. When bacteria reached
logarithmic growth phase (0.4-0.7 OD600 nm), the
OD600 of the cultures were measured and 20-50 μl of
culture was withdrawn and transferred to a 96-well UV-
clear plate (Greiner Bio-One, Frickenhausen, Germany).
To each well, PBS was added to give a final volume of
200 μl. Finally, 80 μl of 100 mM H2O2 in PBS was
added to start the reaction. The decomposition of H2O2

was measured by monitoring the decrease in absorbance
at 240 nm using a microplate reader (Paradigm, Beck-
man Coulter). Each strain was run in five replicates. The
initial linear portion of the curve was used to calculate
the Δ240 nm. A molar extinction coefficient of H2O2 at
240 nm of 43.6 M-1 cm-1 was used to calculated the
concentration of H2O2 using the Beer-Lambert law, A =
εcl. One unit of catalase was defined as the amount that
decomposes 1 μmol of H2O2 per minute per OD600 at
25°C.

Analysis of gene expression
Bacteria were collected from cultures after 18 h of incu-
bation and mixed with 50% (v/v) RNAlater (Qiagen, Hil-
den, Germany) and when needed, placed in -20°C, to
stabilize the RNA until extraction could be performed.
RNA was extracted using Trizol (Invitrogen) according
to the manufacturer’s protocol. cDNA was synthesized
from this RNA and quantitative real-time PCR (RT-
PCR) was used to analyze the cDNA samples. In order
to remove contaminating DNA, the RNA samples were

DNase-treated (DNA-free kit, Ambion, Inc, Austin, TX,
USA) in accordance with the protocol supplied by the
manufacturer. The RNA was quantified by Nanodrop
(Thermo Fisher Scientific, Wilmington, DE, USA).
cDNA was synthesized from 1 μg of the extracted RNA
using iScript cDNA synthesis kit (Bio-Rad, Hemel,
Hampstead, UK) according to the protocol provided by
the manufacturer. To control for contaminating DNA in
the RNA preparation, a control was prepared by substi-
tuting the enzyme from the cDNA synthesis for nucle-
ase-free H2O (Ambion) (control 1). In order to degrade
any remaining RNA, the cDNA was treated with 2.0 μl
of 2.5 M NaOH at 42°C for 10 minutes after which the
pH was adjusted by the addition of 5 μl of 1 M HCl.
The samples were thereafter diluted and stored at -20°C.
RT-PCR was performed in the ABI Prism 7900HT

Sequence Detection System (Applied Biosystems, Foster
City, CA, USA) using the Power SYBR green PCR Mas-
ter Mix (Applied Biosystems) as recommended by the
manufacturer. Each reaction contained 12.5 μl of the
SYBR green mix, 400 nM of forward and reverse pri-
mers, 5 μl of a cDNA and the total volume was adjusted
with nuclease free water to 25 μl. Forward and reverse
primers were obtained from Invitrogen and their
sequences have been previously published [20,23] with
the exception of the pairs used to measure mglA, feoB
and katG. The sequences for mglA were the following:
FTT1275-F, 5’-TTG CAG TGT ATA GGC TTA GTG
TGA-3’ and FTT1275-R, 5’-ATA TTC TTG CAT TAG
CTC GCT GT-3’, for feoB: FTT0249-F, 5’-TCA CAA
GAA ATC ACA GCT AGT CAA-3’ and FTT0249-R,
5’-CTA CAA TTT CAG CGA CAG CAT TAT-3’ and
for katG the following: FTT0721c-F, 5’-TTC AAG TTT
AGC TGG TTC ATT CAT-3’and FTT0721c-R, 5’-GCT
TGG GAT TCA GCT TCT ACT TAT-3’. The reactions
were performed in MicroAmp 96-well plates (Applied
Biosystems). The reactions were incubated at 50°C for 2
min, 10 min at 95°C followed by 45 cycles of 15 s at 95°
C and 1 min at 60°C and a final cycle consisting of incu-
bation at 95°C for 15 s, 60°C for 15 s, and at 95°C for 15
s. The lowest dilution that allowed detection of the gene
within the linear working range was chosen as the dilu-
tion to be used for the analysis of the genes of interest.
To control for contaminating DNA in the reaction,
tubes with template from control 1 (see above) and
tubes with water instead of template were included in
the analysis. The controls gave Ct values (Ct is the
threshold cycle) below detection level or at least 8 cycles
later than the corresponding cDNA. Relative copy num-
bers (RCN) of selected genes were expressed in relation
to the expression of the housekeeping gene tul4 [24]
and calculated according to the following equation:
RCN = 2- ΔCt × 100 where ΔCt is Ct (target) - Ct(tul4)
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[25]. Thus, the copy number of a given gene is related
to the copy number of tul4. Normalized Ct-values were
used for statistical evaluation of the data.

