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Abstract

We study the time evolution of symptoms (signs) with some defects in the dynamics of a

reaction network as a (microscopic) model for the progress of disease phenotypes. To this

end, we take a large population of reaction networks and follow the stochastic dynamics of

the system to see how the development of defects affects the macroscopic states of the

signs probability distribution. We start from some plausible definitions for the healthy and

disease states along with a dynamical model for the emergence of diseases by a reverse

simulated annealing algorithm. The healthy state is defined as a state of maximum objective

function, which here is the sum of mutual information between a subset of signal variables

and the subset of assigned response variables. A disease phenotype is defined with two

parameters controlling the rate of mutations in reactions and the rate of accepting mutations

that reduce the objective function. The model can provide the time dependence of the sign

probabilities given a disease phenotype. This allows us to obtain the accuracy of diagnosis

as a function of time by using a probabilistic model of signs and diseases. The trade-off

between the diagnosis accuracy (increasing in time) and the objective function (decreasing

in time) can be used to suggest an optimal time for medical intervention. Our model would

be useful in particular for a dynamical (history-based) diagnostic problem, to estimate the

likelihood of a disease hypothesis given the temporal evolution of the signs.

Author summary

Here, we use concepts from statistical physics and reaction network dynamics to intro-

duce a measure to quantify the tradeoff between the accuracy of diagnosis and an early

diagnosis. This measure is used to suggest an optimal time for medical intervention

depending on the number of observed signs (medical tests). We present a stochastic

model using a reverse simulated annealing algorithm for numerical simulation of disease

evolution. The model can provide the time dependence of the sign probabilities given a

disease phenotype. This in turn allows us to anticipate the accuracy of diagnosis as a func-

tion of time by using a probabilistic model of signs and diseases.
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Introduction

Early diagnosis considerably reduces the human and financial cost of disease treatments. How-

ever, an early diagnosis requires an accurate characterization of disease states, understanding

the mechanisms of disease development (dynamics), and the way a disease influences the

other ones (disease interactions) [1–3]. This, in turn, allows us to construct more accurate

diagnostic models and algorithms to uncover a hidden disease pattern in the early stages of its

progress [4–8]. This study aims to clarify these concepts within a chemical reaction network as

a microscopic model for the time evolution of molecular concentrations (the system signs) [9].

Defining a disease state and differentiating diseases based on medical signs/symptoms is

not always trivial. From a statistical point of view, however, it makes sense to define the micro-

scopic variables as the signs and define a disease state as a macroscopic (Gibbs) state of the

sign probability distribution [10, 11]. A disease state then may appear by (see Fig 1): (i) chang-

ing smoothly the sign values with no phase transition, e.g., in ageing, (ii) a discontinuous

phase transition, e.g., when the stress exceeds a critical value [12], (iii) a continuous phase tran-

sition which can be classified depending on its critical behaviour [13]. In recent studies, we

constructed probabilistic models of signs and diseases and introduced a diagnostic algorithm

that is based on the simulation of the diagnostic process [14–16]. The main finding was a two-

stage diagnostic strategy, which starts by suggesting at each step one medical test and observ-

ing the outcome of that medical test (sign). Then, for a critical number of observations, the

model undergoes a phase transition to an ordered phase, where it would be safe to suggest a

sequence of medical tests at once, relying on the model predictions. It is very helpful here to

have an accurate probabilistic model that captures the relevant statistical correlations of the

sign and disease variables. A microscopic model would then be needed to construct such a

probabilistic model for simulation of the diagnostic process.

The problem of disease development can be studied at different spatiotemporal resolutions.

For example, the aim of molecular pathology is to understand cellular and molecular mecha-

nisms that underlie the diseases [17]. At the level of cell population, one can study dynamics of

tumor cells and their interactions with immune system with the aim of controlling the disease

process [18]. Here the methods of ecological and resource-consumer theory can be used to

study disease dynamics and the host-pathogen interactions [19]. At a larger scale, a complex

system approach can be employed to investigate e.g. the neural dynamics of neurological dis-

orders [20]. On the other hand, clinical data acquisition and monitoring of disease dynamics

Fig 1. A schematic view of possible scenarios for disease development in the space of the sign probability distribution P(S). The average value of a binary

sign variable Si = ±1 is shown by hSi. The minimums of the free energy f(hSi), associated with the Gibbs measure P(S), represent the possible macroscopic

states of the system. (a) A healthy state changes smoothly without any phase transition. On the other hand, a disease state can emerge by a discontinuous (b)

or continuous (c) phase transition. The healthy and disease cases are represented by the solid and dashed lines, respectively.

https://doi.org/10.1371/journal.pcbi.1007889.g001
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are essential for understanding of disease development [21, 22]. The methods of complex

dynamic systems and machine learning can be employed here to analyse the data and con-

struct reasonable dynamical models.

