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A B S T R A C T   

Super-rational aspiration induced strategy updating with exit rights has been considered in some 
previous studies, in which the players adjust strategies in line with their payoffs and aspirations, 
and they have access to exit the game. However, exit payoffs for exiting players are automatically 
allocated, which is clearly contrary to reality. In this study, evolutionary cooperation dynamics 
with super-rational aspiration and asymmetry in the Prisoner’s Dilemma game is investigated, 
where exit payoffs are implemented by local peers. The results show that for different population 
structures, the asymmetry of the system is always contributive to the participation of the players. 
Furthermore, we show that under different exit payoffs, super-rationality and asymmetry are 
conductive to the evolution of cooperation.   

1. Introduction 

The existence and stability maintenance mechanisms of cooperative behavior have attracted the attention of scholars in different 
fields [1–3]. Cooperation requires players to make contributions to the collective. It may cause players to give up their interests in part 
or in whole, which means a conflict between personal interests and collective welfare. Such conflicts may lead to the disintegration of 
the cooperation system, which is called “social dilemma” [4–7]. The focus of the question is the conditions of cooperation, that is, 
under what conditions, players would like to offer public goods (i.e. cooperate) instead of taking the “hitchhiking” behavior (i.e. 
defect) [8–11]. Five rules including kin selection, direct reciprocity, indirect reciprocity, network reciprocity and group reciprocity 
have been proposed to explain why cooperation is possible, but these mechanisms cannot cover all situations, that is, the mechanisms 
for the emergence and maintenance of cooperative behavior are not yet perfect [12,13]. 

In most previous studies, based on matrix game or public goods game, the interaction between players is set as mandatory [14–17] 
although this seems not to be in line with reality. Recently, some studies have considered that players have access to exit the game and 
they get payoffs based on the abundance of public goods [18]. Specifically, the exit players will be punished (or rewarded) if the public 
goods are not enough (or are abundant), which we call the punishments, or rewards, as the exit payoffs. Although exit payoffs based on 
public goods seem to be allocated automatically, in fact, it should be implemented by the players. It is particularly important to point 
out that when all players exit the game, no one will punish or reward them, that is, they will get nothing. Obviously, the exit option will 
undoubtedly affect the choice of strategy of the players. Therefore, it should be significant to consider the impact of peer-based exit 
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punishment and reward on the evolution of cooperation. 
We also noted that most theoretical models and experimental studies on the evolution of cooperation assume that the interaction 

between players is symmetric, but in real systems it is often asymmetric [19–23]. In addition, most previous game studies have relied 
on the assumption of complete rationality, which requires all players to have perfect information and cognition, and to choose the 
strategy to maximize benefits [24–26]. However, this is often impossible. Simon [27] proposed the concept of “bounded rationality” as 
an alternative, in which players choose satisfactory strategies in the strategic environment based on objective variables, but there is no 
consensus on the choice of the objective variables [28,29]. Hofstadter [30] proposed the concept of super-rationality. It means that 
players make decisions based solely on payoffs, and this rule is accepted by all players as a universal law [18,22,31]. Some studies that 
combined the super-rationality and aspiration level proposed the strategy updating rule induced by super-rational aspiration [18,31]. 
In this rule, players compare their current factual payoffs with their aspiration levels. If the factual payoffs reach or surpass the 
aspiration level, they retain the strategies, or they imitate neighbors’ strategies. Some studies also considered the impact of 
super-rational aspiration with exit rights on the evolution of cooperation [18]. However, the effect of super-rational aspiration with 
peer exit punishment and reward on the evolution of cooperation is still unclear. 

The classic evolutionary game theory usually assumes that the population is well-mixed [32–36]. However, with the expansion of 
population size, we are inevitably faced with the problem of localization, that is, the emergence of spatial structure [37–40]. In this 
process, a global group is divided into several local groups, and players can only interact with neighbors of the local group. When the 
players of the local group exit the game, the partners of the local group implement exit punishment (or exit reward) to improve the 
cooperation rate in the group to solve the “social dilemma". 

In this study, based on the asymmetric PD game in different spatial structures, not only the stability of the replicator dynamics in 
the well-mixed population is investigated, but also the influence of spatial structure on the evolution of cooperation is investigated 
using Monte Carlo simulations and robustness tests. Further, we used the mean-field theory to approximate the spatial structure and 
compared the results of different structures. Our main goal is to explore the evolutionary cooperation dynamics of the super-rational 
aspiration and the peer-based exit payoffs in the asymmetric game, so as to provide new outlooks for solving the “social dilemma”. 