Chromazurol-S (CAS) plate assay
Chrome-azurol sulfonate-C-CDM agar plates (CAS
plates) were prepared essentially as described [13].
Briefly, 40 ml of CAS/Fe(III)-hexadecyltrimethylammo-
nium solution was mixed with 50 ml of a 4% (wt/vol)
solution of GC II Agar Base (BD Diagnostic Systems,
Franklin Lakes, NJ, USA) and 110 ml of C-CDM. The
resulting CAS-C-CDM agar solution (1% agar) was
poured into 20 ml Petri dishes. All components of the
CAS-solution were purchased from Sigma-Aldrich,
Buchs, Switzerland.
Bacteria were cultivated overnight in C-CDM and

thereafter washed three times in C-CDM before dilution
in C-CDM to 1.0 OD600. The suspension was added as
a droplet of 2.5 μl to the center of the CAS plate. The
plates were incubated at 37°C in 5% CO2 and the size
and appearance of the halo formed around the bacterial
colony was scored at 72 h.

Ferrozine assay
A ferrozine-based method was used to measure the total
amount of iron in the bacterial samples and in culture
medium [26]. Ferrozine forms a complex with Fe2+ that
absorbs light at 562 nm. To determine the iron content
of bacteria, a volume corresponding to 1.0 OD600 was
withdrawn from the culture and bacteria collected by
centrifugation for 5 min at 13,000 rpm. The bacteria
were resuspended in PBS and collected by centrifuga-
tion. The resulting bacterial pellet was lysed with 100 μl
of 50 mM NaOH. The solution was mixed thoroughly
to ensure complete lysis of the bacteria. One hundred μl
of 10 mM HCl was added to the lysate. To release pro-
tein-bound iron, the samples were treated with 100 μl of
a freshly prepared solution of 0.7 M HCl and 2.25% (w/
v) KMnO4 in H2O and incubated for 2 h at 60°C. All
chemicals used were from Sigma-Aldrich. Thereafter,
the samples were mixed with 100 μl of the iron detec-
tion reagent composed of 6.5 mM ferrozine, 6.5 mM
neocuproine, 2.5 M ammonium acetate, and 1.0 M
ascorbic acid dissolved in water. For determination of
iron in medium, 30 μl of iron detection reagent was
mixed with 170 μl of bacterial-free culture medium. The
bacterial and medium samples were incubated with the
iron-detection reagent for 30 min and insoluble particles
were removed by centrifugation. Two hundred μl of the
supernatant was transferred to a 96-well plate and the
A562 determined in a microplate reader (Paradigm,
Beckman Coulter, Bromma, Sweden). The iron content
of the sample was calculated by comparing its absor-
bance to that of samples with FeCl3 concentrations in

the range of 0-5,000 ng/ml that had been prepared iden-
tically to the test samples. The correlation coefficients of
the standard curves varied between 0.998 and 0.999. The
detection limit of the assay was 50 ng/ml Fe. The intra-
sample variations (i.e., samples from the same culture)
were less than 17 ng/OD600.

