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Abstract

Motivation: Gene set testing, or pathway analysis, has become a critical tool for the analysis of

high-dimensional genomic data. Although the function and activity of many genes and higher-level

processes is tissue-specific, gene set testing is typically performed in a tissue agnostic fashion,

which impacts statistical power and the interpretation and replication of results.

Results: To address this challenge, we have developed a bioinformatics approach to compute

tissue-specific weights for individual gene sets using information on tissue-specific gene activity

from the Human Protein Atlas (HPA). We used this approach to create a public repository of tissue-

specific gene set weights for 37 different human tissue types from the HPA and all collections in

the Molecular Signatures Database. To demonstrate the validity and utility of these weights, we

explored three different applications: the functional characterization of human tissues, multi-tissue

analysis for systemic diseases and tissue-specific gene set testing.

Availability and implementation: All data used in the reported analyses is publicly available. An

R implementation of the method and tissue-specific weights for MSigDB gene set collections can

be downloaded at http://www.dartmouth.edu/�hrfrost/TissueSpecificGeneSets.

Contact: rob.frost@dartmouth.edu

1 Introduction

Gene set testing, or pathway analysis, has become an indispensable

tool for the analysis and interpretation of high dimensional genomic

data, including measures of DNA sequence variation, DNA methy-

lation, RNA expression and protein abundance (Hung et al., 2012;

Khatri et al., 2012). By focusing on the collective effect of biological-

ly meaningful groups of genomic variables, rather than just the mar-

ginal effect of individual variables, gene set testing methods can

significantly improve statistical power, replication of results and

biological interpretation (Allison et al., 2006; Goeman and

Buhlmann, 2007). Although significant progress has been made

building gene set collections (Gene Ontology Consortium, 2010;

Liberzon et al., 2011) and developing statistical gene set testing

methods (Subramanian et al., 2005; Wu and Smyth, 2012), the prac-

tical utility of gene set testing has been limited, with major chal-

lenges including annotation quality, statistical power and tissue

specificity.

1.1 Tissue-specificity of genes and processes
It is well known that the expression and function of many genes is

strongly linked to tissue context (Bossi and Lehner, 2009; Dezso

et al., 2008; Ju et al., 2013; Keshava Prasad et al., 2009; Winter

et al., 2004) [e.g. coagulation factor II (thrombin) is enriched in the

liver (Uhlén et al., 2015)], with tissue-specificity extending to a siz-

able number of higher-level pathways, processes and cellular func-

tions [e.g. keratinocyte differentiation is specific to the epidermis

(Pierson et al., 2015)]. Until recently, however, researchers have

lacked a comprehensive and accurate understanding of the tissue

specificity of all human protein-coding genes with repositories of

gene-tissue mappings, e.g. Human Protein Resource Data Base

(Keshava Prasad et al., 2009) and BRENDA enzyme information

system (Chang et al., 2015), based largely on associations manually

curated from the biomedical literature. A comprehensive view of

tissue-specific gene activity is now beginning to emerge with the

publication of results from projects such as the Human Protein Atlas
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(HPA; Uhlén et al., 2015), ProteomicsDB (Wilhelm et al., 2014),

Human Proteome Map (Kim et al., 2014) and Gene-Tissue

Expression Project (GTEx; GTEx Consortium, 2015). Using techni-

ques including immunohistochemistry (IHC), deep sequencing tran-

scriptomics and mass spectrometry, these projects are investigating

the tissue-specific activity of the �20 000 human protein-coding

genes with early results clearly demonstrating the importance of tis-

sue context. According to results from the HPA, approximately

34% of all human protein-coding genes have elevated expression in

at least one tissue with 17% showing expression levels that are five

times the maximum measured in any other tissue. Importantly, less

than half of all protein-coding genes (approximately 44%) were

found in the HPA analysis to be ubiquitously expressed in all tissue

types (this includes 60% of the metabolic enzymes, a large propor-

tion of transcription factors and many other ‘housekeeping’ genes).

In addition to improved knowledge about the tissue-specific expres-

sion of genes, important progress has also been made modeling the

relationships between human tissues, e.g. the BRENDA Tissue

Ontology (Gremse et al., 2011) defines the hierarchical relationships

between the major human tissue types, and in characterizing tissue-

specific gene relationships (Greene et al., 2015; Pierson et al., 2015),

often represented as gene networks with a distinct network per tis-

sue type.

