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Abstract

Mammals have a large cohort of endo- and ecto- symbiotic microorganisms (the microbiome) that potentially influence host
phenotypes. There have been numerous exploratory studies of these symbiotic organisms in humans and other animals,
often with the aim of relating the microbiome to a complex phenotype such as body mass index (BMI) or disease state.
Here, we describe an efficient methodology for predicting complex traits from quantitative microbiome profiles. The
method was demonstrated by predicting inflammatory bowel disease (IBD) status and BMI from human microbiome data,
and enteric greenhouse gas production from dairy cattle rumen microbiome profiles. The method uses unassembled
massively parallel sequencing (MPS) data to form metagenomic relationship matrices (analogous to genomic relationship
matrices used in genomic predictions) to predict IBD, BMI and methane production phenotypes with useful accuracies
(r = 0.423, 0.422 and 0.466 respectively). Our results show that microbiome profiles derived from MPS can be used to predict
complex phenotypes of the host. Although the number of biological replicates used here limits the accuracy that can be
achieved, preliminary results suggest this approach may surpass current prediction accuracies that are based on the host
genome. This is especially likely for traits that are largely influenced by the gut microbiota, for example digestive tract
disorders or metabolic functions such as enteric methane production in cattle.
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Introduction

The metagenome, the mix of DNA from all species in a sample,

has recently become an area of great interest [1,2], as the human

body contains 10 times more bacterial cells than human cells [3].

This ratio is even more dramatic in cattle, with approximately 120

times more bacterial than bovine cells in each animal (File S1),

reflecting the essential role of rumen microbial fermentation in

converting low quality feed stuffs into meat and milk. A number of

studies have explored the complexity of the human microbiome by

sequencing metagenomes from all over the human body [4–9],

and some from other species with examples including represen-

tatives of carnivores [10–12], omnivores [13–15] and herbivores

[16–22]. Some of these sequences have been accompanied by host

phenotypes (e.g. IBD [8] or BMI [7,8,23,24]). These studies, and

subsequent reanalyses of the data [25,26], have reported species

abundances and cluster analyses that associate the microbiome

with the trait of interest. Given the complexity of the microbial

communities, particularly in the human gut and bovine rumen, it

is likely that relative abundance of a large number of species

contributes to complex traits [2]. This is analogous to the many

genes of small effect that contribute to complex traits, including

disease [27] and BMI [28] in humans, and traits such as feed

conversion efficiency in cattle [29], when the host genome is

analysed. For such traits, individual host DNA markers explain

only a minute fraction of the phenotypic variance. However,

genomic predictions based on large numbers of genome wide

DNA markers have been used to accurately predict future

phenotypes [30].

Inspired by this encompassing statistical approach, we propose

that metagenomic profiles [21] can be used to predict complex

microbiome associated traits.

Results

We have used metagenomic profiles to predict phenotypes in

humans and cattle, and subsequently tested the accuracy of these

predictions. A metagenomic profile is the relative abundance of

several thousand microbial species from a metagenomic sample

derived from untargeted massively parallel sequencing (MPS). In

practice, all species in a microbiome cannot currently be identified

and fully sequenced, so counts of sequence reads from samples
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aligning to contigs from metagenomic databases can be used.

Metagenomic profiles for a group of samples are defined as an n6
m matrix X with elements xij, the log transformed and

standardised count for sample i for contig j, with n samples and

m contigs. The relationship between samples can then be described

by a matrix G = XX’/m. Metagenomic profiles have previously

been used to assess the relationship between samples [21], here

their use is significantly expanded to predict phenotypes from the

metagenomic relationship matrix using genomic best linear

unbiased prediction (BLUP) [31]. The metagenomic predictions

require a reference population of individuals with both the target

phenotype and quantitative metagenomic profiles. Subsequently,

future phenotypes can be predicted for any individual from their

metagenomic profiles alone. To determine the prediction accuracy

of such a method phenotypes can be predicted on a subset of

records which have measured phenotypes that were not included

in the model. The predicted phenotypes can then be correlated

with the observed (real) phenotypes to give the accuracy of

prediction (Pearson’s correlation coefficient r).

