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Abstract

Background/Objectives: With rising obesity rates among pregnant women, more children are 

exposed in utero to maternal obesity. In prior epidemiological studies, exposure to maternal 

obesity was associated with lower intelligence quotient (IQ) scores and worse cognitive abilities in 

offspring. Further studies have shown that offspring exposed to maternal obesity, exhibit 

differences in the white matter microstructure properties, fractional anisotropy (FA) and mean 

diffusivity (MD). In contrast, physical activity was shown to improve cognition and white matter 

microstructure during childhood. We examined if child physical activity levels modify the 
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relationship between prenatal exposure to maternal obesity with IQ and white matter 

microstructure in offspring.

Subjects/Methods: One hundred children (59% girls) age 7–11 years underwent brain 

magnetic resonance imaging and IQ testing. Maternal pre-pregnancy BMI was abstracted from 

electronic medical records. White matter was assessed using diffusion tensor imaging with the 

measures, global FA, MD. The 3-day physical activity recall was used to measure moderate-to-

vigorous physical activity and vigorous physical activity (VPA). Linear regression was used to test 

for interactions between prenatal exposure to maternal overweight/obesity and child PA levels on 

child IQ and global FA/MD.

Results: The relationship between prenatal exposure to maternal overweight/obesity and child IQ 

and global FA varied by child VPA levels. Children exposed to mothers with overweight/obesity 

who engaged in more VPA had higher IQ scores and global FA compared to exposed children who 

engaged in less VPA. Associations were independent of child age, sex, BMI Z-score and 

socioeconomic status. Children born to normal-weight mothers did not differ in either IQ or global 

FA by time in VPA.

Conclusions: Our findings support findings in rodent models and suggest that VPA during 

childhood modifies the relationship between prenatal exposure to maternal obesity and child IQ 

and white matter microstructure.
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Introduction

The prevalence and severity of obesity during pregnancy continues to rise (1) posing 

significant health threats to both mothers and their children (2). Children exposed to 

maternal obesity in utero are at increased risk of developing metabolic disorders (3,4). 

Additionally, evidence suggests that exposure to maternal obesity negatively influences 

neurocognitive development in children (5–11), including lower intelligence quotient (IQ) 

scores, worse academic achievement scores, reduced hippocampal gray matter volume and 

reduced fractional anisotropy (FA); the latter of which is a commonly used metric for 

assessing white matter microstructure in the brain (5,7,8,10–12). Interventions mitigating the 

adverse effects of prenatal exposure to maternal obesity on child neurocognitive 

development have the potential to significantly impact public health.

Importantly, there are many factors that likely contribute to brain development and cognition 

in children (13–15). For example, both low socioeconomic status and child obesity have 

previously been associated with worse academic achievement scores and reductions in white 

matter microstructure integrity (13,15), whereas physical activity has been shown to provide 

cognitive benefits, such as higher IQ scores (16–23). Albeit, findings are mixed with some 

studies showing benefits of aerobic fitness but not moderate to vigorous physical activity 

(MVPA) on cognitive outcomes (24,25), and other studies showing no significant effects of 

in-school MVPA interventions on cognitive outcomes in children (26,27). Interestingly, 

randomized controlled trials specifically targeted at children with overweight/obesity have 
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shown that children who engaged in afterschool MVPA interventions had improved 

cognitive outcomes and differences in the brain white matter microstructure metrics, FA and 

mean diffusivity (MD), particularly in white matter tracts relevant to cognition such as the 

superior longitudinal fasciculus (17,20,28,29). Collectively, evidence suggests that PA may 

be particularly beneficial for vulnerable populations, such as children with overweight/

obesity or children exposed to maternal obesity in utero. Similarly, promising results from 

studies in rodents have shown that engaging in PA rescues cognitive performance and 

hippocampal volume in offspring exposed to maternal obesity in utero (30); however, this 

has yet to be studied in humans.

Given prior evidence showing links between maternal obesity and poor neurocognitive 

outcomes in children as well as promising results in rodent models suggesting beneficial 

effects of physical activity on neurocognition in offspring exposed to maternal obesity, we 

aimed to examine if child PA levels have a modifying role on the association between 

prenatal exposure to maternal obesity and child IQ and white matter microstructure using a 

well-validated IQ assessment (31) and diffusion tensor imaging (DTI) (32), a sensitive 

neuroimaging approach for assessing white matter properties. We hypothesized that child PA 

would modify the relationship between prenatal exposure to maternal obesity and child IQ 

and white matter microstructure.