1.2 Current support for tissue-specific gene set testing
Although significant effort has been expended characterizing the

tissue-specific activity of human genes, little information currently

exists regarding the tissue-specificity of gene sets or for leveraging

that knowledge during gene set testing. The Gene Ontology (GO;

Gene Ontology Consortium, 2010) does include limited informa-

tion, via annotation extensions (Huntley et al., 2014), regarding the

tissue or cell type associated with an annotation, however, only a

small number of GO annotations have such tissue type extensions

and no general support or tools are available for leveraging these

extensions (or other sources of knowledge regarding tissue-

specificity) to create tissue-specific versions of GO. For other stand-

ard gene set collections, e.g. Molecular Signatures Database

(MSigDB; Liberzon et al., 2011), information regarding the tissue

specificity of gene sets and gene set annotations is completely lack-

ing. Although more work has been done at the level of entire gene

sets, e.g. Pierson et al. (2015) used keyword searching to identify a

subset of GO terms that represent tissue-specific functions or proc-

esses, general purpose tools that can be used to compute the tissue-

specificity for any gene set collection for any human tissue type do

not yet exist. Furthermore, no available gene set testing methods are

able to leverage knowledge regarding tissue-specific gene relation-

ships. Although the work of Pierson et al. does provide a basis for

tissue-based filtering of GO terms, their effort was based on key-

word searching rather than experimental evidence. Because tissue-

specific versions of gene set collections are not available or easy to

create, it is currently standard practice to perform gene set testing

using the same, generic gene sets and annotations regardless of the

experimental tissue type. This practice is even common for projects

investigating the tissue-specificity of human genes, e.g. standard GO

terms and annotations were used to analyze the tissue-specific gene

networks in Greene et al. (2015), the gene co-expression networks

in Pierson et al. (2015) and differentially expressed genes in Uhlén

et al. (2015).

1.3 Impact of tissue-specificity on gene set testing
If the annotations for all tested gene sets were to ubiquitously

expressed genes, the current practice of ignoring tissue specificity

would have little impact on gene set testing accuracy. However, be-

cause a large proportion of human genes do display tissue-specific

activity (Uhlén et al., 2015), performing gene set testing without re-

gard to the tissue-specific activity of genes can be expected to elevate

both the type I and type II error rates, perhaps substantially. The

problem is further exacerbated by the fact that the evidence support-

ing gene set annotations in collections such as GO (Gene Ontology

Consortium, 2010) is often based on an experiment conducted in a

single tissue, with the annotations for a single gene set sometimes

drawn from multiple tissue sources. If gene sets are tested that repre-

sent processes which never occur in the experimental tissue under

analysis, the multiple hypothesis correction (MHC) burden will sim-

ply be increased without any chance of finding additional true asso-

ciations. Even when the tested gene set is relevant for the target

tissue, if the set contains annotations based on evidence associated

with tissues other than the tissue under analysis, the computed gene

set statistic may be biased.

2 Materials and methods

To address the challenge of tissue-specificity for gene set testing, we

have developed a new bioinformatics approach, illustrated in

Figure 1, that uses information about tissue-specific gene function to

compute a vector of weights for a given gene set (one weight per

human tissue type) that can be leveraged during later analysis. The

following sections outline the statistical details of the method and

Fig. 1. Conceptual representation of the proposed approach for computing

and using tissue-specific gene set weights. The target gene set collection, e.g.

one of the collections from the MSigDB, is represented as a matrix of indica-

tor variables with rows representing gene sets, columns representing genes

and elements set to 1 if an annotation exists between the corresponding gene

and gene set. Using information from the HPA regarding gene activity in dif-

ferent human tissues, tissue-specific weights are computed according to the

process detailed in Section 2.2 for all of the gene sets in the collection.

Potential applications of these weights include the functional characterization

of human tissues, tissue-specific gene set testing and multi-tissue analyses
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the leveraged data sources. Example applications of the computed

tissue-specific gene set weights are detailed in Section 3.

2.1 Data sources
2.1.1 Gene sets

The results described in this paper were based on gene sets from ver-

sion 6.0 of the MSigDB (Liberzon et al., 2011) as downloaded from

http://software.broadinstitute.org/gsea/downloads.jsp. In particular,

tissue-specific gene set weights were computed using the procedure

detailed in Section 2.2 on 13 distinct MSigDB collections, as detailed

in Table 1.

2.1.2 Tissue-specific gene function

Information regarding the tissue-specificity of human protein-

coding genes was drawn from version 16 of the HPA (Uhlén et al.,

2015) as downloaded from http://www.proteinatlas.org/about/

download. Evidence for the tissue-specificity of genes was based on

both HPA mRNA expression data as computed via RNA-seq and

HPA protein abundance data as computed via IHC. See Section

2.2.1 below for more details.

2.2 Analysis pipeline
The analysis pipeline illustrated in Figure 2 takes as input a human

tissue type t drawn from the set of tissue types supported by the

HPA and a gene set collection represented by a g�p indicator ma-

trix G that holds g gene sets annotated to p genes. The pipeline uses

these inputs to compute tissue-specific gene set weights using the fol-

lowing steps (see Sections 2.2.1 and 2.2.2 below for more details on

each step):

i. Assign tissue-specific gene weights: For all genes annotated to

the gene sets in G, a set of tissue-specific weights are computed

according to the activity of the gene in the tissue types supported

by the HPA.

ii. Compute tissue-specific gene set weights: The gene-level weights

are used to computed tissue-specific gene set weights for all gene

sets defined in G.