To test the utility of metagenomic predictions this method was

used to first predict IBD status from 38 human faecal

metagenomes from Spain [8]. The ‘‘case’’ individuals were in

clinical remission from IBD. IBD is an inflammatory disorder of

the digestive tract and includes diseases such as ulcerative colitis

and Crohn’s disease. We were able to predict disease state in this

dataset with an average accuracy of 0.42360.091 from the faecal

metagenomic profiles (Table 1) using three fold cross validation

(the individuals being predicted were always omitted from the

reference or training data set). When the predictions were

converted to a most likely phenotype (prediction values

.0.5 = normal, prediction value ,0.05 = case), the correct phe-

notype was assigned 73.7% of the time. This is greater than the

null predictor (predicting the most common phenotype every time)

of 65.8% correct. The area under the receiver operator

characteristic curve (AUC) was 0.76, calculated using [32].

Following the success of predicting this qualitative trait we used

the same method to predict BMI in humans, a continuous

complex trait with significant implications for health. Because of

the large number of samples (84) with reasonably complete

phenotype data, we again used the Denmark metagenome dataset

[8] to predict BMI. We were able to predict BMI in these samples

with an average accuracy of 0.42260.031 (Table 1) using two fold

cross validation (Figure S2 in File S1). We then attempted to use

the Denmark data as a reference set to predict BMI in the Spanish

data. The correlation between our predictions and the measured

phenotypes was again positive, but much lower (r = 0.101;

Table 1), likely a reflection of significant microbial profile by

environment interaction.

The final complex trait we applied the method to was methane

emission levels from dairy cattle. Methane is a potent greenhouse

gas which is produced through enteric fermentation of ruminants

such as cattle (Bos taurus), and interestingly is also an indicator of

microbial metabolic functions associated with disease states in

humans [33]. Individual measurements of methane production

from cattle are currently expensive and time consuming. For

industry wide selection of animals for reduced methane emission

levels more cost effective indicator phenotypes that can be

measured on individual animals are required. We generated a

dataset of B. taurus rumen metagenome samples [34] that had

associated methane production values from three experiments

(Table S1, Table S2 and Figure S3 in File S1). The first

experiment, referred to here as bovGMC, had 31 animals

randomly split between methane mitigating feed additive (grape-

marc, which is a by-products of the wine industry composed of the

remaining skin and seed residue of the grapes after the juice has

been extracted) and control diets. The second experiment, referred

to as bovFT, was a crossover design with 8 animals, who were each

fed a control diet, alternated with a diet which had added methane

mitigating feed additives (lipids from cottonseed and tannins from

Acacia mearnsii). The third experiment, referred to as bovFCE,

contained animals all fed a more typical industry diet (lucerne

cubes and crushed wheat). The phenotypes in bovFCE reflect

natural variation in methane emissions. We have used methane

corrected for dry matter intake as the phenotype for the following

predictions.

We predicted methane production using each of the three

bovine datasets as the reference population, and predicted the

phenotypes of animals in the other two datasets. The accuracy of

these predictions was 0.55360.119, 0.16360.171 and

0.38160.146 for the bovGMC, bovFT and bovFCE reference

datasets respectively (Table 1). Predictions using the bovGMC

dataset as the reference population outperformed both the bovFT

and bovFCE reference datasets, with all bovGMC based

predictions being significantly different to zero (based on 95%

confidence interval from bootstrapping; Table 1). This may

suggest that inclusion of bovGMC in the training set is important

for these predictions; perhaps because these animals have extreme

phenotypes, that is, the treatment diets lowered methane

production (in grams per Kg dry matter intake) by 20% (Table

S1 in File S1), thereby giving the predictions more power. As the

treatment diet of bovFT lowered methane production by only 6%

(Table S1 in File S1) it likely provided less predictive power then

bovGMC. Another possibility is a reference population size effect,

as bovGMC had double the number of animals in the other

bovine datasets. Larger training datasets, particularly those with

extreme phenotypes, may allow these prediction accuracies to be

increased.

We next tested the effect of 1) reference size and 2) extent of

reference phenotype variation, on predictive power of this method.