H2O2 susceptibility test
Bacteria were cultivated overnight in CDM and there-
after cultured in fresh CDM for 2 h at 37°C and 200
rpm. The density of the cultures was measured and cul-
tures were serially diluted in PBS to approximately 106

bacteria per ml. The exact number of bacteria at the
start of the experiment was determined by viable count.
The bacterial suspension was divided in 2 ml aliquots in
10 ml screw cap tubes. To some tubes H2O2 (Sigma)
was supplied to reach a final concentration of 0.1 mM
and other tubes were left untreated as controls. The
tubes were incubated at 37°C 200 rpm. After 0 and 2 h
of incubation, bacterial samples were collected and
viable bacteria determined by plating 10-fold serial dilu-
tions. The plates were incubated for 3 days at 37°C 5%
CO2 before enumeration of the colony forming units
(CFU).

Statistical analysis
For statistical evaluation, two-tailed Student’s t-test and
two-tailed Pearson’s correlation test in the statistical
software program SPSS, version 16 were used.

Results
Growth of LVS and ΔmglA under aerobic or microaerobic
conditions
CDM is a liquid medium that effectively supports
growth of F. tularensis. Accordingly, LVS grew to an
OD600 of approximately 3.0 within 24 h under aerobic
conditions, however, ΔmglA reached an OD600 of only
slightly above 1.0 (Figure 1). In some experiments, LVS
grew as well under microaerobic and aerobic conditions,
but in other experiments, the growth was slightly
reduced under the former condition (Figure 1). ΔmglA
grew as well in the microaerobic as in the aerobic milieu
during the first hours, but after approximately 24 h, its
growth rate was reduced in the aerobic milieu, whereas
it reached the same density as LVS in the microaerobic
milieu after 48 h (Figure 1). FUU301 (ΔmglA expressing
mglA in trans) exhibited an intermediary growth in the
aerobic milieu and its density was 2.09 ± 0.05 vs. 2.59 ±
0.05 for LVS, whereas growth of the two strains was
similar in the microaerobic milieu.
It was also tested if the growth of LVS and ΔmglA on

solid medium was affected by the oxygen concentration.
Approximately 100 bacteria were spread onto agar
plates that were incubated in an aerobic or a
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microaerobic milieu. LVS formed colonies > two mm in
size in both environments within 6 days but with
delayed kinetics aerobically (Table 1). ΔmglA formed
only few and small colonies on plates incubated aerobi-
cally. In the microaerobic milieu, however, it formed
colonies of the same size as LVS, but with slightly
delayed kinetics. Thus, regardless of growth medium
used, ΔmglA appeared to exhibit markedly impaired
growth under aerobic conditions.

Oxidized proteins in LVS and ΔmglA cultivated under
aerobic or microaerobic conditions
We hypothesized that the aberrant oxidative stress
response of ΔmglA reported previously [8,10] may lead
to suboptimal handling of the effects of oxidation. We
therefore attempted to quantify such effects at a more
general level. To this end, we analyzed the presence of
oxidized proteins using the OxyBlot method. Prepara-
tions from ΔmglA cultivated under the aerobic condi-
tions contained significantly more oxidized proteins

than did those prepared from LVS (Figure 2). In con-
trast, the amounts of oxidized proteins were similar
after cultivation in the microaerobic milieu. We noted
some inter-experimental variation, but there were mark-
edly increased amounts of oxidized proteins in the
ΔmglA preparations under aerobic conditions in a
majority of the experiments performed. FUU301 con-
tained similar amounts of oxidized proteins as LVS
regardless of growth condition (Figure 2).
In summary, the marked accumulation of oxidized

proteins in ΔmglA during growth in the aerobic milieu
strongly suggested that the mutant had an impaired
response to oxidation. This may have been a reason for
its delayed and lower maximal growth in the aerobic
milieu.