2. Model and analysis 

The social dilemma is generally described by the public goods game (PGG) where N players put resources into a common pool. The 
resource in the common pool is multiplied and then distributed equally among all players [41,42]. Moreover, for the PD game with 
pairwise interactions [19,32,33,37,43], a cooperator will pay a cost c and receive a benefit b (nothing) when he meets a cooperator 
(defector), and a defector will pay nothing and receive benefit b (nothing) when he meets a cooperator (defector). Thus, the payoff of a 
cooperator in a mutual cooperation should be b − c; when a defector interacts with a cooperator, the defector will receive a benefit b (i. 
e. “temptation to defect”) and the cooperator will pay a cost c; and the payoff of a defector in a mutual defection is 0 (see Table 1 for 
payoff matrix of PD game). 

For the asymmetric PD game with exit rights, there are four strategy types: strong/weak cooperator (SC/ WC), defector (D), and 
loner (L) [18]. Cooperators have asymmetries (k) in resource allocation and the higher the asymmetry, the higher the payoffs for strong 
cooperators and the lower the payoffs for weak cooperators. Since asymmetric systems are assumed to have higher productivity, the 
payoffs for defectors are higher in asymmetric systems [18,31]. Since the payoff of strong cooperator is higher than that of weak 
cooperator, the asymmetry degree, denoted by k, is defined in the interval 0 ≤ k < 1

2, where the case with k = 0 corresponds to the 
symmetric PD game. Moreover, in some previous studies [14,15,18], the exit payoff (σ) is automatically distributed based on the 
abundance of public resources, while this is not in line with the reality that the exit payoffs are implemented by the local-interacting 
neighbors (i.e. peers). Here we made an improvement that the exit payoffs are implemented by peers. Specifically, if a player exits the 
game, his partner will implement exit punishment or reward, and they will get the same exit payoff; and if both players exit the game, 
then they will get nothing because neither of them has the right to implement the exit payoff. The payoff matrix corresponding to the 
asymmetric PD game with exit rights is given in Table 2. 

In Table 2, the interaction between the defector and the loner is considered as a classic coordination game [44]. For the case with 
exit punishment (σ < 0), the equilibrium strategy is (D,D) and (L,L), which means that the same strategies are used through the co
ordination between players. On the other hand, for the case with exit reward (σ > 0), the equilibrium strategy is (D, L) and (L,D), which 
means that different strategies are taken through coordination. In (·, ·), the first element is the equilibrium strategy taken by player 1 in 
Table 2, and the second element is the equilibrium strategy taken by player 2. In the coordination game, given a player’s strategy, the 
other player has no incentive to deviate from the equilibrium strategy. Even if the player’s strategy is not given, the players always tend 
to “coordinate” their strategy because the result of coordination is always superior. 

Aspiration dynamics was first proposed by Macy and Flache [45]. The basic idea is from the “win-stay-lose-shift” strategy proposed 
by Nowak and Sigmund, and it is often used to study the evolution of behavior in nature and human society [46–50]. The aspiration 

Table 1 
Payoff in symmetric prisoner’s dilemma game.   

player 2 

player 1  C D 
C b − c − c 
D b 0  
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dynamic model is described as follows: a player has an intrinsic determination called aspiration level to measure whether he is satisfied 
with the factual payment. The player is more likely to change strategy if the factual payoff does not meet the aspiration level [51–55]. 
In the model, the parameter Ai represents the aspiration level of player i. The parameter A is called super-rationality degree with A ≥ 0. 
Pi,max denotes the maximum payoff that the player i may receive [18,31]. Let 

Ai =(1 − A)Pi,max (1) 

for all possible i = 1, 2, ..., where the super-rationality degree, A, is uniform in the population. The aspiration level (Ai) is uniform 
for the same strategic players. In each game round, the player i updates his strategy by comparing his factual payoff Pi with the 
aspiration level Ai. If Pi ≥ Ai, then the player will keep his original strategy. Otherwise, if Pi < Ai, then the player will imitate the 
strategy of one of his neighbors. Moreover, for the situation with A = 0, all members of the population are completely rational, that is, 
they are eager to get the maximum payoff (i.e. players have rational aspiration). For A > 0, the population is super-rational, and the 
aspiration level decreases with the increase in parameter A (i.e. players have super-rational aspiration). Specially, A = 1 means that the 
players are dissatisfied with any loss; and A > 1 means that the players can withstand some losses. 