Methods

Participants

For this study, 137 children ages of 7 to 11 years old were recruited from Kaiser Permanente 

Southern California (KPSC) to participate in the BrainChild Study on the impact of 

intrauterine exposure to metabolic disorders on brain appetite pathways (Supplemental 

Information (SI) Figure 1) (5,33). KPSC is a large healthcare organization utilizing an 

integrated electronic medical record (EMR) system. Children were excluded if they were 

born to mothers diagnosed with diabetes before pregnancy or if the children had a history of 

neurological, psychiatric, metabolic or other significant medical disorders and/or use of 

medications known to alter metabolism or influence cognition. Children with 

contraindications to MRI were also excluded (left-handed, permanent metal-objects, 

claustrophobia). Each participating Institutional Review Board approved this study 

(University of Southern California (USC) # HS-14–00034 and KPSC # 10282). This study 

was in accordance with the Declaration of Helsinki. Participants’ parents gave written 

informed consent and children provided written informed assent.

Exposure—Maternal pre-pregnancy BMI (kg/m2) was calculated from maternal height 

(cm) and weight (kg) measurements closest to last menstrual period (LMP) from the EMR 

within 180 days before the last LMP or 90 days after the last LMP. Maternal height and 

weight measurements were collected during regular health visits and entered into the EMR 

by a healthcare provider. Maternal pre-pregnancy BMI was used as a marker for maternal 

obesity during pregnancy in accordance with previous literature (6,8,34). Mothers with pre-

pregnancy BMI less than 25 kg/m2 were classified as normal-weight. Mothers with pre-
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pregnancy BMI equal to or greater than 25 kg/m2 were classified as overweight/obesity 

consistent with Centers for Disease Control criteria (35).

In-person Visits—The study included two in-person visits, occurring on average 35 days 

apart. Visit 1 occurred at the USC Diabetes and Obesity Research Institute Clinical Research 

Unit. Children’s height was measured by a trained staff member to the nearest 0.1 cm using 

a stadiometer (Seca 217 Portable Stadiometer Model PE-AIM-101, Perspective Enterprises, 

Portage MI USA) and weight to the nearest 0.1 kg using a calibrated digital scale (Tanita 

body composition analyzer SC-331S, Tanita Corporation, Chicago IL USA). BMI was 

calculated using the standard formula, weight (kg) divided by height (m2). BMI z-scores and 

BMI percentiles (age and sex-specific standard deviation scores) were determined based on 

Center for Disease Control (CDC) standards (36). Participants were given the option of 

having their Tanner stage assessed by physical exam (37,38) and/or by a validated sex-

specific assessment questionnaire (39). Fifty-one participants, (51%) opted for both physical 

exam and questionnaire. Forty-eight participants (48%) opted for self-reported puberty 

status only, and one participant (1%) participated only in the medical exam. The correlation 

between the physical exam and the questionnaire was 0.84. A self-reported 3-day physical 

activity recall (3DPAR) was also obtained (40,41). Visit 2 occurred at USC Dana and David 

Dornsife Neuroimaging Center and included cognitive measures, brain magnetic resonance 

imaging (MRI), and another height and weight measurement. Height and weight 

measurements were averaged from the two study visits to calculate BMI z-scores and BMI 

percentiles.

Physical Activity Assessment—Physical activity was assessed using the 3DPAR 

(40,42). The 3DPAR has previously been used in pediatric studies and validated with 

objective measures of physical activity using accelerometer devices (40,43–45). For 

approximately 30 minutes during visit 1, a trained staff asked participants, with their 

parents’ input, to recall their activities from 7:00am to 12:00am in 30-minute increments for 

the previous three days. Activities were recorded and classified based on the activity most 

similar on a 73-item reference sheet. The participant with the help of their parent was then 

asked to rate the intensity of each activity, ranging from light, moderate, hard, to very hard. 