Possible variations and extensions of this pipeline are discussed

in Section 4.2 below.

2.2.1 Computation of tissue-specific gene weights

To compute tissue-specific gene weights, we use both mRNA and

protein evidence from the HPA. Specifically, the weight wg
i;t for gene

i in tissue t is computed as follows:

wg
i;t ¼ ei;tai;t (1)

where:

• ei,t represents the expression fold-change for gene i in tissue t

relative to the mean expression among all tissues supported by

the HPA. In this case, expression values are taken from the HPA

RNA-seq data in units of fragments per kilobase of transcript per

million fragments mapped. If an RNA-seq measurement is miss-

ing for gene i in tissue t, ei,t is set to 0, i.e. we assume the gene is

not expressed in tissue t.
• ai,t represents an indicator of gene activity based on IHC.

Specifically, ai,t is set to 0 if the protein for gene i was not

detected by the HPA IHC analysis in tissue type t and is set to 1

if the protein was detected at a ‘Low’ or greater level. If an IHC

value is missing for gene i in tissue t, ai,t is set to 1, i.e. the overall

tissue-specific gene weight is determined by just the RNA data if

IHC measurements are missing.

Formula (1) results in a tissue-specific gene weight that requires evi-

dence at both the protein and RNA level to generate a non-zero

value. If both forms of evidence are available, the magnitude of the

weight is set to the fold-change in expression of the gene in the target

tissue relative to the mean in all tissues.

2.2.2 Computation of tissue-specific gene set weights

The weight ws
j;t for gene set j and tissue type t is computed as the -

log of the P-value from a competitive gene set test that compares the

mean weight for tissue t of genes annotated to set j with the mean

weight of all genes not in set j. Let m represent the genes annotated

to set j, i.e. m ¼ fi 2 1 . . .p and Gj;i ¼ 1g, let mc be the complement

set, i.e. mc ¼ fi 2 1 . . .p and Gj;i ¼ 0g and let jmj and jmcj represent

the sizes of these sets. The competitive gene set test performed using

a one-sided, two-sample t-test that evaluates the following null and

alternative hypotheses:

H0 : 1=jmj
X

i2m

wg
i;t ¼ 1=jmcj

X

i2mc

wg
i;t

HA : 1=jmj
X

i2m

wg
i;t > 1=jmcj

X

i2mc

wg
i;t

(2)

This form of test is very similar to the competitive gene set test

implemented by the geneSetTest method in the R limma package

(Ritchie et al., 2015). The weight for gene set j and tissue type t can

therefore be formally defined as:

ws
j;t ¼ �log Pvalj;t

� �
(3)

where pvalj;t is the P-value from this t-test. It is important to note

that this form of competitive test assumes independence of the gene-

level weights or, more precisely, a similar dependence structure

among all weights. If all gene-level weights do not share a similar de-

pendency structure, the magnitude of ws will be a function of both

the difference in mean gene-level weights and the difference in cor-

relation among gene-level weights (Wu and Smyth, 2012), i.e. large

ws will be generated for gene sets whose member weights are much

larger than average or are more highly correlated than average. For

our applications of ws, this property is desirable. For additional dis-

cussion of this topic and the scenarios when it is acceptable to ignore

Table 1. Analyzed MSigDB gene set collections

ID Collection name # Sets

H Hallmark gene sets 50

C1 Positional gene sets 326

C2.CGP Chemical and genetic perturbations 3402

C2.CP Canonical pathways 1329

C3.MIR microRNA targets 212

C3.TFT Transcription factor targets 615

C4.CGN Cancer gene neighborhoods 427

C4.CM Cancer modules 431

C5.BP GO biological process 4436

C5.CC GO cellular component 580

C5.MF GO molecular function 901

C6 Oncogenic signatures 189

C7 Immunologic signatures 4872

Note: The 13 MSigDB version 6.0 collections for which tissue-specific gene

set weights were computed. The collections marked in bold (C2.CP and

C5.BP) were used to generate the analysis results in Section 3.
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inter-gene correlation during gene set testing, please see the

CAMERA paper (Wu and Smyth, 2012) and the documentation for

the camera function in the limma R package (Ritchie et al., 2015).

3 Results

3.1 Catalog of tissue-specific gene set weights
Using the analytical approach detailed in Section 2, we have gener-

ated a public catalog of tissue-specific weights for 13 distinct

MSigDB version 6.0 gene set collections (Table 1) and 37 human tis-

sue types from the HPA (Table 2). This catalog can be accessed

at http://www.dartmouth.edu/�hrfrost/TissueSpecificGeneSets. This

web site also includes R (R Core Team, 2016) code that implements

our approach and can be used to generate tissue-specific weights for

any desired gene set.