In this study, we first consider the replicator dynamics in an infinite well-mixed population, and then, the super-rational aspiration- 
induced strategy updating rule in spatially finite population. Our main goal is to explore the maintenance mechanism of the coop
eration system. We noted that the parameter “temptation to defection” b only affects the trajectory and velocity toward the equilibrium 
point, but does not affect the properties of the equilibrium point. Therefore, we always take b = 2 and c = 1 in the following analysis. 

Table 2 
Payoff in asymmetric prisoner’s dilemma game with peer exit punishment and reward.   

player 2 

player 1  SC WC D L 
SC b − c b − c

1 − 2k 
− c

1 + 2k 
σ 

WC b − c
1 + 2k 

b − c − c
1 + 2k 

σ 

D b
1 − 2k 

b
1 − 2k 

0 σ 

L σ σ σ 0  

Fig. 1. Phase diagrams of replicator dynamics with peer exit punishment and reward. (a) and (b) σ = − 0.3; (c) and (d) σ = 0.3; (a) and (c) k = 0; 
(b) and (d) k = 0.3. It shows that exit punishment and exit reward have different evolutionary dynamics in essence, while asymmetry affects 
trajectories but does not affect the properties of equilibrium points. 
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2.1. Replicator dynamics in a well-mixed population 

The core concept of Evolutionary Game Theory is the evolutionarily stable strategy (ESS), which gives the precise condition that a 
strategy is evolutionarily stable [19]. The replicator dynamics proposed by Taylor and Jonker [56] depicts the evolutionary process of 
the stable strategy. Specifically, the rate of change in frequency of a given strategy depends on the difference between the expected 
payoff of the strategy and the average payoff of the population [32,33]. This implies that in a large population with size N (N→ ∞), the 
player i compares his factual payoff with that of a randomly chosen player j. Then, the player i updates his strategy by taking j’s strategy 
with a probability proportional to their payoff difference. The stability analysis of replicator dynamics is given in the Supplementary 
Materials, and the phase diagram is shown in Fig. 1. We can see that SC and WC will eventually disappear but WC converges faster than 
SC (i.e. the proportion of WC evolves to zero in a shorter time). To facilitate analysis without ignoring our concerns, we unified SC and 
WC as cooperator (C). 

In Fig. 1(a) and (b), corner C is a saddle point (unstable), and corners D and L are nodes (stable). The equilibrium points on C-L and 
D-L sides are saddle points (unstable). In Fig. 1(c) and (d), corners C and D are saddle points (unstable), while corner L is a node 
(unstable), and the equilibrium point on D-L side is a node (stable). 

For the case with exit punishment ( − 1
2 < σ < 0, Fig. 1(a) and (b)), the different initial conditions may lead to that the system state 

tends to different equilibrium points. On the other hand, for the case with exit reward (0 < σ < 1
2, Fig. 1(c) and (d)), the system state 

eventually reaches the equilibrium point E1
(
0, 0,12,

1
2
)
, which indicates that half of the players defect, while the other half exit the game. 

To explore the effects of parameters k and σ on the equilibrium points, we chose a fixed initial point near the boundary of the 
internal attraction region in Fig. 1(a) and (b). The evolutionary outcomes of the system are shown on the k-σ plane (see Fig. 2) [8,57]. 
We tried other initial points and the results were robust. The results show that for σ > 0 (exit reward) and possible k values, the system 
state tends to an equilibrium point E1

(
0,0,12,

1
2
)
, which means the coexistence of defectors and loners. For σ < 0 (exit punishment), the 

system state tends to E4(0,0, 0,1) if the asymmetry degree is low (0 ≤ k ≤ 0.03) and to E5(0, 0,1, 0) if the asymmetry degree is high 
(0.29 ≤ k ≤ 0.49). This means that the population is occupied by the loners or by the defectors. Furthermore, for moderate asymmetry 
(0.04 ≤ k ≤ 0.28), the system state in the symmetric system with high exit punishment evolves to E4(0,0, 0, 1), and the system state in 
the asymmetric system with low exit punishment evolves to E5(0,0, 1,0). All of these results (see Fig. 2) strongly suggest that for exit 
punishment, the low asymmetry (i.e., small k) is more beneficial to the loners, while the high asymmetry (i.e., large k) is more 
beneficial to the defectors (see Fig. 2). These results are also consistent with some previous conclusions [18,58,59]. 