Self-reported activities were then categorized as either light physical activity (LPA), MVPA, 

or vigorous physical activity (VPA) based on corresponding metabolic equivalent (MET) 

values from the Compendium of Physical Activities (40,42). Activities with METs ≥1.6 and 

<3 were classified as LPA, METs ≥ 3 were classified as MVPA and METs ≥ 6 were 

classified as VPA. An example of LPA includes playing an instrument. MVPA includes 

activities like walking the dog, and an example of VPA is playing soccer. The number of 30-

minute increments spent in either LPA, MVPA, or VPA each day was summed and 

converted to minutes and then divided by 3, and the final output was the average time spent 

in LPA, MVPA, or VPA per day (40,41).

General Cognitive Function—The shortened 2nd edition of the Wechsler Abbreviate 

Scale for Intelligence for children (WASI-II) was used to assess IQ (31). The WASI-II is a 

well-established IQ assessment and is validated for ages 6 to 90 (31). The standardized norm 

is 100 with a standard deviation of 15. Two parts of the WASI-II were administered, 
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vocabulary and matrix reasoning, to determine a composite IQ score. Raw scores from the 

vocabulary and matrix reasoning portion were converted to age-adjusted T-scores. The sum 

of the T-scores were then converted to a composite IQ score.

MRI Methods—During the second visit, after a mock scanner training session, a brain 

MRI was performed using a Siemens MAGNETOM Prismafit 3T MRI scanner (Siemens 

Medical Systems, Erlangen Germany) with a 20-channel phased array coil. The MRI session 

started with a localizer scan. A 9 minutes, 29 second diffusion weighted image (DWI) was 

acquired using a dual spin echo, single shot, pulsed gradient, echo planar imaging sequence 

in 64 diffusion sensitized gradient directions with the following parameters: TR=8 100 ms; 

TE=69 ms; flip angle=90°; 70 axial slices; 2 × 2 × 2-mm3 voxel size; FOV=256 mm; b 
value=1 000s/mm2, with one b0 collected at the beginning of the scan. Additional imaging 

sequences were also performed as a part of a larger study, and a subset of the participants 

have been included in other publications (5,33). A T2-weighted image was also assessed by 

a trained neuroradiologist to check for brain abnormalities.

Using FSL (FMRIB Software Library, v6.0) (46), DWI’s were preprocessed, which included 

skull-stripping using the brain extraction tool (BET) (47) and correction for motion and eddy 

current artifacts using the eddy_correct module (46). DWI’s were then fitted to create FA 

and MD images using the Quantitative Imaging Toolkit (48). Mean FA/MD for each subject 

was then extracted to compare global FA/MD across subjects exposed to varying levels of 

maternal obesity and varying time in LPA, MVPA and VPA. Tract-based spatial statistics 

(TBSS, v1.2) (49), a part of FSL, was then used to complete a whole brain voxel-based 

approach comparing how maternal pre-pregnancy BMI and time spent in PA was related to 

clusters in white matter tracts, using FA and MD metrics. FA images were first aligned to a 

common space and a target image was selected using FNIRT(50) and then averaged and a 

threshold of >0.2 was used to make a skeleton mask of white matter tracts common to all 

participants. Lastly, each subject’s FA image was projected onto the skeletonized mask to 

perform group-level statistics using FSL’s randomise tool (51).

Statistical Analysis—Participant descriptive statistics, including means and frequencies, 

were assessed. Time spent in LPA, MVPA, and VPA were not normally distributed, a 

square-root transformation was applied to normalize the distribution prior to the regression 

analysis when treated as continuous variables. Multiple linear regression was used to analyze 

relationships between maternal pre-pregnancy BMI and time spent in LPA/MVPA/VPA, 

both as continuous variables and categorical variables, with child IQ and global FA/MD as 

the outcome variables. An interaction term between maternal pre-pregnancy BMI and child 

LPA/MVPA/VPA levels were included to test whether child PA levels modify the 

relationship between prenatal exposure to maternal obesity and child IQ scores and brain 

outcomes. A priori covariates previously shown to influence neurocognition were included 

in each regression analysis, including child age in years (52), sex (14,53), socioeconomic 

status (SES) (13), assessed using household income at birth, estimated based on census tract 

of residence and expressed as a continuous variable, and maternal education at birth, 

extracted from birth certificates in the EMR as a categorical variable with the following 

categories: “high-school or some high-school”, “some college” and “college and post-
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education”, and BMI z-score (15). For interpretative purposes, children’s VPA was 

categorized either as above the median reported time spent in VPA for the sample, or below 

the median reported time spent in VPA; maternal pre-pregnancy BMI was categorized as 

mothers with normal-weight (BMI<25) or overweight/obesity (BMI≥25).