To ensure the accuracies were directly comparable we used the

bovGMC to predict the phenotypes of bovFCE and half of the

Denmark BMI data to predict the other half in all of the following

tests. To examine the effect of reference population size we

randomly sampled animals from both the bovine and human

reference population to generate 20 replicates of ‘sub’-reference

populations of varying sizes. As the number of samples in the

reference population increased the accuracy of prediction also

increased (Figure 1a). Further, to test the hypothesis that having

extreme phenotypes in the reference resulted in more accurate

predictions we divided the reference into groups based on how

extreme their phenotype was. For the bovine dataset, the reference

population with the most extreme phenotypes predicted the

validation set with the highest accuracy (Figure 1a; r = 0.541, 95%

CI: 0.391 to 0.813), while the least extreme reference population

resulted in prediction accuracies that were not significantly

different to 0 (95% CI least extreme 20.121 to 0.597). A similar,

but less extreme, pattern was observed when the human BMI

reference dataset was divided into the 20 most (10 highest and 10

lowest) and 20 least (20 closest to the median) extreme BMI

phenotypes. The prediction accuracy was higher when the 20 most

extreme phenotypes were used as the reference dataset (most

extreme BMI: r = 0.427, 95% CI 0.185 to 0.634; least extreme

BMI: r = 0.35, 95% CI 0.093 to 0.533; Figure 1a).

The amount of sequencing required to utilise this method is of

key importance as it directly affects the cost per sample. There are

two independent sequencing events for this method, firstly the

sequencing depth of each sample, and secondly the contig

database production. We tested the effect of these two parameters

Metagenomic Predictions
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on the accuracy of prediction in the bovine dataset, again using

bovGMC to predict bovFCE, with residual methane production as

the phenotype. Prediction accuracy increased as the sequence

depth of samples increased, and began to plateau at approximately

2.5 million reads per sample (Figure 1c). We then tested the effect

of the contig database size by randomly selecting N contigs from

the X matrix. When the number of contigs used was small, there

was a large amount of variation in the prediction accuracies

observed, this variation decreased as the number of contigs used

(N) was increased. However, as N increased there would be more

overlap between the replicates, hence subsets with large N would

be more similar to each other than subsets with small N, this could

possibly explain the reduction in prediction accuracy variation. To

test if the lower prediction accuracy variation was due to overlap

between the random contig subsets: contigs were randomly

assigned to four non-overlapping subsets of 100,000 contigs per

subset. The variation between these subsets was lower than the

variation at smaller Ns (Figure 1d).

There are other possible methods which could be used to

quantify ‘raw’ metagenomic data. One such strategy is K-mer

counts in place of alignment counts. This would have the

advantage of using the whole dataset, while alignments are only

able to use information from reads which align to the reference

(Table S3 in File S1). To test the effect of using K-mers we made

the n 6 m metagenomic relationship matrix X with elements xij,

the log transformed and standardised count for sample i for K-mer

j, with n samples and m K-mers. Only K-mers that were observed

in every sample were used. We used K = 31 and K = 11. The same

model as used for the contig count matrix was then applied to this

K-mer matrix. This method was tested on the bovine datasets

(reference = bovGMC, validation = bovFCE), with residual meth-

ane production as the phenotype. The K-mer based prediction

accuracy was not significantly different to 0 (K = 11: r = 0.126,

95% CI: 20.136 to 0.587; K = 31: r = 0.018, 95% CI: 20.278 to

0.562). Using K-mers performs poorly compared to using read

counts.

Other predictive models have been applied to 16S metagenome

data. Knights et al. [35] identified that randomForests performed

the best out of a number of different methods based on several 16S

metagenomic datasets (not shotgun MPS data). To compare

metagenomic predictions using BLUP with the randomForests

approach we applied randomForests [36] to the bovine and

human datasets. The randomForests method gave accuracies of

r = 0.305 and 0.325 for the human and bovine datasets

respectively. These accuracies were both lower than those

observed using BLUP (Figure 1b).