The above analysis of replicator dynamics clearly shows that the cooperation has no chance of long-term existence in the popu
lation under any conditions. Therefore, we will use super-rational aspiration induced strategy updating in structured populations to 
explore the conditions of promoting cooperation. 

2.2. Evolution of cooperation in the structured population 

The network structure has an impact on the outcome of evolution, which is not our focus. For simplicity, here we only consider the 
asymmetric game with exit punishment and with exit reward on a regular network (the 100 × 100 spatial structure with periodic 
boundaries), in which each node is inhabited by a player who uses one of the strategies SC, WC, D or L, and interacts with local adjacent 
players. We take the von Neumann neighborhood with n = 4. In this way, the factual payoff of the central player i is the whole payoffs 

Fig. 2. Different equilibrium states at the same initial point in the parameter region k-σ. The fixed initial proportion is (0.08,0.08, 0.1,0.74). It 
shows that exit punishment and exit reward have different evolutionary outcomes, and asymmetry only affects the evolutionary outcomes with 
exit punishment. 
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obtained by interacting with 4 neighbors. This implies that the probability of a player interacting with another one depends not only on 
the relative frequency in the population, but also on the geometry of the spatial network [38]. 

A player’s aspiration level (Ai) should be proportional to his neighborhood size [18,31]. To include the aspiration level into the 
payoff values, the super-rationality (A) is set to be 0 ≤ A ≤ 1 −

Pi,min
Pi,max

, where Pi,min (Pi,max) represents the minimum (maximum) payoff 
that a player may receive. For two extreme cases, A = 0 means that players are fully rational and aspire to gain the maximum payoff, 
while A = 1 −

Pi,min
Pi,max 

means that players are fully super-rational and are satisfied with any potential payoff. When all neighbors of SC and 
WC display D (or WC), they will get the minimum (or maximum) payoff. If all neighbors of D display D (or C), he will get the minimum 
(or maximum) payoff. The minimum (or maximum) payoff of L is determined by the abundance of public resources, where he will get 
1/2 when the public resources are sufficient, and − 1/2 when the public resources are insufficient. Since defectors have the temptation 
of defection, the super-rationality degree is set to be A = 0 (i.e., completely rational). 

Since each player has the same quantity of neighbors, the aspiration level Ai depends solely on the strategy type si ∈ {SC,WC,D,L}. 
Take BX to be the aspiration level of every strategy type, where X ∈ {SC,WC,D, L} and Ai = Bsi . Specifically, the aspiration level for SC 
is BSC =

4(b− c)(1− A)
1− 2k , where 0 ≤ A ≤ 1+ c

b− c
1− 2k
1+2k. The aspiration level for WC is BWC = 4(b − c)(1 − A), where 0 ≤ A ≤ 1+ c

b− c
1

1+2k. The 
aspiration level for D is BD = 4b

1− 2k. The aspiration level for L is BL = 2(1 − A), where 0 ≤ A ≤ 2. Particularly, if BX is less than or equal 
to Pi,min, then players are satisfied and keep their original strategies. In the simulations, we take σ = − 0.3 (exit punishment) and σ = 0.3 
(exit reward). To allow the aspiration level of every strategy type BX to cover all possible payoffs, we also take the super-rational degree 
to be in the interval 0 ≤ A ≤ 2. 

We use the synchronous update rule, that is, player i changes his strategy into a randomly chosen neighbor j’s strategy with 
probability αij, which is the Fermi update rule 

αij =
1

1 + exp
[(

Pi − Pj
)/

K
] (2) 

[60,61], where K depicts the noise effect and 1/K is defined as the selection intensity. The weak selection intensity means that 
players update strategies more randomly and the strong selection intensity means that players are more likely to imitate the strategies 
of players with higher payoffs. For each set of parameter values, players update strategies for 1000 Monte Carlo steps to make the 
strategies reach a steady proportion. 

We explored player proportions in the parameter region k-A and exit payoffs, where players of different strategies are randomly 
distributed on the initial lattice. The results show that all players participate but defect at low super-rationality (0≤ A≤ 0.7). Higher 
super-rationality and asymmetry contribute to cooperation at the mid level of super-rationality (0.8≤ A≤ 1.5). Within this parameter 
range, players all participate in the game with 0.8 ≤ A ≤ 1.2, but in the range of 1.3 ≤ A ≤ 1.5, higher super-rationality lead to a 