For the whole brain analysis, FSL’s randomise tool (51), based on general linear models, 

was used to identify whether clusters of voxels of FA/MD are associated with child PA level 

and/or maternal pre-pregnancy BMI and interaction between the two. The design matrix 

used child age and sex as covariates since these covariates were shown to have age-related 

increases of FA and significantly greater clusters of FA in girls compared to boys. The 

threshold-free cluster enhancement option with 5000 permutations (54) was utilized to 

identify significant clusters using family wise error rate (FWER) with a threshold of p<0.05. 

The Johns Hopkins University white matter tractography atlas was then used to identify the 

location of significant clusters (55).

Of the 100 children included in analyses, 91% of the children were prepubertal and Tanner 

stage of puberty was not associated with outcome variables, IQ (r=−0.046, p=0.65), global 

FA (r=0.005, p=0.96), or global MD (r=−0.076, p=0.45), or with any voxels of FA, 

therefore, Tanner Stage was not included as a covariate in final models. P-values < 0.05 were 

interpreted as statistically significant. SAS 9.4 statistical software (SAS Institute, Cary, NC 

USA) was used for all statistical analyses.

Results

Of the 137 children enrolled into the study, 100 children completed all of the testing (i.e., 

MRI, IQ testing, and 3DPAR) (SI Figure 1). The demographics of participants who 

completed all of the testing did not differ from participants who did not (SI Table 1). For 

children who completed all of the testing, the mean ± SD age was 8.51 ± 1.00 years old, 

91% of the children were pre-pubertal (Tanner Stage <2), and 59% were girls (Table 1). The 

median reported time spent in LPA per day was 60 minutes, MVPA per day was 100 minutes 

and VPA per day was 10 minutes. Mean ± SD child IQ scores were 108.80 ± 13.74, which is 

less than one SD higher than a nationally representative sample (31). Mean ± SD maternal 

pre-pregnancy BMI was 30.08 ± 7.11 and 41% of mothers had obesity. Other child and 

maternal characteristics can be found in Table 1. Children exposed to mothers with 

overweight/obesity did not differ from children exposed to mothers with normal-weight in 

mean age, Tanner Stage, sex, LPA, MVPA, VPA, IQ, or global FA, but had significantly 

greater BMI z-scores, a greater frequency of children with obesity, and had lower family 

incomes (SI Table 2). Additionally, a scatterplot of child VPA in minutes per day stratified 

by maternal weight status (normal-weight vs overweight/obesity) can be found in SI Figure 

2.

For the outcome of child IQ score, in the model without considering PA levels, maternal pre-

pregnancy BMI was negatively associated with child IQ scores (β = −0.31; 95% CI, −0.67 to 

0.06; p=0.10) and the association remained after adjusting for child’s age, sex, and SES, and 

BMI z-score (β = −0.38; 95% CI, −0.79 to 0.03; p=0.07) although the association did not 

reach statistical significance (Table 2). For the outcome of global FA, maternal pre-
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pregnancy BMI was not significantly associated with global FA. Using TBSS as a whole 

brain approach, there were also no significant voxels of FA or MD associated with maternal 

pre-pregnancy BMI.

When physical activity levels were included in the model as a main effect without 

considering the interaction with maternal pre-pregnancy BMI, greater reported time spent in 

VPA was associated with higher child IQ scores and greater global FA in both unadjusted 

and adjusted models and after further adjusting for pre-pregnancy BMI (Table 2; Figure 1). 

Compared to children who reported below the median time in VPA, children who reported 

above the median of time in VPA also had significant clusters of FA voxels in the white 

matter skeleton that corresponds to the left and right superior longitudinal fasciculus (SLF) 

and right anterior thalamic radiation (ATR), after controlling for maternal pre-pregnancy 

BMI, child age and sex (Figure 2; SI Table 3). These clusters remained significant at the 

FWER threshold of p<0.05. There were no significant clusters of MD associated with VPA. 