In genome wide association studies, SNP are fitted one at a

time. The analogy in our data sets would be to test each contig in

turn (where the X variable is the number of sequence reads

mapping to the contig for each individual, rather than SNP

genotypes). We applied this approach to our bovine dataset. There

was a very low validation rate for the most significant contigs. We

achieved a maximum r of 0.19 when using multiple contigs to

predict methane production (Figure S4 in File S1).

Discussion

BLUP has been used in animal breeding studies for several years

(for examples see [37–40]), however it has never before been

applied to metagenomic profiles of untargeted shot-gun sequence

reads. In this dataset we have found metagenomic predictions

using BLUP more accurate than using either individual contigs, a

Table 1. Metagenomic predictions of qualitative and quantitative traits.

Trait Validation Method Ref.Pop. (N) Val. Pop. (N) Accuracy (r) 95% CI # Significant

IBD* 3-fold CV Spain (25+13) Spain (25+13) 0.429 0.156: 0.647 Y

BMI 2-fold CV Denmark (84) Denmark (84) 0.391 0.175: 0.491 Y

BMI 2 Populations Denmark (84) Spain-c (13) 0.101 20.228: 0.624 N

Methane 2 Populations bovGMC (31) bovFT-t (8) 0.788 0.132:0.961 Y

Methane 2 Populations bovGMC (31) bovFT-c (7) 0.404 0.330:0.985 Y

Methane 2 Populations bovGMC (31) bovFCE (16) 0.466 0.165:0.734 Y

Methane 2 Populations bovFT (15) bovFCE (16) 0.394 0.078:0.711 Y

Methane 2 Populations bovFT (15) bovGMC-c (11) 20.167 20.677:0.247 N

Methane 2 Populations bovFT (15) bovGMC-t (20) 0.277 0.347:0.735 Y

Methane 2 Populations bovFCE (16) bovFT-t (8) 0.285 20.283:0.872 N

Methane 2 Populations bovFCE (16) bovFT-c (7) 0.780 0.127:0.973 Y

Methane 2 Populations bovFCE (16) bovGMC-c (11) 0.084 20.283:0.528 N

Methane 2 Populations bovFCE (16) bovGMC-t (20) 0.376 0.049:0.730 Y

Accuracy of prediction with confidence intervals for human and bovine metagenomic predictions. Phenotypes were predicted from metagenomic profiles using BLUP,
performed in ASReml. To evaluate the accuracy of metagenomic predictions the predicted phenotype was correlated with the measured (real) phenotype. IBD and BMI
data is from [8].
#95% confidence interval of the Pearson’s correlation coefficient r based on 10,000 bootstraps.
Ref.Pop. = Reference population.
Val.Pop = Validation population.
Spain-c = Control samples from Spain (no IBD).
bovFT-t/bovGMC-t = Animals on the treatment diet only.
bovFT-c/bovGMC-c = Animals on the control diet only.
N = total number of samples used.
CV = Cross Validation.
2 Populations = Validation on a second independent population.
*Phenotypes used were IBD = 0, nonIBD = 1.
doi:10.1371/journal.pone.0073056.t001
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subset of the most significant contigs or the randomForest

algorithm. Additionally, BLUP is not computationally demanding,

which will allow future studies to include large numbers of samples

without computational limitation. With recent technological

developments, obtaining 3 million reads per sample is technically

straightforward and provides a good representative sample of the

rumen microbiome [21]. For the accuracies of metagenomic

predictions to improve more metagenomic datasets with well

characterised phenotypes need to be accumulated.

We observed that the accuracy of prediction increased with

increasing numbers of individuals in the reference population,

however the numbers used in the current study were not great

enough for this increase to plateau, therefore an estimate of the

number of samples required to achieve maximum accuracy (in

proportion to the amount of variation explained by the

microbiome) predictions cannot be made at this stage. We also

observed that having extreme phenotypes in the reference

population gives more accurate predictions, although to a much

greater extent in the bovine dataset than the human dataset.