Fig. 3. Time trajectories for possible patterns at the steady-state with exit punishment and reward and different parameter A values, where k = 0.3. 
Blue, light blue, red and green represent SC, WC, D and L. The initial proportion is (0.25,0.25, 0.25,0.25). (a)–(d) σ = − 0.3, A = 0.5,0.8,1.3,1.8; 
(e)–(h) σ = 0.3, A = 0.5,0.8, 0.9,1.8. It shows that different degrees of super-rationality produce different patterns, and high degrees of super- 
rationality are contributive to cooperation. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

S.-Y. Wang et al.                                                                                                                                                                                                       



Heliyon 9 (2023) e16729

6

higher proportion of loners. The initial proportion is remains with 1.6 ≤ A ≤ 2. 
With exit reward at 0 ≤ A ≤ 0.5, cooperators disappear, while defectors and loners occupy half of the spatial grid, which is 

consistent with the conclusions in the well-mixed population. With an increase in super-rationality degree (0.6≤ A≤ 0.7), the pro
portion remains at (0,0,0.47,0.53), which indicates that a few players exit the game with the increasing of A. At A = 0.8, cooperators 
arise. The proportion of participating players is higher, but they all defect. The proportion of participating players is lower, but it is 
more advantageous to promote cooperation. At A = 0.9, the proportion of cooperators decreases, and the proportion of loners in
creases. The proportion of defectors in the asymmetric system (0.39≤ k≤ 0.49) decreases but in the symmetric system (0≤ k≤ 0.38)
increases. The proportion of cooperators is higher in the asymmetric system, which indicates that asymmetry contributes to coop
eration. At 1 ≤ A ≤ 2 (i.e. high super-rationality), the proportion of participating players is higher, which is more beneficial to 
cooperation. 

Since the asymmetry degree has no essential influence on the equilibrium point of the system, we fixed k = 0.3 to explore the 
possible patterns on the spatial lattice when the system state tends to a stable equilibrium for different values of A. The time trajectories 
for different patterns are shown in Fig. 3. 

For the exit punishment with σ = − 0.3, the possible patterns with different levels of super-rationality are shown in Fig. 3(a)–(d). 
For A = 0.5 (see Fig. 3(a)), the defectors occupy the whole lattice, and the system state reaches the steady-state at time step T = 15. 
For A = 0.8, (see Fig. 3(b)), SC and WC converge into small gatherings and live together with D. The system state reaches the steady- 
state of (0.054,0.041,0.905,0) at T = 26. For A = 1.3 (see Fig. 3(c)), we can see that the total proportion of SC, WC and D increases, 
while the proportion of D decreases, and the system state reaches a steady state (0.326,0.294,0.35,0.03) at T = 12. For A = 1.8 (see 
Fig. 3(d)), the proportion of WC keeps unchanged, the proportions of SC and L increase slightly over time, and the proportion of D 
decreases over time. At the time step T = 40, the system state reaches the steady-state of (0.252,0.253,0.24,0.255). 

For the exit reward with σ = 0.3, the possible patterns with different levels of super-rationality are shown in Fig. 3(e)–(h). For A =

0.5 (see Fig. 3(e)), we can see that the total proportion of SC and WC decrease over time until they disappear, and the system reaches 
(0,0, 0.498,0.502) at T = 16 as the steady-state. The defectors and loners on the lattice form into “strips” and each of them occupies 
half of the population. This result is consistent with the conclusion in the well-mixed population. For A = 0.8 (see Fig. 3(f)), we can see 
that the total proportion of SC and WC decreased first and then increased, while the total proportion of D and L increased first and then 
decreased. The system state reaches a steady-state (0.17,0.242,0.184,0.404) at T = 600, where different strategies form into “strips” 
and coexist. For A = 0.9 (see Fig. 3(g)), we can see that the total proportion of SC and WC decreased, the proportion of D first increased 
and then decreased, and the proportion of L increased with time. The system state reaches a steady-state (0.161,0.167,0.225,0.447) at 
T = 14. For A = 1.8 (see Fig. 3(h)), SC increases slightly over time, WC remains unchanged, D decreases, and L increases. The system 
state reaches (0.259,0.244,0.238,0.259) at T = 15 as the steady-state. 

Note that a defector as a central player will be satisfied if his four neighbors are all cooperators (SC or WC); otherwise, he will be 
dissatisfied, but will not imitate the neighbor’s strategy. This implies that for a defector, if his randomly chosen neighbor is also a 
defector, then he will not need to imitate this neighbor’s strategy; however, if the randomly chosen neighbor is not a defector, he will 
also not imitate this neighbor’s strategy because the payoff of D is at least not lower than that of other strategies in any case. Therefore, 
the evolution of SC and WC on the spatial lattice is mainly determined by the initial spatial distribution and the randomness of the 
strategy updating rule. 