3.2 Characterization of human tissues
The tissue-specific gene set weights can be directly used to function-

ally characterize the associated human tissue. Specifically, the gene

sets within a desired collection, e.g. MSigDB C2.CP, can be rank

ordered according to the weight assigned to each set for a given tis-

sue according to the procedure outlined in Section 2. The sets with

the largest weights are expected to capture the primary biological

processes active within that tissue. This procedure also enables the

qualitative evaluation of the weights, i.e. do the gene sets with large

weights accurately reflect the known features of the target tissue? To

demonstrate this application, we analyzed the top-ranked MSigDB

curated canonical pathways (C2.CP) and GO biological process

(C5.BP) gene sets for adipose tissue, heart muscle and liver. As

shown in Table 2, the top-ranked C2.CP and C5.BP gene sets accur-

ately capture known biological properties of the associated tissues,

e.g. lipid-related pathways for adipose tissue, cardiac-related path-

ways for heart muscle and metabolic pathways for liver. Similar

results for the other 34 supported tissues can be found at http://

www.dartmouth.edu/�hrfrost/TissueSpecificGeneSets.

3.3 Multi-tissue analysis for systemic diseases
Characterization of a single tissue using the gene set weights can be

extended to the analysis of a group of tissues, e.g. all human tissues

impacted by a given systemic disease. For such a multi-tissue ana-

lysis, the gene sets within a collection can be rank ordered according

to a multi-tissue weight calculated from the tissue-specific weights.

Although numerous multi-tissue weights are possible (e.g. mean

weight, median, etc.), we have found the minimum weight to be

most effective for identifying biological processes associated with

systemic diseases. If the set of analyzed tissues is represented by t,

we compute the multi-tissue gene set weight for gene set j, wm
j;t, as:

wm
j;t ¼ min

t2t
ws

j;t (4)

This form of multi-tissue weight highly ranks gene sets with at least

a basic level of activity in all analyzed tissues. To demonstrate

this approach to multi-tissue analysis, we analyzed the MSigDB

C2.CP and C5.BP collections for four tissues that comprise the

‘dysharmonious quartet’ (Defronzo, 2009) of type II diabetes (T2D):

adipose tissue, liver, pancreas and skeletal muscle. As seen in

Table 4, this approach correctly captures processes with a known

T2D association, e.g. various pathways relating to carbohydrate

metabolism, insulin signaling and the very specific

KEGG_TYPE_II_DIABETES_MELLITUS pathway.

3.4 Tissue-specific gene set testing
The tissue-specific gene set weights can also be used to improve the

performance of standard gene set testing. Specifically, the tissue-

specific weights ws can be used to increase gene set testing statistical

power via hypothesis or P-value weighting (Genovese et al., 2006;

Ignatiadis et al., 2016). A key challenge encountered with gene set

testing is the significant penalty on power caused by MHC (Frost

et al., 2015). This can be especially problematic when the analysis is

performed using large gene set collections that contain thousands of

sets. In hypothesis or P-value weighting, the unadjusted P-values

from the family of tested hypotheses are modified by weights that re-

flect the prior likelihood that the alternative hypothesis is true. As

detailed in Genovese et al. (Genovese et al., 2006), the Benjamini

and Hochberg (BH; Benjamini and Hochberg, 1995) method pro-

vides valid FDR control when applied to weighted P-values (i.e.

weighted FDR or wFDR) as long as two key requirements are met:

(i) the average weight is 1 and (ii) the weights are independent of the

P-values under H0. In order to improve statistical power, the

weights must additionally be inversely associated with the P-values

under HA, i.e. the weights have to correctly prioritize true discov-

eries. In our application, the tissue-specific weights are completely

independent of the data under analysis, which insures independence

under H0. Note that it is also possible to ensure independence under

H0 using weights computed from the analyzed data [e.g. the ap-

proach of Ignatiadis et al. (Ignatiadis et al., 2016)]. To meet the re-

quirement that the weights sum to 1, the tissue-specific gene set

weights ws were standardized as:

ws�
j;t ¼

ws
j;t

1=g
Pg

i¼1 ws
i;t

(5)

If the P-value for gene set j from gene set testing is Pvalj, these standar-

dized weights can then be used to generate weighted P-values, pval�j , as:

pval�j ¼
pvalj
ws�

j;t

(6)

Given these weighted P-values, the wFDR q-values can be computed

using the standard BH method applied to pval�j instead of Pvalj. It is

important to note that this procedure can be used with any desired

gene set testing method as long the method performs hypothesis test-

ing and therefore generates P-values.