Time spent in MVPA was associated with child IQ scores after adjusting for covariates but 

was not associated with global FA or MD (Table 2). TBSS revealed no significant clusters of 

FA or MD voxels associated with MVPA. Time spent in LPA was not associated with child 

IQ scores and global FA or MD before or after adjusting for covariates (Table 2) and was 

also not associated with clusters of FA or MD.

However, when testing for an interaction between maternal obesity and physical activity 

levels in the model, we observed a significant interaction between maternal obesity status 

and time spent in VPA on child IQ scores (p=0.01 testing for interaction, Figure 3A) and on 

global FA (p=0.01 testing for interaction, Figure 3B). When data were stratified by maternal 

obesity status, among 76 children whose mothers were overweight/obese at the time of 

pregnancy, the 38 children who reported above the median time spent in VPA had 

significantly higher IQ scores (age, sex, SES and BMI z-score adjusted β=8.44; 95% CI, 

1.43 to 15.46; p=0.02) and greater global FA (adjusted β=0.008; 95% CI, 0.002 to 0.014; 

p=0.007) compared to the 38 children who reported below the median time spent in VPA 

(Table 3). Among 24 children whose mothers were of a normal-weight at the time of 

pregnancy, those (n=15) who reported above the median of 10 minutes in VPA had higher 

IQ scores than those (n=9) who reported less than 10 minutes, but the difference was not 

statistically significant (β=5.76; 95% CI, −4.52 to 16.03; p=0.29, Table 3), and there was no 

difference in global FA between high vs low PA levels (Table 3).

We also observed a significant interaction using a whole brain approach to identify clusters 

of FA. Our initial significance threshold revealed an interaction between pre-pregnancy BMI 

category and VPA levels that covered the majority of the white matter skeleton (SI Table 4). 

In order to get a more precise location of significant clusters, we increased the significance 

threshold to p<0.01 and found clusters remained in the left forceps major, left ATR, right 

cingulate gyrus, right inferior frontal occipital fasciculus (IFOF), and cingulum 

(hippocampal portion) where children exposed to maternal overweight/obesity who were 

above the median VPA had higher FA values as compared to those that reported lower VPA 

levels (SI Table 5). No significant interactions were found between maternal obesity status 

and time spent in MVPA or LPA on child’s outcomes (p>0.27 for all interaction tests).
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Discussion

Engaging in physical activity has been shown to have beneficial effects on child cognition 

and brain development (16–19,21,22,28,56). Because prenatal exposure to mothers with 

obesity has been shown to negatively impact child neurocognition (5,7,8), we examined if 

engaging in physical activity could be a potential approach to ameliorate the adverse 

neurocognitive consequences of prenatal exposure to mothers with obesity.

Our data support prior findings in animal models (30) and suggest that engaging in physical 

activity during childhood may have the potential to modify the relationship between prenatal 

exposure to maternal obesity and child neurocognition, and thus offers a promising approach 

to mitigate the adverse effects associated with prenatal exposure to maternal obesity on child 

neurocognition. We found significant interactions between prenatal exposure to maternal 

obesity and child VPA levels on both child IQ scores and global FA. In stratified analyses we 

found that children exposed to mothers with overweight/obesity who engaged in at least 10 

minutes per day in VPA had higher IQ scores and greater global FA compared to children 

exposed to mothers with overweight/obesity who engaged in less than 10 minutes per day in 

VPA. Children born to normal-weight mothers did not differ in either IQ or global FA by 

time spent in VPA. These findings suggest that physical activity is associated with improved 

neurocognition during childhood and may be particularly beneficial for children exposed to 

mothers with overweight/obesity.

In agreement with other studies in children, we found that children who were more 

physically active had higher IQ scores and greater global FA (22,23,57,58). We additionally 

observed that these associations were independent of prenatal exposure to mothers with 

obesity. Moreover, we observed that children who reported spending at least 10 minutes per 

day in VPA had greater FA in specific clusters within the left and right SLF and right ATR, 

independent of prenatal exposure to mothers with obesity. Prior pediatric studies have shown 

that physical activity interventions contribute to greater FA in the SLF, a white matter tract 

implicated in many aspects of cognition, including attention, IQ, and language abilities (29). 