Fig. 4. Time trajectories for the proportion of cooperators with different selection intensities, where σ = − 0.3, A = 1.3, k = 0.3. Green, red, cyan 
and blue lines represent selection intensities of 1/K = 0.1,1,10,1000, respectively. Players are randomly distributed on the lattice initially. It shows 
that low selection intensity is contributive to cooperation. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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2.3. Robustness test with different selection intensities 

In the above subsection, the selection intensity of the Fermi update rule is taken as 1/K = 10. Here, to verify the effects of different 
selection intensities on the evolution of cooperation, we take 1/K = 2 and 1/K = 100. This implies that under weak selection, the 
probability of a player imitating his neighbor’s strategy should be close to 1/2; however, as the selection intensity increases, the 
probability of a player imitating the strategy of the neighbor with high (or low) payoff will also increase (or decrease). The robustness 
with the exit punishment and with the exit reward on the k-A parameter plane is verified. The results show that for both the exit 
punishment and exit reward, the basic pattern of the system state on the parameter plane is similar, but the proportions of different 
strategies at steady-state is different, that is, the selection intensities have only a quantitative effect on the system state, but not a 
qualitative effect. Furthermore, in order to explore whether the selection intensity affects the evolution rate of the system, the time 
trajectories of system state for different selection intensities are shown in Fig. 4, where k = 0.3, A = 1.3, and the selection intensities 
are taken as 1/K = 0.1, 1,10 and 1000, respectively. We can see that corresponding to these different selection intensities, the total 
proportions of SC and WC are 0.6472, 0.6126, 0.4411 and 0.4115, respectively at the steady-state. This implies that the low selection 
intensity should be better for the evolution of cooperation because the defectors are “tempted to defect” and they are never satisfied 
with their payoffs. However, for situations with high selection intensity, the defectors should be less likely to imitate the cooperators. 

2.4. Mean-field approximation of the spatially structured population 

Here, we use the mean-field theory to approximate the model in a spatially structured population. Specifically, we assume that the 
probability that a player imitates the strategy of one of his neighbors is independent of his other neighbors’ payoffs. Based on this 
assumption, the local density and other probability measures of each player’s neighbors are considered to be the same as the global 
average [62–64]. 

The transition probability of an X strategy type player to a Y strategy type player is 

WX→Y =
∑m− 1

M = 0(
PX|M < BX

)

(
n
nSC, nWC, nD, nL

)

xnSC
1 xnWC

2 xnD
3 xnL

4
nY|M

n
1

1 + exp
[(

PX|M − PY|nX≥1
)/

K
] (3) 

[18,31], where m is the number of possible neighbor patterns (m = 35 in our model); M denotes the M-th neighbor pattern of the 
central player; PX|M is the payoff of strategy Y in the M-th neighbor pattern, nX is the number of the neighbors using strategy X with 
nSC + nWC + nD + nL = n; xX is the proportion of strategy X (0 ≤ xX ≤ 1,X ∈ {SC,WC,D,L}); nY|M

n is the probability that a neighbor using 
strategy Y is chosen in the M-th neighbor pattern; and PY|nX≥1 is the average payoff of all possible neighbor patterns that satisfy nX ≥ 1 
for player displaying Y and PY|nX≥1 = 1

NnX≥1

∑m− 1
M = 0
nX ≥ 1

PY|M. 

Fig. 5. Player proportions at the steady-state with exit punishment and different A-k values, where σ = − 0.3. (a)–(c) spatial simulation; (d)–(f) 
mean-field; (a) and (d) k = 0; (b) and (e) k = 0.25; (c) and (f) k = 0.49. It shows that the conclusion is similar in different population structures; 
Super-rationality and asymmetry have promotion effect to cooperation. 
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Based on the mean-field approximation, the time evolution of the proportions of SC, WC, D and L, denoted by xSC, xWC, xD, and xL, 
respectively, can be given by 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxSC

dt
= xWCWWC→SC + xDWD→SC + xLWL→SC − xSC(WSC→WC + WSC→D + WSC→L) ≜ f1(x)

dxWC

dt
= xSCWSC→WC + xDWD→WC + xLWL→WC − xWC(WWC→SC + WWC→D + WWC→L) ≜ f2(x)

dxD

dt
= xSCWSC→D + xWCWWC→D + xLWL→D − xD(WD→SC + WD→WC + WD→L) ≜ f3(x)

dxL

dt
= xSCWSC→L + xWCWWC→L + xDWD→L − xL(WL→SC + WL→WC + WL→D) ≜ f4(x)