Catalase activity in LVS and ΔmglA cultivated under
aerobic or microaerobic conditions
As judged from the levels of oxidized proteins, ΔmglA
experienced increased oxidative stress during growth in
the aerobic milieu. E. coli responds to oxidative stress
by upregulating the expression of catalase that degrades
H2O2 and we asked if this was the case also for F. tular-
ensis [18]. In addition, it has previously been demon-
strated that the F. novicida ΔmglA mutant shows higher
catalase activity than does the wild-type [10]. The cata-
lase activity of LVS and ΔmglA was measured under
aerobic and microaerobic conditions. The activity of
LVS was similar under the two growth conditions,
whereas ΔmglA showed significantly lower activity
under microaerobic conditions (P < 0.001) (Figure 3).
Still, ΔmglA demonstrated an elevated activity relative to
LVS even under microaerobic conditions (P < 0.02) and
even more so under aerobic conditions (P < 0.001) (Fig-
ure 3). An LVS katG deletion mutant did not decom-
pose any H2O2, confirming that the experimental
protocol is appropriate for measuring catalase activity.
In summary, the catalase activity of ΔmglA is strongly

influenced by the oxygen concentration whereas no
such correlation exists for LVS. This suggests that MglA
is a factor that affects the regulation of the anti-oxida-
tive response, particularly under aerobic conditions, and
in its absence, the increased level of oxidation leads to a
compensatory increase in the catalase activity.

Regulation of the fsl operon by LVS and ΔmglA
Iron uptake is a factor that may be decreased by bacteria
under oxidative stress in order to avoid toxic effects
generated through the Fenton reaction [27]. Therefore,
it would be logical if the iron regulation of ΔmglA is
affected by the oxidative stress that occurs during aero-
bic growth. To assess this, we measured the expression
of genes of the fsl operon and feoB by real-time PCR.
Samples for the analysis were obtained after 18 h of

Figure 1 Growth of LVS (squares) and ΔmglA (triangles) in
CDM in an aerobic (closed symbols) or microaerobic (open
symbols) milieu. The diagram shows one representative
experiment and similar results were seen in three additional
experiments. The error bars represent the standard error of means
and are included for all strains but are small for some data points
and are therefore not visible in the diagram.

Table 1 Size of colonies formed by LVS and ΔmglA on
agar plates under aerobic or microaerobic conditions

Colony sizea

Incubation time (days) Aerobic Microaerobic

LVS ΔmglA LVS ΔmglA

2 0 0 1 0

3 1 0 2 1

6 3 MCb 3 3
a Colony size was graded as follows: 0 = Not visible, 1 = colonies <1 mm in
diameter, 2 = 1.0 -2.0 mm. 3 = >2 mm in diameter
b Mixed colonies, a few large colonies growing in close proximity to each
other but most colonies were hardly visible
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growth, a time point when LVS had entered the station-
ary growth phase and the genes of the fsl operon were
expected to be up-regulated due to iron deficiency.
In the aerobic milieu, LVS contained 4-12 fold more

mRNA copies of fslA-D, 3.6-fold more copies of feoB (P
< 0.001), and 2-fold less copies of katG than did ΔmglA
(P < 0.05) (Table 2). Notably, fslE was not differentially
regulated (Table 2). As expected, expression of iglC was
greatly suppressed in ΔmglA. Importantly, the expres-
sion of all genes except for katG was restored to wild-
type levels in the FUU301 strain when it was cultivated
under aerobic conditions. FUU301 contained about 23-

fold more mRNA copies of mglA than LVS. Notably,
both LVS and FUU301 expressed significantly higher
levels of mglA under microaerobic than aerobic
conditions.
Compared to the aerobic conditions, LVS down-regu-

lated fslA-D 2.5-fold under microaerobic conditions,
whereas, in contrast, ΔmglA expressed 2-fold more of
fslA-D microaerobically than aerobically. Overall, the
adaptations under microaerobic conditions meant that
fslA-C and feoB were expressed slightly higher and fslD
and fslE almost 2-fold lower in LVS than ΔmglA (Table
2). The fsl genes were expressed at similar levels, and