Together with prior reports, these findings support positive associations of physical activity 

with SLF white matter microstructure during childhood.

In contrast to FA, we did not observe differences in MD in children who reported above 

compared to below the median VPA. FA is a composite DTI measure corresponding to the 

extent of uniform directionality of white matter tracts, and higher FA values suggest 

increased fiber bundle density and/or increased myelination (59–61). MD is the average rate 

of water diffusion independent of direction, and compromises two components, radial 

diffusivity (RD) and axial diffusivity (AD) (61,62). RD is an indirect measure of decreases 

in myelination, and AD is an indirect measure of axonal pruning (62). In line with our 

findings, Chaddock et al. showed that more physically fit children had increased FA but no 

differences in AD in the Superior Longitudinal Fasciculus (63). While a number of studies 

have shown that physical activity is positively associated with FA in several white matter 

tracts (28,56,63), a few cross-sectional studies (58,64) have shown that physical activity or 

cardiorespiratory fitness are negatively associated with MD in various white matter tracts, 

which we did not observe in our cohort of 7–11 year old children and could be related to 

Alves et al. Page 8

Int J Obes (Lond). Author manuscript; available in PMC 2021 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



age-dependent differences in brain maturation. Recent evidence demonstrates significant 

developmental changes in microstructural properties, including increases in FA and 

decreases in MD, that occur during childhood and adolescence (60), and highlight the 

importance of longitudinal studies to further characterize the effects of physical activity on 

brain development during childhood and adolescence.

A wealth of data demonstrates the efficacy of physical activity interventions for improving 

cognition across the lifespan and strengthening white matter pathways particularly during 

childhood (16–18,21,22,28,56,65). Potential mechanisms by which physical activity 

improves cognition include increasing levels of the neurotrophin, brain-derived neurotrophic 

factor (BDNF), and increasing neurogenesis in the hippocampus (65–67), a brain region 

important for many aspects of learning and memory, and through strengthening the SLF 

and/or corpus callosum white matter pathways (28,56). Additionally, physical activity may 

also benefit cognition through indirect pathways, such as the secretion of myokines that 

affect neural growth factors and/or increases in insulin sensitivity (68,69). Animal studies 

have shown that improvements in peripheral insulin sensitivity from exercise contribute to 

improved insulin signaling in the brain and in turn, enhanced cognition (68,69). 

Correspondingly, prior studies have shown that in utero exposure to maternal obesity 

impacts offspring insulin sensitivity (4,70). Therefore, future studies should consider 

assessing insulin sensitivity as a potential mediating factor in the association between 

prenatal exposure to maternal obesity and offspring neurocognitive outcomes.

Interestingly, prior studies in humans showed that physical activity contributes to whole-

body insulin sensitivity (71–73) and improved neurocognition (66) in a dose-dependent 

manner with VPA having larger effects. Our results are among the first to suggest that 

physical activity intensity is also related to improved neurocognition during childhood. The 

majority of studies in children have assessed MVPA rather than VPA, specifically 

(18,56,58). Future studies are needed to determine the type of physical activities, the precise 

duration, and the optimal intensity of physical activity ranging from light, moderate to 

vigorous, that is most beneficial for neurocognition during childhood. These findings could 

be particularly important for children at risk of cognitive impairments, such as children 

exposed in utero to mothers with obesity.

Limitations

Our study design had many strengths; however, there were some limitations. While we used 

a well-validated assessment for IQ and an objective measure of maternal pre-pregnancy BMI 

from EMR, we used a self-report for assessing physical activity, rather than an objective 

measure, such as an accelerometer. Although self-reports are subject to recall bias, children 

in our cohort reported spending a similar time engaged in VPA to elementary-aged children 

in the National Health and Nutritional Examination Survey (NHANES) dataset (74). One of 

the advantages of using self-reported activities over accelerometers in children is that 

accelerometers may exclude time spent in team sports or water activities due to logistical 

reasons, whereas these vigorous physical activities can be captured by self-report and could 

be used to plan intervention studies. Additionally, we did not collect IQ assessments of the 

mothers and therefore were unable to control for maternal IQ as a covariate. Future studies 
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should consider collecting IQ assessments on both the mother and the child. Our modest 

sample size may limit the generalizability of the results, and future studies with a larger 

sample size are needed to confirm whether physical activity mitigates the association 

between prenatal exposure to maternal obesity and worse neurocognitive outcomes in 

children. Lastly, due to the retrospective design of our study, there may have been other 

factors that were not accounted for that could have contributed to the associations observed 

here such as child diet. Importantly, a randomized controlled study is needed to test whether 

PA ameliorates the neurocognitive consequences of prenatal exposure to maternal obesity.