Additionally it appears, from observations of the bovine dataset,

that both the read depth and contig database size used here is

adequate to enable prediction accuracies to stabilise. Therefore, at

this stage it is advisable for studies using metagenomic predictions

to aim for three million sequence reads per sample, additionally we

recommend that reference populations should be larger than those

used here if obtainable, and should contain individuals with

Figure 1. Reference population characteristics effect on metagenomic prediction accuracy. Prediction of residual enteric methane
production from cattle (Red in panels a-c), and body mass index (BMI) from humans (Blue in panels a-c). Bovine predictions all use bovGMC as the
reference population and bovFCE as the validation population. A) Lines: effect of reference population size on prediction accuracy. Line indicates the
average accuracy of prediction from 20 random replicate populations sampled from the whole dataset. Squares: Accuracy of prediction when the
most extreme phenotypes were used in the reference. Triangles: Accuracy of prediction when least extreme samples were used in the reference. B)
Comparison of prediction accuracy using the BLUP and randomForests methods. The same reference and validation populations were used in the
BLUP and randomForest methods. The randomForest predictions were performed with default settings, and the average correlation of 100 replicate
runs is reported. C) Prediction accuracies under different sequence depths in the bovine dataset, phenotype is residual methane production,
reference population is bovGMC, validation population is bovFCE. D) Prediction accuracy when different sized contig databases were used.
Phenotype is residual methane production, reference population is bovGMC, and validation population is bovFCE. Blue diamonds: N contigs were
randomly selected from the whole dataset. Red triangles: Contigs were randomly assigned to 4 groups of 100,000 contigs (no overlap between
contig groups).
doi:10.1371/journal.pone.0073056.g001
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extreme phenotypes where possible (although this may have

stronger influences on some traits than others).

Metagenomic profiles that are based on alignments to contigs

appear to dramatically outperform profiles based on K-mer counts

in terms of their ability to predict phenotypes, despite the fact that

using K-mers allows the entire dataset to be utilised while

alignments to contigs only uses a proportion of the data. The

advantage of the contig based method is that the sequencing does

not have to be deep enough to have overlapping fragments, as all

reads that map to a contig are grouped. In contrast, with the K-

mers approach, the same K-mers may be observed in a large

number of species, hence the K-mers profile does not reflect

species abundances. The percentage of reads mapping does not

seem to inhibit the metagenomic predictions. The human dataset

had a much larger percentage of reads aligning to the reference

than the bovine datasets (Table S3 in File S1), however BMI was

not predicted more accurately than enteric methane production.

The random forest method tested performed reasonably, but not

as well as BLUP. Therefore the underlying assumption of BLUP

(read counts at all contigs are associated with a small, but non zero

effect on the phenotype), appears to be a valid assumption for this

type of data.

We have used metagenomic predictions to predict phenotypes

from multiple traits and in two different species. Development of

metagenomic predictions may have wide reaching applications,

including aiding in diagnosis of digestive tract disorders, and

applications in reducing green-house gas production from

agriculture, as well as other microbiome associated traits.

Although the BMI trait used here is easily measured directly,

accurately measuring enteric methane production from cattle is

expensive. If the prediction accuracy of enteric methane produc-

tion level could be increased it is possible that metagenomic

predictions could aid efforts to reduce greenhouse gas production

from agriculture. The datasets currently available are not

substantial enough for these applications to be realised, however

achieving significant predictions with such small population sizes

bodes well for the potential of metagenomic predictions in the

future. The AUC for GWAS-based predictions for IBD is

approximately between 0.65 and 0.75 [41]. Our results show that

microbiome based predictions for IBD have an AUC value at the

higher end of this range (0.76). The vastly different sample sizes

(thousands of individuals are included in GWAS studies and only

up to 38 individuals in our microbiome predictions) makes it

difficult to compare the effectiveness or complementarity of

genome based and microbiome based predictions. The fact that

we can achieve similar accuracies with much smaller sample size

only reinforces the potential for metagenomic profile predictions.

A recent study [9] performed a metagenome-wide association

study to identify aspects of the human microbiome associated with

type 2 diabetes. They observed a significant correlation between

their predicted and real phenotypes. The success of their

metagenome-wide association study, with a small number of

selected predictors, compared to our prediction using all contig

counts simultaneously, may be related to the size of the training

dataset, which was much smaller in this study than in Qin et al.

[9], or may be due to the different architechtures of effect of

metagenome profile on the different traits in the studies.