Ensuring that the tissue-specific weights have an inverse associ-

ation with gene set testing P-values under HA is more challenging

Table 2. Analyzed HPA tissue types

Adipose tissue Gallbladder Seminal vesicle

Adrenal gland Heart muscle Skeletal muscle

Appendix Kidney Skin

Bone marrow Liver Small intestine

Breast Lung Smooth muscle

Cerebral cortex Lymph node Spleen

Cervix, uterine Ovary Stomach

Colon Pancreas Testis

Duodenum Parathyroid gland Thyroid gland

Endometrium Placenta Tonsil

Epididymis Prostate Urinary bladder

Esophagus Rectum

Fallopian tube Salivary gland

Note: The 37 HPA tissue types for which tissue-specific gene sets weights

were computed. The tissue types in bold were used to generate the analysis

results in Section 3.
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and will not hold under all experimental conditions. In particular,

we believe that this P-value weighting scheme will be most effective

in two primary scenarios:

• When the goal of gene set testing is to identify dysregulation of

gene sets that play a biologically important role in the target tis-

sue, i.e. are active under normal conditions and are specific to

the tissue. Since gene sets with large weights are more likely than

gene sets with small weights to reflect processes specific to the

target tissue and active under normal conditions, P-value weight-

ing should improve statistical power.
• When the dependent variable in gene set testing is expected to

show the most significant association with processes that are nor-

mally active and specific to the tissue under analysis. An example

of such a dependent variable would be an intervention that

impacts the function of active processes in the target tissue rather

than one that activates normally inactive processes. Because gene

sets with large weights are more likely to reflect normally active

Table 3. MSigDB genes sets specific to adipose tissue, heart muscle and liver

C2.CP C5.BP

Tissue Gene set Weight Gene set Weight

Adipose tissue REACTOME_HORMONE_SENSITIVE_

LIPASE_HSL_MEDIATED_TRI. . .
133 GO_REGULATION_OF_

LIPID_STORAGE
135

REACTOME_TRANSCRIPTIONAL_

REGULATION_OF_WHITE_ADIPO. . .
102 GO_REGULATION_OF_

SEQUESTERING_OF_TRIGLYCERIDE
125

KEGG_PPAR_SIGNALING_PATHWAY 93 GO_LIPID_STORAGE 102

REACTOME_LIPID_DIGESTION_

MOBILIZATION_AND_TRANSPOR. . .
59 GO_LOW_DENSITY_

LIPOPROTEIN_PARTICLE_CLEARANCE
85

REACTOME_TRIGLYCERIDE_

BIOSYNTHESIS
48 GO_BROWN_FAT_CELL_

DIFFERENTIATION
83

KEGG_ADIPOCYTOKINE_SIGNALING_

PATHWAY
42 GO_POSITIVE_REGULATION_

OF_LIPID_STORAGE
81

REACTOME_FATTY_ACID_

TRIACYLGLYCEROL_AND_KETONE_BOD. . .
32 GO_REGULATION_OF_LIPID_

CATABOLIC_PROCESS
79

REACTOME_METABOLISM_OF_LIPIDS_

AND_LIPOPROTEINS
29 GO_TRIGLYCERIDE_CATABOLIC_

PROCESS
75

NABA_ECM_GLYCOPROTEINS 23 GO_REGULATION_OF_LIPID_METABOLIC_PROCESS 72

BIOCARTA_LEPTIN_PATHWAY 23 GO_NEGATIVE_REGULATION_

OF_LIPID_STORAGE
68

Heart muscle REACTOME_STRIATED_MUSCLE_CONTRACTION 304 GO_HEART_PROCESS 565

KEGG_DILATED_CARDIOMYOPATHY 203 GO_STRIATED_MUSCLE_CONTRACTION 557

KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM 196 GO_CARDIAC_MUSCLE_TISSUE_