Conclusions

We found that engaging in VPA during childhood modified the relationship between prenatal 

exposure to maternal obesity and child IQ scores and white matter microstructure. Children 

exposed to mothers with overweight/obesity who engaged in more VPA had higher IQ 

scores and greater global FA; whereas these associations were not present in children 

exposed to mothers with normal-weight during pregnancy. We also found that time spent in 

VPA was associated with higher IQ scores and greater global FA, independent of prenatal 

exposure to mothers with obesity. These findings suggest that engaging in VPA during 

childhood may be a promising strategy to ameliorate the adverse consequences of prenatal 

exposure to maternal obesity on child neurocognition. Future intervention studies are 

necessary to test this possibility.
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Figure 1. 
Least Square mean IQ scores (Part A) and global FA (Part B) for children above and below 

median VPA

Abbreviations: IQ, intelligence quotient. FA, fractional anisotropy. VPA, vigorous physical 

activity. Least square means adjusted for child age, sex, BMI z-score, family income, 

maternal education and maternal pre-pregnancy BMI. VPA < 10 minutes, N=47; VPA ≥ 10 

minutes, N=53.
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Figure 2. 
TBSS results show clusters where FA was greater for children who engaged in above the 

median VPA compared to children below the median VPA

Sagittal, coronal and axial view of TBSS results. Regions in red/yellow show clusters where 

FA was greater in children who engaged in above the median VPA compared to below the 

median VPA, overlaid on a T1-weighted image with the mean FA skeleton (green). Results 

are adjusted for child age and sex and maternal pre-pregnancy BMI. Threshold set to 

p<0.05, family-wise error rate used to control for multiple comparisons. Abbreviations: 

TBSS, tract-based spatial statistics; FA, fractional anisotropy; VPA, vigorous physical 

activity.
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Figure 3. 
Interaction between maternal pre-pregnancy weight status and VPA levels on child IQ score 

(Part A) and global FA (Part B)

Maternal normal-weight with VPA < 10 minutes (N=9), Maternal Overweight/Obese with 

VPA < 10 minutes (N=38); Maternal normal-weight with VPA ≥ 10 minutes (N=15), 

Maternal Overweight/Obese with VPA ≥ 10 minutes (N=38). Abbreviations: IQ, intelligence 

quotient. FA, fractional anisotropy. VPA, vigorous physical activity. Least square means 

adjusted for child age, sex, BMI z-score, family income, and maternal education.
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Table 1.

Participant and Mother’s Characteristics (N=100)

Variable N (%) or Mean (SD) Range

Age (years) 8.51 (1.00) 7.33 to 11.34

Sex
Girls: 59 (59%)

Boys: 41 (41%)

Tanner Stage

Stage 1: 91 (91%)

Stage 2: 6 (6%)

Stage 3: 3 (3%)

BMI z-score 0.75 (1.09) −1.78 to 2.64

Child BMI Percentile Category

Healthy-weight: 60 (60%)

Overweight: 16 (16%)

Obese: 24 (24%)

Median Time in LPA (min/day) 60 minutes 0 to 160

Median Time in MVPA (min/day) 100 minutes 0 to 430

Median Time in VPA (min/day) 10 minutes 0 to 270

WASI IQ Scores 108.80 (13.74) 76 to 150

Maternal Pre-pregnancy BMI (kg/m2) 30.08 (7.11) 18.97 to 50.38

Maternal Pre-pregnancy Category

Normal-weight: 24 (24%)

Overweight: 35 (35%)

Obese: 41 (41%)

Maternal Education at Birth

<=High school: 21 (21%)

Some college: 32 (32%)

College and post: 47 (47%)

Family Income at Birth

0<=income <30 000: 15 (15%)

30 000<=income <50 000: 30 (30%)

50 000<=income <70 000: 30 (30%)

70 000<=income <90 000: 14 (14%)

90 000>=income: 11 (11%)

Abbreviations: Age, child age. Time in MVPA, time in moderate-to-vigorous physical activity. Time in LPA, time in light physical activity. Time in 
VPA, time in vigorous physical activity. IQ, intelligence quotient.
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Table 2.