(4) 

Note that a stable equilibrium of this system, denoted by (xSC,xWC,xD,xL), must be the solution of equation f1(x) = f2(x) = f3(x) =

f4(x) = 0. Thus, we can use the stable equilibrium of Eq. (4) to compare it with the simulation results of the spatial lattice. In the 
calculation, when some types of strategies coexist, the player proportion fluctuates slightly when they reach the steady-state. We chose 
the solution that satisfies the restriction condition of min(f2

1 (x)+f2
2 (x)+f2

3 (x)+f2
4 (x)) as the solution (xSC, xWC, xD, xL) of the system [65]. 

When there were multiple steady-state solutions, we use the average values of possible solution values in the analysis. For the 
mean-field approximation and the simulations based on the spatial lattice, under the different parameters of exit punishment and exit 
reward, the steady-state proportions of strategies are presented in Figs. 5 and 6. For the simulations on the spatial lattice, the players 
are randomly and uniformly distributed initially. 

For σ = − 0.3 and different A values and k values, the simulation results show that for small A and possible k (0 ≤ A ≤ 0.9 in Fig. 5 
(a), 0 ≤ A ≤ 0.7 in Fig. 5(b) and in Fig. 5(c)), the defectors almost occupy the whole population (see Fig. 5(a)–(c)); and for large A and 
possible k, the proportion of the cooperators is larger than that of the defectors and loners, and the coexistence of different strategies 
appears (see also Fig. 5(a)–(c)). This implies that in the structured population with exit punishment, the large super-rationality degree 
is not only conductive to the long-term presence of cooperators in the population, but also conductive to the coexistence of different 
strategies. Similarly, the analysis results based on the mean-field approximation show that for small A and possible k (0 ≤ A ≤ 1.4 in 
Fig. 5(d), 0 ≤ A ≤ 1.1 in Fig. 5(e) and 0 ≤ A ≤ 1 in Fig. 5(f)), the defectors almost occupy the whole population (see Fig. 5(d)–(f)); and, 
however, for large A and possible k, the coexistence of the cooperators and loners appears and the defectors disappear (see also Fig. 5 
(d)–(f)). Therefore, for evolutionary dynamics with exit punishment based on the mean-field approximation, the large degree of super- 
rationality is more contributive to the evolution of cooperation. This result is consistent with the simulation result on the spatial lattice. 

Similarly, for σ = 0.3 and different A values and k values, the simulation results show that for small A and possible k (0 ≤ A ≤ 0.7), 
the coexistence of the defectors and loners appears and the cooperators disappear (see Fig. 6(a)-(c)); and for large A and possible k 
(0.8 ≤ A ≤ 1.4), the coexistence of the cooperators, defectors and loners appears (see also Fig. 6(a)–(c)). This implies that, similar to 
the situation with exit punishment, in the structured population with exit reward, the large super-rationality degree is also conductive 

Fig. 6. Player proportions at the steady-state with exit reward and different A-k parameters, where σ = 0.3. (a)–(c) spatial simulation; (d)–(f) mean- 
field; (a) and (d) k = 0; (b) and (e) k = 0.25; (c) and (f) k = 0.49. It shows that the conclusion is similar in different population structures; Super- 
rationality and asymmetry have promotion effect to cooperation. 
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to the coexistence of different strategies. In addition, asymmetry helps increase player participation, but only at moderate levels of 
super-rationality. The analysis results based on the mean-field approximation show that for small A and possible k (0 ≤ A ≤ 0.3), the 
cooperators disappear (see Fig. 6(d)–(f)); and, however, for large A and possible k, the coexistence of the cooperators and loners 
appears and the defectors disappear (see also Fig. 6(d)–(f)). It is easy to see that for evolutionary dynamics with exit reward based on 
the mean-field approximation, the large degree of super-rationality contributes to the long-term presence of cooperation. This result is 
consistent with the simulation result for the spatial lattice. 

The above results strongly suggest that for both the exit punishment and exit reward and the possible k values, a large degree of 
super-rationality is always conducive to the evolution of cooperation. 

Comparing two groups of results in Figs. 5 and 6, we obtained the same conclusions in the structured and well-mixed population, 
which further validates the reliability of the conclusion. However, the promoting effect is stronger in the structured population, which 
indicates that the geometric limitation of the spatial structure makes the cooperators form clusters to resist the invasion of other 
strategic players, thus having the promotion effect on cooperation. Similar observations were made in the last two decades, which is 
called network reciprocity. 