MORPHOGENESIS
515

KEGG_CARDIAC_MUSCLE_CONTRACTION 179 GO_CARDIAC_MUSCLE_TISSUE_

DEVELOPMENT
511

REACTOME_MUSCLE_CONTRACTION 169 GO_MUSCLE_CONTRACTION 464

BIOCARTA_ALK_PATHWAY 110 GO_MYOFIBRIL_ASSEMBLY 460

REACTOME_TCA_CYCLE_AND_RESPIRATORY_

ELECTRON_TRANSP. . .
39 GO_MUSCLE_SYSTEM_PROCESS 459

REACTOME_RESPIRATORY_ELECTRON_

TRANSPORT_ATP_SYNTHE. . .
36 GO_CARDIAC_CELL_DEVELOPMENT 434

KEGG_PARKINSONS_DISEASE 36 GO_ACTIN_MEDIATED_CELL_CONTRACTION 410

REACTOME_RESPIRATORY_ELECTRON_

TRANSPORT
32 GO_MUSCLE_ORGAN_MORPHOGENESIS 402

Liver KEGG_RETINOL_METABOLISM 280 GO_EPOXYGENASE_P450_PATHWAY 247

KEGG_DRUG_METABOLISM_

CYTOCHROME_P450
252 GO_DRUG_METABOLIC_PROCESS 244

REACTOME_BIOLOGICAL_OXIDATIONS 215 GO_MONOCARBOXYLIC_ACID_

METABOLIC_PROCESS
234

KEGG_COMPLEMENT_AND_COAGULATION_

CASCADES
212 GO_ORGANIC_ACID_

METABOLIC_PROCESS
234

KEGG_METABOLISM_OF_XENOBIOTICS_BY_

CYTOCHROME_P450
201 GO_ACUTE_PHASE_RESPONSE 228

REACTOME_BILE_ACID_AND_BILE_SALT_

METABOLISM
191 GO_STEROID_METABOLIC_PROCESS 224

REACTOME_PHASE1_FUNCTIONALIZATION_

OF_COMPOUNDS
187 GO_SMALL_MOLECULE_

METABOLIC_PROCESS
192

REACTOME_XENOBIOTICS 185 GO_EXOGENOUS_DRUG_

CATABOLIC_PROCESS
183

REACTOME_RECYCLING_OF_BILE_ACIDS_

AND_SALTS
155 GO_PROTEIN_ACTIVATION_CASCADE 177

REACTOME_CYTOCHROME_P450_ARRANGED_

BY_SUBSTRATE_TYP. . .
152 GO_BILE_ACID_METABOLIC_PROCESS 177

Note: 10 MSigDB gene sets from the canonical pathways (C2.CP) and GO biological process (C5.BP) collections with the largest tissue-specific weights for

adipose tissue, heart muscle and liver.
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and tissue-specific processes than gene sets with low weights,

P-value weighting should improve statistical power in this

scenario.

It is important to also note scenarios where the proposed P-value

weighting is unlikely to work well, i.e. cases where the weights are not

associated with gene set testing P-values under the desired HA. These

problematic scenarios (and potential alternate approaches) include:

• When the phenotype is associated with gene sets that are not nor-

mally active in the target tissue. In this case, the P-values for sig-

nificant gene sets will be down-weighted with an associated loss

of power. One potential approach for this scenario involves fil-

tering the gene set collection to remove sets with a tissue-specific

weight above a given threshold.
• When the phenotype is associated with gene sets whose members

are ubiquitously expressed in all tissues, e.g. housekeeping

processes. In this case, P-value weighting will rank tissue-

specific processes above the ubiquitous processes with an associ-

ated loss in power. A potential approach in this scenario involves

the use of a tissue-agnostic gene set weight rather than a tissue-

specific weight. Such a weight could be based on the proportion of

gene set members that are ubiquitously expressed in all tissues.
• When the phenotype is associated with gene sets that are active

in tissues other than the tissue under investigation. In this case,

the proposed P-value weighting will prioritize the wrong group

of gene sets with an associated loss in power. If the appropriate

tissue is known, researchers can address this scenario by simply

using the appropriate weights. If the correct tissue is not known

a priori, then a comparative analysis of results using weights for

a range of tissues might prove effective.
• When certain gene sets have very large tissue-specific weights rela-

tive to other sets in the collection. In this case, P-values that are

nominally insignificant can generate significant q-values via wFDR

analysis. To address this case, researchers could discretize the gene

set weights, i.e. filter the collection prior to hypothesis testing.

To demonstrate the effectiveness of this approach, we performed

gene set testing using the MSigDB C2.CP collection on normalized

gene expression data from version V6p of the GTEx (GTEx

Consortium, 2015) for 10 tissue types relative to 10 phenotypes

shown in Table 5 for total of 100 distinct tissue/phenotype combina-

tions. Gene set testing was performed using the competitive method

CAMERA, as implemented by the camera method in the R limma

package and using default settings (Wu and Smyth, 2012). For each

of these tissues, the gene set testing results using FDR control via the

BH method was compared against the results from wFDR using the

weights defined in Equation (5).

As shown in Table 5, the wFDR analysis yields more findings at

a q-value�0.2 for 41 of the 52 tissue/phenotype combinations with

at least one significant finding. Overall, the use of tissue-specific

P-values weights generated a total of 337 discoveries versus just

139 for the unweighted analysis. Details for all significant gene set

findings can be found at http://www.dartmouth.edu/�hrfrost/

TissueSpecificGeneSets. Importantly, the additional gene set findings

generated by the wFDR analysis are, in general, biologically plausible

for the associated phenotype with significant nominal P-values. As an

illustrative example, Table 6 lists the 10 gene set findings generated by

the wFDR analysis for liver relative to T2D status with a sample of

references supporting association of the gene set with T2D.