Relationship between Maternal Pre-Pregnancy BMI or Physical Activity with Child IQ and Global FA 

(N=100)

Predictor Variables Outcome Variables Beta (95% CI) p-value Covariates

Maternal pre-pregnancy BMI

IQ Score −0.31 (−0.67, 0.06) 0.10
Unadjusted

Global FA −0.00005 (−0.0004, 0.0003) 0.92

IQ Score −0.24 (−0.63, −0.14) 0.22
age, sex, SES

Global FA −0.00005 (−0.0004, 0.0003) 0.81

IQ Score −0.38 (−0.79, 0.03) 0.07
age, sex, SES, BMI z-score

Global FA −0.00005 (−0.0004, 0.0003) 0.80

Time in LPA (min/day)

IQ Score 0.11 (−0.89, 1.12) 0.82
Unadjusted

Global FA −0.0006 (−0.0016, 0.0004) 0.24

IQ Score −0.03 (−1.04, 0.98) 0.96
age, sex, SES

Global FA −0.0004 (−0.0004, 0.0006) 0.48

IQ Score −0.08 (−1.09, 0.92) 0.87 age, sex, SES, BMI z-score, pre-
pregnancy BMIGlobal FA −0.0004 (−0.0014, 0.0006) 0.47

Time in MVPA (min/day)

IQ Score 2.67 (−0.98, 6.24) 0.16
Unadjusted

Global FA −0.001 (−0.005, 0.002) 0.42

IQ Score 3.75 (0.12, 7.38) 0.05
age, sex, SES

Global FA −0.001 (−0.005, 0.002) 0.51

IQ Score 3.90 (0.33, 7.48) 0.04*
age, sex, SES, BMI z-score, pre-
pregnancy BMI

Global FA −0.001 (−0.005, 0.002) 0.50

Time in VPA (min/day)

IQ Score 7.05 (2.49, 11.60) 0.003*
Unadjusted

Global FA 0.0009 (0.0002, 0.0017) 0.02*

IQ Score 6.08 (1.31, 10.84) 0.01*
age, sex, SES

Global FA 0.0011 (0.0004, 0.0018) 0.005*

IQ Score 5.03 (0.13, 9.94) 0.05
age, sex, SES, BMI z-score, pre-
pregnancy BMIGlobal FA 0.0011 (0.0004, 0.0018) 0.005*

*
P-values <0.05

Abbreviations: Age, child age. SES, socioeconomic status at birth (family income and maternal education). Time in LPA, time in light physical 
activity. Time in MVPA, time in moderate to vigorous physical activity Time in VPA, time in vigorous physical activity. IQ, intelligence quotient. 
FA, fractional anisotropy.
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Table 3.

Relationship between Maternal Pre-Pregnancy BMI Weight Status (Normal-Weight vs. Overweight/Obese) 

with Child IQ and Global FA stratified by VPA levels.

Outcome Variable Maternal Weight-status VPA Category N Beta (95% CI) p-value

IQ score

Maternal Normal-weight
VPA Category < 10 minutes

9 Reference

Maternal Overweight/Obese 38 Reference

Maternal Normal-weight
VPA Category ≥ 10 minutes

15 5.76 (−4.52, 16.03) 0.29

Maternal Overweight/Obese 38 8.44 (1.43, 15.46) 0.02*

Global FA

Maternal Normal-weight
VPA Category < 10 minutes

9 Reference

Maternal Overweight/Obese 38 Reference

Maternal Normal-weight
VPA Category ≥ 10 minutes

15 −0.002 (−0.017, 0.013) 0.79

Maternal Overweight/Obese 38 0.008 (0.002, 0.014) 0.007*

*
P-values <0.05

Models adjusted for child age, sex, SES and BMI z-score.

Abbreviations VPA, vigorous physical activity, SES, family income, and maternal education.
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