Metagenome-wide association studies have the advantage of

identifying the species driving the phenotype, however if the

phenotype is due to small effects from many species then their

power would be more limited. Therefore the purpose of the study

must be considered, metagenomic prediction will likely produce

more accurate phenotype predictions, however if intervention is

the desired result then metagenome-wide association studies will

provide targets that may be manipulated.

The disease state predictions have scope to be more accurate as

the phenotype approaches quantitative measurements (i.e. the

level of phenotyping is at greater resolution than affected/not

affected). Differences between the gut microflora of clinically

remissive IBD patients and non-IBD controls may be expected to

be quite subtle, however multiple studies have found clear

differences between the microbiomes of the IBD versus control

patients’ samples using principal component analysis [8] and

metabolic network [25] approaches. It is clear that there are

differences in microbiomes between IBD and non-IBD patients,

however as with many trait associated metagenomic changes, it is

not yet clear whether these changes are a cause or result of IBD

status [33].

Genomic predictions from a host’s own genome may be limited

in that variation in the microbiome cannot be taken into account.

This may be particularly relevant when considering diseases or

phenotypes that are closely linked to the microorganisms residing

within the host, such as bowel disorders or enteric greenhouse gas

production. The method described here for predicting complex

phenotypes from metagenome profiles could be combined with

genomic predictions from the host’s own DNA to maximise

accuracy of predicting phenotypes. The achievable accuracy of

prediction for traits such as methane production is thus far

unknown, however the best possible model would likely include

metagenomic predictions, genomic predictions and perhaps

physiological trait measures (such as body weight to account for

rumen volume). Larger numbers of animals are required to

accurately test such a model.

One clear limitation of metagenomic predictions compared to

genomic predictions is that the microbiome of the host is variable,

that is, it may change in response to diet or other environmental

factors over time, whereas the hosts DNA remains constant. More

research is required to investigate the stability of microbiome

profiles over time; however, the results indicate that this approach

may be informative for clinical trials and genetic studies where the

microbiome is expected to be involved. The interaction between

metagenomic predictions (predictions based on the microbiome)

and genomic predictions (predictions based on the host phenotype)

of these traits also warrants investigation. More immediately, the

approach developed here appears accurate enough to be valuable

as surrogate phenotypes for traits that are difficult to measure,

such as enteric methane production.

Methods

Ethics Statement
All work involving animals was approved by the Department of

Environment and Primary Industries Agricultural Research &

Extension Animal Ethics Committee.

Bovine Rumen Dataset
Three bovine datasets were used in this study: bovGMC,

bovFT, bovFCE. All animals were located at Department of

Environment and Primary Industries Ellinbank Centre, Victoria,

Australia. The data was also used in [34].

The bovGMC experiment is described in more detail in Moate

et al. [42], which describes the parent experiment that samples

were taken from. Breifly, bovGMC had cows randomly assigned to

either a control diet approximately 4.0 kg dry matter (DM) of

crushed wheat, 0.2 kg DM of molasses, 0.1 kg DM of minerals

and 14 kg DM of lucerne hay, or a treatment diet which in

consisted of the control diet with 5 kg DM/d of either dry

Metagenomic Predictions
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crumbled or ensiled grape marc substituted for an equal quantity

of alfalfa hay. These diets were fed for two weeks prior to methane

measurement via the SF6 technique [43] and rumen sample

collection via stomach pump. The animals on treatment diets had

19.8% less methane production than the animals on the control

diets (controls: 25.75 gCH4/KgDMI; treatments: 20.66 gCH4/

KgDMI; t-test, p,0.0001).

The bovFT experiment was a crossover design with 8 fistulated

animals. Animals were fed the treatment or control diet for two

weeks prior to methane measurement over two days via respiration

chamber (as described in [44]) and rumen sampling via the

fistulae. In addition to the base diet of 6.0 kg DM of concentrates

(4.1 kg DM crushed wheat; 1.5 kg DM cold pressed canola meal;

0.12 kg DM mineral mix and 0.28 kg DM palabind molasses

powder) and ad libitum lucerne hay, the treatment diet of the FT

study had 800 g of cottonseed oil and 400 g of raw tannin from

Acacia mearnsii added to the rumen though the fistulae each day.