4 Discussion

Gene set testing, or pathway analysis, is an effective and widely used

hypothesis aggregation technique. By focusing on the collective ef-

fect of biologically meaningful groups of genomic variables, rather

than just the marginal effect of individual genes, gene set testing

methods can significantly improve statistical power, replication of

results and biological interpretation. Despite the significant progress

made building gene set collections and developing gene set testing meth-

ods, the practical utility of this technique is limited by challenges includ-

ing annotation quality, statistical power and tissue specificity. Although

Table 4. Multi-tissue analysis for T2D

C2.CP C5.BP

Gene set Minimum Gene set Minimum

weight weight

REACTOME_METABOLISM_OF_CARBOHYDRATES 2 GO_GLUCOSE_METABOLIC_PROCESS 7.7

REACTOME_AMINO_ACID_SYNTHESIS_AND_

INTERCONVERSION_. . .

1.1 GO_HEXOSE_METABOLIC_PROCESS 6.5

KEGG_TYPE_II_DIABETES_MELLITUS 1.1 GO_NEGATIVE_REGULATION_OF_

CARBOHYDRATE_METABOLIC_P. . .

5.4

KEGG_INSULIN_SIGNALING_PATHWAY 1 GO_MONOSACCHARIDE_

BIOSYNTHETIC_PROCESS

5.4

KEGG_ALANINE_ASPARTATE_AND_GLUTAMATE_

METABOLISM

0.92 GO_CARBOHYDRATE_METABOLIC_

PROCESS

4.7

REACTOME_MITOCHONDRIAL_FATTY_ACID_

BETA_OXIDATION

0.69 GO_MONOSACCHARIDE_METABOLIC_

PROCESS

4.7

REACTOME_BRANCHED_CHAIN_AMINO_

ACID_CATABOLISM

0.65 GO_SMALL_MOLECULE_METABOLIC_

PROCESS

4.2

KEGG_PROXIMAL_TUBULE_BICARBONATE_

RECLAMATION

0.64 GO_REGULATION_OF_CARBOHYDRATE_

METABOLIC_PROCESS

3.7

BIOCARTA_SARS_PATHWAY 0.64 GO_REGULATION_OF_GLUCOSE_

METABOLIC_PROCESS

3.3

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_

DEGRADATION

0.62 GO_SMALL_MOLECULE_BIOSYNTHETIC_

PROCESS

2.9

Note: The 10 MSigDB gene sets from the curated canonical (C2.CP) and GO biological process (C5.BP) collections that have the largest minimum tissue-

specific weight across four tissues significantly impacted by T2D (adipose tissue, liver, pancreas and skeletal muscle).
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the function and activity of many genes is tissue-specific, gene set testing

is normally performed using tissue agnostic gene sets with no computa-

tional adjustments to account for the source tissue. This practice can sig-

nificantly impact gene set testing accuracy whenever a mismatch exists

between the experimental tissue and either the tissue used as evidence

for an annotation or the tissue associated with the process or function

represented by a gene set.

To address this challenge, we developed a bioinformatics ap-

proach for computing tissue-specific gene set weights using both

RNA-seq and IHC evidence from the HPA regarding the tissue-

specific activity of human protein-coding genes. This research repre-

sents an important advance in support for tissue-specific gene set

analysis. Key contributions include:

i. A comprehensive repository of tissue-specific gene set weights.

The proposed method has been used to create a public reposi-

tory of tissue-specific weights for 17 770 MSigDB gene sets rep-

resenting a wide range of biological processes and experimental

results. These weights were generated using evidence at both the

RNA level (via RNA-seq) and protein level (via IHC) for 37

human tissue types profiled in the HPA. This repository can be

accessed at

ii. http://www.dartmouth.edu/�hrfrost/TissueSpecificGeneSets.

iii. Software that can be used to compute tissue-specific weights for

any gene set collection. The repository of tissue-specific gene set

weights includes an R implementation of the weight generation

method. This software can be used by other researchers to

generate tissue-specific weights for any desired collection of

gene sets for any of the 37 supported HPA tissue types. This

logic also supports a number of options that enable researchers

to customize the weight generation algorithm (e.g. use either

RNA or IHC evidence, modify the discretization of IHC evi-

dence, etc.).

iv. An approach for characterizing the biological features of indi-

vidual human tissues. As detailed in Section 3.2, the tissue-

specific gene set weights provide a direct means for identifying

the distinctive biological traits of specific human tissues. This

information can be leveraged to help select the most appropriate

tissue for a given investigation or to guide the analysis of experi-

mental data generated in a specific tissue.

v. An approach for identifying processes common to a group of

human tissues. As detailed in Section 3.3, the tissue-specific

gene set weights can be used to jointly profile multiple human

tissue types. Use cases for this type of analysis include the study

systemic diseases and investigation of environmental exposures

impacting multiple tissues.

vi. An approach for leveraging the tissue-specific weights to im-

prove gene set testing performance. As detailed in Section 3.4,

the tissue-specific gene set weights can be used to improve the

statistical power of gene set testing through a wFDR analysis.