Figure 2 Analysis of oxidized proteins by the Oxyblot assay. Relative amounts of oxidized proteins in LVS, ΔmglA, or FUU301 during growth
in an aerobic or microaerobic environment. Similar results were seen in two additional experiments. The first well of each preparation contained
2.5 ng of protein and the following wells two-fold dilutions thereof. Controls contain non-derivatized samples, and demonstrate the specificity of
the antibodies used for detection of oxidative damage.
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feoB was upregulated about 3-fold in FUU301 when cul-
tivated in the microaerobic versus the aerobic milieu.
In summary, we observed that ΔmglA very markedly

down-regulated the fslA-D and feoB genes compared to
LVS under aerobic conditions but that differences were

only marginal microaerobically, despite that less iron
was present when ΔmglA had been cultivated under
aerobic conditions. This supports our hypothesis that
ΔmglA is subjected to oxidative stress under aerobic
conditions and therefore needs to minimize iron uptake

Figure 3 Catalase activity of LVS and ΔmglA. Samples from cultures that were in the logarithmic growth phase were analyzed by the catalase
assay. The line through each box shows the median, with quartiles at either end of each box. The T-bars that extend from the boxes are called
inner fences. These extend to 1.5 times the height of the box or, if no case has a value in that range, to the minimum or maximum values. The
points are outliers. These are defined as values that do not fall within the inner fences

Table 2 Effect of growth condition on intra- and extra-cellular iron concentrations and gene regulation

Parameter tested Growth condition

Aerobic Microaerobic

LVS ΔmglA FUU301 LVS ΔmglA FUU301

Fe intraa 626 ± 27.2 661 ± 17.1 643 ± 24.5 893 ± 33.8 589 ± 21.9d 662 ± 20.5d

Fe extrab B.D.L.e 186 ± 20.5 64.5 ± 8.97 73.9 ± 19.3 327 ± 10.7d 165 ± 46.1

Gene regulationc

fslA 12.7 ± 0.64 2.51 ± 0.19f 10.6 ± 1.33 5.87 ± 0.71 4.93 ± 0.48 9.29 ± 1.19g

fslB 6.27 ± 0.39 0.83 ± 0.15f 5.6 ± 1.09 2.86 ± 0.43 1.87 ± 0.30 5.86 ± 0.30

fslC 5.96 ± 0.36 0.74 ± 0.15f 4.86 ± 0.68 2.61 ± 0.33 1.55 ± 0.28g 4.69 ± 0.26g

fslD 3.19 ± 0.23 0.97 ± 0.15f 3.52 ± 0.35 1.60 ± 0.23 2.40 ± 0.27g 3.73 ± 0.37g

fslE 0.82 ± 0.24 1.11 ± 0.15 1.55 ± 0.20h 1.04 ± 0.06 1.98 ± 0.14d 5.43 ± 1.20d

feoB 4.03 ± 0.29 1.37 ± 0.15f 4.95 ± 0.27 5.50 ± 0.41 4.33 ± 0.52 12.8 ± 3.77

katG 50.7 ± 8.62 110 ± 15.3h 116 ± 18.21h 79.1 ± 7.14 120 ± 19.3 135 ± 12.2i

iglC 390 ± 140 24.6 ± 5.37f 385 ± 58 685 ± 159 38.5 ± 15.9d 478 ± 120

mglA 16.5 ± 5.77 B.D.L. 384 ± 138h 63.7 ± 17 B.D.L. 637 ± 173g

a The intracellular iron pool (ng/OD600 nm) of the strains after 18 h of growth
b Iron (ng/ml) remaining in the culture medium after 18 h of growth
c The expression of the genes was analyzed by quantitative real-time PCR. Results are expressed as RCN means ± SEM of results from four independent samples
d P < 0.001 relative to LVS in the microaerobic condition
e Below Detection Limit
f P < 0.001 relative to LVS in the aerobic condition
g P < 0.05 relative to LVS in the microaerobic condition
h P < 0.05 relative to LVS in the aerobic condition
i P < 0.01 relative to LVS in the microaerobic condition
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as a compensatory mechanism to avoid toxic effects of
the Fenton reaction. Expression of katG was higher by
the complemented FUU301 strain than by LVS under
aerobic conditions, indicating that the former, as the
ΔmglA mutant, may be experiencing a certain level of
oxidative stress.