The control group in the FT experiment had 800 mL of water

added though the fistulae every day. The animals on treatment

diet had 6.26% less methane production than the animals on the

control diets (controls: 21.64 gCH4/KgDMI; treatments:

20.29 gCH4/KgDMI; paired t-test, p = 0.012).

The bovFCE group were all fed a control diet 6 kg DM crushed

wheat per cow per day plus compressed cubes of lucerne hay

offered ad libitum. The diet was fed for a minimum of two weeks

prior to methane production being measured via respiration

chambers (as described in [44]) and rumen fluid collection via

stomach pump. These samples were taken from a larger study

investigating feed conversion efficiency [45].

Rumen fluid samples were taken from animals within 6 hours of

methane measurements being completed (Table S1 in File S1).

DNA was extracted using the PowerMax Soil DNA Isolation kit

(MoBio) and sequenced on the HiSeq2000 (Illumina) as per Ross

et al. [21]. After sequencing the whole genomic DNA, poor

quality sequence was removed from the dataset. Bases from the 39

end of the read were removed until there was a maximum of 3

bases remaining in the read with a Phred quality score of ,15. If

the read was ,50 bp long after this trimming, or the average

Phred quality of the read was ,30 it was discarded. The

remaining data was decloned using ‘kmers_remove_clonal’ from libngs

(https://github.com/sylvainforet/libngs).

The contig database used for the bovine predictions was the

combined contigs from Hess et al. [19] and Ross et al. [21]. The

bovine metagenome data used in this study can be freely obtained

from MG-RAST [35] project ID: 4126 (Bovine Metagenome).

Methane Phenotype
The methane phenotype used in the metagenomic predictions

was methane production corrected for dry matter intake. This was

done by taking the residuals of a linear model fitting dry matter

intake to methane production. Where data from multiple days was

available the phenotype was averaged of both days.

Other Sequences
Human metagenome sequences were obtained from Qin et al.

[8]. This data was used for the IBD and BMI predictions. The

database used for the human BMI and IBD predictions consisted

of 4 Gb faecal derived contigs from http://www.hmpdacc.org/

HMASM/.

Metagenomic Predictions
Here we have used metagenomic profiles [21] to create

metagenomic relationship matrices (Figure S1 and Figure S5 in File

S1). A metagenomic profile is the vector of counts of MPS shotgun

reads that align to each contig in a database (we used BWA-backtrack

to perform alignments [46], with the exception of the –e0 and –o0

flags [allowing no gaps] in the ‘aln’ command all other parameters

were left as default). Metagenomic profiles relate to the relative (not

absolute)abundanceofthemicrobialmarkers.Asthemodelusedhere

assumes a normal distribution the metagenomic profiles were log

transformed and standardised. Several metagenomic profiles were

combined form an n 6 m matrix X with elements xij, the log

transformed and standardised count for sample i for contig j, with n

samples and m contigs. Contigs with ,10 reads in total aligning to

them were removed from the matrix prior to standardising. These

profiles were then compared to make a rumen microbiome

relationship matrix (calculated as G = XX’/m). Best linear unbiased

prediction [31] was then used to predict phenotypes for validation

samples. Amixedmodelwas fitted to thedata:y = 1nm+Zg+e.Where

y is the a vector of phenotypes, with one record per sample, 1n is a

vector of ones, m is the overall mean, Z is a design matrix allocating

records to samples, and g is a random effect estimate , N (0, Gs2
g ).

Using ASReml [47], s2
g was estimated from the data and the

phenotypes of the samples (ĝ which is a vector of length n) were

predicted as:

m
^

g
^

2
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3
5~

1n
01n 1n

0Z

Z01n Z0ZzG{1 s2
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64
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75

{1
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� �

Solving the equations results in an estimate of the mean and an

estimate of the residual for each metagenome profile, such that ĝ

has the dimensions n 6 1. For each metagenome profile, the

predicted phenotype is ĝi+ m
^

.

Instructions for running metagenomic predictions are presented

in File S1. A script implementing metagenomic predictions using

the free R statistical package and rrBLUP [48], along with some

small example files is available in File S2.