This technique can significantly improve the likelihood of iden-

tifying biologically valid gene set associations from experiments

that generate high-dimensional genomic data.

4.1 Limitations
Although the initial results (as detailed in Section 3) are encouraging

and clearly demonstrate the validity and utility of the computed

Table 5. Tissue-specific gene set testing results

Age BMI Cerebrovascular COPD Depression Gender Heart Hyper Liver T2D

Disease Disease -Tension Disease

Adipose tissue (subcutaneous) 4/7 3/6 0/1 0/1 2/2 2/1

Cerebral cortex 0/3 0/2

Colon (transverse) 4/1 3/1 17/1 4/0 3/2

Esophagus mucosa 8/7 1/1 1/0 11/3 6/4 1/0 1/0

Heart (left ventricle) 24/46 2/0 2/0 9/8 3/0 3/0 11/8

Liver 17/3 8/0 24/5 20/1 10/0 12/6 9/0 9/0 10/0

Lung 0/1

Pancreas 0/1 2/1

Skeletal muscle 1/0 3/0 4/0 1/0 5/4 2/1

Small intestine (terminal ileum) 10/0 11/3 21/8 8/0 8/0 8/0 9/0

Note: Number of discoveries at an FDR q-value� 0.2 (weighted discoveries/unweighted discoveries) from a gene set testing analysis of GTEx gene expression

data from 10 different tissues relative to 10 different phenotypes using the MSigDB v6.0 C2.CP collection. Tissue and phenotype combinations with no discov-

eries are blank. If the weighted analysis yielded more discoveries than the unweighted analysis, the cell text is bold.

Table 6. Significant pathways in GTEx liver relative to T2D

Gene set Weight P-value FDR wFDR Support for TD2 association

KEGG_SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT 3.7 0.00047 0.62 0.08 (Zhu et al., 2017)

REACTOME_PROTEOLYTIC_CLEAVAGE_OF_SNARE_COMPLEX_PROTEINS 23 0.0052 0.69 0.08 (Zhu et al., 2017)

REACTOME_FGFR1_LIGAND_BINDING_AND_ACTIVATION 11 0.0025 0.62 0.08 (Wu et al., 2011)

REACTOME_AQUAPORIN_MEDIATED_TRANSPORT 26 0.0063 0.76 0.08 (Lloyd et al., 2005)

REACTOME_SIGNALING_BY_ACTIVATED_POINT_MUTANTS_OF_FGFR1 10 0.0033 0.63 0.085 (Wu et al., 2011)

REACTOME_G_BETA_GAMMA_SIGNALLING_THROUGH_PI3KGAMMA 10 0.004 0.67 0.089 (Azzi et al., 2017)

PID_HDAC_CLASSII_PATHWAY 66 0.048 1 0.14 (Ye, 2013)

REACTOME_PI3K_CASCADE 12 0.01 0.87 0.14 (Boucher et al., 2014)

REACTOME_MEIOTIC_SYNAPSIS 59 0.057 1 0.14 (Kim et al., 2007)

REACTOME_FACILITATIVE_NA_INDEPENDENT_GLUCOSE_TRANSPORTERS 47 0.056 1 0.16 (Baud et al., 2016)

Note: Top 10 MSigDB canonical pathways whose gene expression values in GTEx liver samples are most significantly associated with T2D status.
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gene set weights, there are some important limitations of our ap-

proach. In addition to the problematic scenarios identified in

Section 3.4, these include:

• Uncertainty regarding tissue-specific gene activity. The HPA

RNA and IHC measurements used to generate the gene set

weights are estimates based on a finite number of samples

and therefore only approximate the true population values.

Additionally, these measurements reflect mRNA and protein

abundance which may be imperfect proxies for the true function-

al activity of a protein.
• Process used to compute gene-set weights. The method used

to compute the gene set weights involves a number of approxi-

mations and simplifying assumptions that may impact the

quality and biological validity of the weights. These include

the model used to combine RNA and IHC evidence, the dis-

cretization of the IHC data and the assumption that the pro-

tein has low activity if IHC measurements are missing for that

tissue.
• Application to neoplastic or morphologically abnormal tissue.

Because the HPA measurements were made on non-neoplastic

and morphologically normal tissue samples, the derived gene

weights may provide a poor reflection of gene expression and

protein activity in neoplastic or morphologically abnormal

tissues.

4.2 Future directions
Possible extensions or refinements of this work include addressing

the problematic scenarios detailed in Section 3.4, the use of informa-

tion regarding tissue-specific gene activity to filter gene set annota-

tions or weight those annotations during gene set testing,

modifications to account for the exact level of protein activity

reported in the HPA IHC data, integration of other sources of

tissue-specific gene activity and the extension to cell lines, model

organisms and neoplastic tissue.
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