3. Conclusion and analysis 

In this paper, the effects of super-rational aspiration induced updating rule and peer exit punishment and reward on the evolution of 
cooperation are investigated, in which the asymmetric PD game in well-mixed and structured populations is considered. For the well- 
mixed population, the replicator dynamics with exit punishment has two stable equilibrium states called “all D” and “all L′′, respec
tively, and the evolutionary outcome of the system depends on its initial state. However, the replicator dynamics with exit reward has 
only one stable equilibrium state, in which the defectors and loners account for half of the population. These results differ from 
previous studies because of the different rules of the game [41]. The asymmetry degree (k) of the system affects the trajectory and 
velocity at which the system state tends to the stable equilibrium point. The low asymmetry may cause the players to exit the game, 
while the high asymmetry may promote the players to participate in the game. 

In order to further explore the cooperation evolution, super-rational aspiration induced strategy updating on spatial networks is 
introduced. For low exit punishment, the defectors will occupy the entire lattice with low super-rationality, while high super- 
rationality and asymmetry are both contributive to cooperation. For the same super-rationality degree, the increase in exit punish
ment is contributive to cooperation, and for the same exit punishment, the mid super-rationality is more contributive to cooperation. 
For the exit reward, the defectors and loners occupy half of the population, respectively, if the degree of super-rationality is low, which 
is consistent with the results in the well-mixed population. However, for the arbitrary exit reward, the increase of super-rationality 
should be contributive to cooperation. 

The robustness test shows that the selection intensity may affect the proportions of different strategies at the equilibrium, but it 
cannot affect the property of the equilibrium. Furthermore, the low selection intensity should be contributive to cooperation. On the 
other hand, the conclusion of the mean-field approximation is similar to that of the structured population, which verifies the reliability 
of the conclusion that super-rationality and asymmetry promote cooperation, and asymmetry improves the participation rate of the 
population. In addition, super-rational aspiration has positive significance for maintaining the diversity of strategies in the system. 

In summary, the asymmetry is beneficial to player participation for different population structures. Super-rationality and asym
metry have promotion effect on the evolution of cooperation in structured populations. The effects of exit reward and exit punishment 
on the evolutionary cooperation dynamics are different. Therefore, the exit punishment or reward based on the abundance of public 
resources and the super-rationality degree of the system can maximize the level of cooperation. 

Historically, the human population was small in primitive hunter-gatherer societies, where players had the same interacting 
probability and it is similar to the well-mixed population. After the agricultural revolution, the scale of human social groups became 
larger due to increased productivity and settlement, which inevitably led to the emergence of localized villages and communities [66]. 
Subsequently, punishments and rewards are introduced to increase productivity, which is based on the abundance of common re
sources. However, it cannot be distributed automatically and needs to be implemented by players, which requires costs and limits the 
number of implementing players and is also naturally limited by localization. For example, players in a village or community can 
usually implement punishment or reward to their neighbors because of geopolitical isolation, which is the practical significance of 
introducing spatial structure in the model. Therefore, the more players commit to a public project, the harder it is to adequately punish 
or reward those “free-riders”. Based on the above arguments, we combined the localized spatial structure with peer exit punishment 
and reward in the model is more realistic. On this basis, we discussed the impact of super-rationality and asymmetry on the evolution of 
cooperation with peer exit punishment and reward and the extent to which they can help solve the global social dilemma [67,68]. 

In this paper, we considered the uniform super-rational aspiration. It is worth further studying heterogeneous aspirations and other 
types of network structures on the evolution of cooperation. In addition, we considered adequate or inadequate resources in the model, 
but ignored the impact of environmental random fluctuations on the abundance of public resources, which is worth further exploring. 
In addition, a node in the structured population is assumed to represent a player and one unit of public resources, but in reality, players 
and public resources are often separated, such as natural resources (minerals, fisheries), roads, parks, and other public facilities. Elinor 
Ostrom gave an empirical conclusion: if the organization is relatively small and players live near the common pool for long-term 
residential, the cooperative organization will be formed [69]. Therefore, we can further consider the impact of player spatial distri
bution and resource heterogeneity on the evolution of cooperation, which has practical guiding significance to the sharing economy. In 
addition, it is of enlightening significance to the economic growth of remote areas that lack capital and industrial clusters. 
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