Accuracy Assessment
For both qualitative and quantitative traits, the accuracy is

determined by Pearson’s ‘r’, that is, the correlation between the

observed and predicted phenotype. An accuracy of 0 or less

indicates the predictions are no better than chance (this is true for

both qualitative and quantitative applications). An accuracy of 1

would imply perfect concordance between observed and predicted

phenotypes, and 100% certainty for qualitative trait assignments.

For qualitative traits the accuracy can also be interpreted as the

percentage of correct phenotypes when the predictive value is

turned into a ‘most likely’ phenotype class.

Cross Validation
Three way cross validation was performed for the IBD

predictions, when there were not two independent datasets

available for validation. Data was split into three equally sized

groups. Each group was predicted from the other two groups in

turn, such that A was predicted from B+C; B predicted from A+C

and C predicted from A+B. Each sample was predicted once.

Each sample was used as a reference twice. Results were collated

to achieve the final correlation between predicted and measured

phenotype. Individual group correlations for IBD were 0.259,

0.438 and 0.574 for groups A, B and C respectively.

Two way cross validation was performed for the BMI

predictions. The Danish dataset was split into two groups. Group

A was predicted using group B as a training set; Group B was
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predicted using group A as a training set. Individual group

correlations for BMI were 0.453 and 0.391 for groups A and B

respectively.

95% Confidence Intervals
95% confidence intervals (CI) for the Pearson’s correlation

coefficient were calculated by bootstrapping. 10,000 bootstraps

were preformed per metagenomic prediction. A new dataset of

equal size was sampled from the original correlations with

replacement. The correlation was then recalculated. This was

repeated 10,000 times. The 95% CI was extracted from this data.

K-mer Based Prediction
Single reads that passed trimming with a length of 100 bp from

the bovine dataset 1 and bovine dataset 3 were used for the K-mer

analysis. Every observed K-mer in one million reads per sample

were counted using jellyfish [49]. The counts were then formed

into a matrix of sample x K-mer. Metagenomic predictions were

then performed as per the contig alignment based method

described above, including removal of K-mers with ,10 counts

and standardisation of the matrix.

Reference Population Effects
The same validation and reference populations were used in all

reference population size tests and the extreme phenotype tests, as

well as the K-mer based prediction described above. To test the

effect of reference population size: N individuals were randomly

selected from the reference population, metagenomic predictions

were performed using BLUP as described above. This was

repeated 20 times for each value of N. To test the effect of

extreme phenotypes the 5 (bovine) and 10 (human) samples with

the highest and lowest phenotypic values were used in the ‘most

extreme’ reference dataset. The ‘least extreme’ reference dataset

consisted of the animals which, when ranked according to

phenotype, were in the middle of the dataset. Metagenomic

predictions were performed, using these most and least extreme

reference datasets, as described above.

CH4 Prediction by Contig
A regression analysis was performed to examine if the effect of

each contig could be used to predict methane production from the

bovine dataset. A linear model was fitted to each contig (after

filtering to remove contigs with ,100 reads mapping in the

reference or the validation population). Contigs were then ranked

by significance of the model. The model results were then used to

predict methane production in the validation population (Figure

S4 in File S1). Additionally, the predicted methane production was

also averaged over a number of contigs.

More significant contigs in the reference population were not

any better at predicting methane production in the validation

population than less significant contigs. When the average of

multiple contig predictions was used, the ability to predict

methane production in the validation population, to a maximum

of r2 = 0.04 (r = 0.19; 95% CIr = 0.102–0.665; Figure S4 in File S1)

when the most significant 205 contigs were included.

Supporting Information

File S1 Contains Tables S1, S2 and S3, Figures S1, S2,
S3, S4 and S5, instructions for running metagenomic
predictions and calculations of the number of prokary-
ote cells in the bovine rumen.

(PDF)

File S2 Contains scripts for running metagenomic
predictions (MetagenomicPredictionForASReml.R, Me-
tagenomicPredictions.R), an example metagenomic pro-
file matrix (MPM.txt) and an example phenotype file
(Phenotypes.txt).

(ZIP)
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