Iron consumption and storage of LVS, ΔmglA and FUU301
The fsl genes and feoB are iron-regulated through Fur in
F. tularensis [27]. Therefore, the expression of these
genes may be a reflection of the iron content of the
medium, or iron that is stored intracellularly and how
these parameters correlate to each other. To assess this,
these parameters were measured by the ferrozine assay.
Importantly, the samples were obtained from the same
cultures and time points as those analyzed by RT-PCR
(Table 2).
The medium from aerobic and microaerobic ΔmglA

cultures contained about 25% and 45%, respectively, of
the iron initially supplied (735 ng/ml) (Table 2). This
was significantly higher than for LVS cultures (P < 0.001
for both milieus). By use of Pearson’s test it was found
that for LVS there was no correlation between expres-
sion of fslA-E or feoB and the levels of iron remaining
in the medium. For ΔmglA, medium from microaerobic
cultures contained more iron than that from aerobic
cultures (P < 0.001) (Table 2) and there was a correla-
tion between the expression of fslA and feoB and the
iron concentration of the medium (P < 0.05).
The iron pool of LVS was 1.4-fold higher in the micro-

aerobic than in the aerobic milieu (P < 0.001) and there
was a correlation between the expression of fslA-D, but
not fslE and feoB, and the iron pool (P < 0.01). In contrast
to LVS, the iron pool of ΔmglA did not increase under
the microaerobic conditions and there was no correlation
between the expression of fslA-E or feoB and the iron
pool. The FUU301 strain was partly complemented for
iron acquisition and storage (Table 2).
In summary, the intracellular iron pool but not the

extracellular iron of LVS cultures strongly correlated to
the regulation of the fsl operon. Thus, a low intracellular
iron pool appears to be an important trigger of the
expression of fslA-D in LVS. This correlation seemed
not to exist in ΔmglA under aerobic conditions since
ΔmglA, despite a low intracellular iron pool, had a
repressed expression of fslA-D and feoB. The repressed
expression of fslA-D and feoB was mitigated when
ΔmglA grew under the microaerobic conditions,
although extracellular iron levels were higher.

Siderophore production and gene regulation by iron-
starved LVS and ΔmglA
It was assessed if the suppressed expression of the fsl,
iglC, and feoB genes in ΔmglA in the aerobic milieu

occurred also if the strains were subjected to iron defi-
ciency. To this end, LVS and ΔmglA were first culti-
vated in C-CDM to deplete their intracellular iron pool
and thereafter cultured in C-CDM with 1,000 ng/ml of
FeSO4. Under these conditions, expression of the fsl
genes was similar in the two strains (Table 3).
The CAS plate assay is well-established for measure-

ment of siderophore production in F. tularensis and we
now used it to assess the siderophore production in
ΔmglA [13,20,28]. We did not observe any significant
difference between the mutant and LVS. However, it
should be noted that minor differences with regard to
the siderophore production may not be detected in the
assay.
Together, the gene regulation of iron-starved bacteria

and the CAS assay demonstrates that when subjected to
severe iron-deficiency, ΔmglA regulates the fsl operon
and similarly to LVS and has the capacity to produce
siderophores. Thus, it appears to have no inherent
defects with regard to iron uptake.

Hydrogen peroxide susceptibility of LVS and ΔmglA
In view of the elevated catalase activity and aberrant
iron uptake displayed by ΔmglA, we hypothesized that
this would affect its susceptibility to H2O2. This was
also the case since more than 2.0 log10 of LVS was
killed during a 2 h incubation period when exposed to
0.1 mM H2O2, whereas the viability of ΔmglA decreased
only 1.0 log10 by this treatment (P < 0.01) (Figure 4).
It was tested if growth in the microaerobic milieu,

which diminished the catalase activity in ΔmglA and
enhanced the iron uptake in LVS, affected the suscept-
ibility of the strains to H2O2. Both LVS and ΔmglA
were completely eradicated by a 2 h exposure to 0.1
mM H2O2 (Figure 4). In conclusion, our results show
that the ΔmglA mutant compared to LVS displayed
increased resistance to H2O2 under aerobic conditions

Table 3 Gene regulation of iron-depleted LVS and ΔmglA
grown under aerobic conditions

Gene Gene regulationa

LVS ΔmglA

fslA 31.2 ± 13.5 27.5 ± 10.5

fslB 3.75 ± 1.51 8.17 ± 4.03

fslC 3.22 ± 1.61 6.33 ± 3.83

fslD 1.33 ± 0.45 2.07 ± 0.87

fslE 0.27 ± 0.10 0.30 ± 0.13

feoB 0.37 ± 0.19 0.46 ± 0.27

iglC 428 ± 161 11.1 ± 5.41

mglA 19.2 ± 12.5 B.D.L.b

a The expression of the genes was analyzed by quantitative real-time PCR.
Results are expressed as RCN means ± SEM of results three to five
independent samples
b Below Detection Limit
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whereas both showed markedly increased susceptibility
to H2O2 under microaerobic conditions.

Discussion
It is well established that MglA plays an important role
for the intracellular growth and virulence of F. tularen-
sis, most likely through its regulation of genes of the igl
operon and other genes of the Francisella Pathogenicity
Island. There are also reports that MglA regulates the
oxidative stress response in F. tularensis [8,10] and that
the F. novicida mglA mutant exhibits decreased survival
during stationary-phase growth under nutrient-limiting
conditions [10]. We observed that the LVS ΔmglA
mutant did not grow to high densities in a nutrient-rich
medium and generated only small colonies on solid agar
plates. Here we asked how the mglA deletion mutant of
LVS handled oxidative stress and if an impaired adapta-
tion is the basis for its inability to grow to high
densities.
The results of the Oxyblot assay showed that the

ΔmglA mutant contained significantly more oxidized
proteins than LVS under aerobic conditions. Reactive
oxygen species are generated as a byproduct of the nor-
mal metabolism of a growing organism and there is,
therefore, a continuous need to neutralize them to avoid
oxidative damage of macromolecules in the cell. In view
of this, the high level of oxidized proteins in ΔmglA
strongly suggests that MglA has a central role for the
normal oxidative stress response and that its absence
renders F. tularensis severely impaired to handle reactive
oxygen species leading to specific protein damage which
hampers the bacterial growth. In support of this, pre-
viously published data on the F. novicida mglA mutant
revealed that key enzymes in the glutaredoxin systems,
such as gluthathione synthetase, glutaredoxine, and
thioredoxine, all of which have critical roles to

neutralize reactive oxygen species [29], were greatly
repressed [9,10].
A rational adaptation to the increased oxidative stress

encountered by ΔmglA would be to decrease the iron-
driven Fenton reaction, which otherwise will result in
the generation of highly reactive hydroxyl anions and
radicals [17]. The most effective way to do this would
be to limit the intracellular iron pool and upregulate the
expression of catalase. Such an adaptation to oxidative
stress has been noted in for example E. coli [18]. Our
results support such a scenario also for F. tularensis
since catalase was upregulated, thereby enhancing the
capability of the bacterium to sustain an oxidative stress,
and the expression of the fsl operon and feoB was sup-
pressed in ΔmglA under aerobic conditions. Moreover,
ΔmglA regulated iron-uptake genes similarly to LVS
under microaerobic conditions and under severe iron-
deprivation. This indicates that the marked downregula-
tion of iron uptake genes observed under aerobic condi-
tions does not relate to any inherent defects with regard
to iron uptake, but instead is a compensatory mechan-
ism needed to avoid the deleterious effects of the Fenton
reaction.
An alternative explanation to the suppressed expres-

sion of the fsl operon and feoB in ΔmglA could be high
availability of iron in the medium. However, we found
no correlation between iron content and the fsl regula-
tion, which further supports the hypothesis that oxida-
tive stress was the primary reason for the dysregulation
of the fsl operon and feoB in ΔmglA under aerobic
conditions.
We hypothesized that the growth of ΔmglA in the

microaerobic milieu would reduce the oxidative stress.
Indeed, the levels of oxidized proteins in the ΔmglA
mutant were normalized and similar to those found in
LVS and, moreover, the growth of the mutant was simi-
lar to LVS. Other signs of reduced oxidative stress were
the significantly reduced catalase activity and increased
expression of the fslA-D and feoB genes. Collectively, all
evidence indicates that MglA plays a critical role for the
normal oxidative stress response and that its absence
renders F. tularensis severely impaired to handle reactive
oxygen species. We suggest that the lower levels of reac-
tive oxygen species generated under growth in micro-
aerobic conditions mitigated the defect of the mutant
and, consequently, it grew as well as LVS under these
conditions.
Our demonstration of an important role of MglA for

the regulation of the fsl operon and catalase are in
agreement with two previous publications [8,10], but if
MglA directly regulates these genes is not known. Our
present results suggest that the aberrant expression of
catalase is an indirect effect of the increased oxidative
stress of the ΔmglA mutant since the catalase activity

Figure 4 Survival of LVS (white bars) or ΔmglA (black bars)
after 2 h exposure to H2O2 Prior to the H2O2 challenge the
bacteria had been cultivated for 2 h in CDM in the indicated
milieu. The bars represent the average from four experiments with
triplicate samples of each. The error bars indicate the SEM
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was normalized under the microaerobic conditions.
Similarly, the mutant normalized expression of fslA-D
and feoB under the microaerobic conditions and this
also occurred under severe iron deficiency. In contrast,
iglC, known to be transcriptionally regulated by MglA,
was repressed in ΔmglA regardless of growth conditions
or iron availability. Together these data imply that there
are also MglA-independent mechanisms that transcrip-
tionally regulate the fsl, feoB and katG genes in F.
tularensis.
The increased catalase activity in the ΔmglA mutant is

a likely explanation for the high resistance of the mutant
to H2O2. Such a correlation was also reported for F.
novicida [10]. Besides catalase, the size of the intracellu-
lar iron pool is a factor that determines the susceptibil-
ity of F. tularensis to H2O2 [22]. We recently showed
that subspecies holarctica strains, including LVS, con-
tain more iron and were more susceptible to H2O2 than
strains of subspecies tularensis [22]. When the iron pool
of the subspecies holarctica strains was depleted, their
susceptibility to H2O2 decreased. Here we observed that
LVS sequestered significantly more iron under the
microaerobic conditions. Since iron is a factor that
determines the susceptibility of F. tularensis to H2O2, it
is very likely that the substantial iron pool of LVS under
the microaerobic conditions contributed to its extreme
susceptibility to H2O2. Iron could, however, not explain
the high susceptibility of ΔmglA to H2O2 in the micro-
aerobic milieu, but in this case the decreased activity of
catalase is a probable explanation for its reduced ability
to handle the toxic effects. This agrees with our pre-
vious findings that catalase plays a very important role
for LVS in protection against H2O2 [21].
The present study confirms previous findings that

MglA plays an important role for the adaptation to oxi-
dative stress in F. tularensis LVS and, moreover, we
demonstrate that the role of MglA is most critical dur-
ing growth in an aerobic milieu, whereas its importance
is less obvious in an oxygen-restricted milieu. Therefore,
we hypothesize that MglA is of special importance for
the bacterium to survive in oxygen-rich foci.

Conclusions
We made the important observation that a major factor
for the diminished growth of ΔmglA appeared to be its
impaired adaptation to a normal oxygen environment
since its growth was normalized under microaerobic
conditions. The growth defect of the mutant reflects the
important role of MglA for the antioxidant defense and
the data show there are MglA-independent mechanisms
that transcriptionally regulate the fsl operon, feoB, or
katG. In addition, our data indicate that LVS copes with
oxidative stress by concomitantly upregulating detoxify-
ing enzymes and downregulating iron sequestration.
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