In this paper, we are going to study the time evolution of disease states in a simple model of

biochemical reactions. Unfortunately, the concepts of signs, symptoms, and diseases are not

always well defined with clear boundaries. This will expectedly change in the future when high

resolution molecular picture of diseases are available, thanks to advances in multi-omics

approaches. The use of a reaction network as a specific microscopic model provides clear defi-

nitions for the above concepts. We take the number of molecules as the microscopic or sign/

symptom variables. Here the symptoms are equivalent in meaning to the signs and are used

interchangeably. The value of an observed sign (as a medical test) reveals the number or con-

centration of a biochemical species. The reactions here play the role of interactions between

the microscopic variables and the reaction rates give the strength of these interactions. On the

other hand, we define the diseases or disease phenotypes as the macroscopic or emergent

behaviours displayed by the sign variables. A defect in the reaction network is defined below as

a specific deviation in the reaction rates of the healthy network. One may consider a defect as a

simple and well defined disease, but we stress that in general a disease is defined by the collec-

tive contributions of the signs with (possibly) multiple defects.

We introduce an effective dynamics for temporal evolution of diseases, which is inspired

from thermal annealing of physical systems to reach a low temperature (ordered) state of

the system. We apply it to a specific model of microscopic signs (molecular concentrations

in a reaction network) to study disease development and its consequences for disease diag-

nosis in different stages of the process. A reaction network provides us with a testbed to

model disease developments and disease-disease interactions, and follow the response of the

sign variables (here molecular concentrations) as the time pass [23–25]. Specifically, we

start from a healthy reaction network which maximizes the mutual information between a

subset of signal and response variables as the objective function of the system [26–28]. The

optimization step can be done by a local optimization algorithm like the simulated anneal-

ing algorithm [29]. Then, we introduce some defects (mutations) in the system and run the

simulated annealing algorithm in the reverse direction, which on average decreases the

objective function of the system. The system dynamics here is controlled by the rates of

introducing the defects and the rate of accepting a decrease in the objective function. Note

that by maximizing the mutual information in the healthy state, the system could be placed

in a critical region close to a phase transition point. And, the reverse annealing algorithm

can induce a phase transition from the healthy state (say an ordered phase) to a disease state

(disordered phase). Another aim of this study is to provide a microscopic model of time-

dependent signs and diseases which can be used for diagnosis from the history or dynamics

of the observed signs, and which in addition allows us to model disease-disease interactions

more explicitly.

As a first step, in this study we use the synthetic data generated by the above dynamical

model to investigate the time dependence of the diagnostic performance with a simple proba-

bilistic model of signs and diseases. We see how the accuracy of diagnosis with such a diagnos-

tic model improves with time as the reaction network deviates from the healthy state of

maximum objective function. This information would be necessary for quantification of the

tradeoff between the accuracy of diagnosis and the level of disease progression at the time of

diagnosis. This, in particular, can be used to suggest an optimal intervention or screening time

for specific diseases and diagnostic models.

The paper is structured as follows. In Sec The model and definitions we define the model

and give the main equations. In Sec Modelling disease evolution we present the stochastic
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model of disease evolution, and the results of numerical simulations for a small reaction net-

work. The concluding remarks are given in Sec Discussion.

Results

The model and definitions

We consider a system of N interacting species (molecules) with M chemical reactions [9, 30].

Fig 2 displays a graph representation of some elementary reaction networks. A reaction net-

work can be represented by a number of reaction pathways as the fundamental building blocks

(basis) of the reaction network [26]. We use the integers 0� Xi(t)� Xmax to show the number

of molecules for species i = 1, . . ., N at time t. Here Xmax is the maximum number of molecules

that is allowed by the biological system. The whole set of molecular numbers are denoted by

vector X(t) = {X1(t), . . ., XN(t)}. To be specific, let us assume that our reaction network is a

signal transduction network, where the signals are encoded in the temporal concentration of

some signal species. The set of signal variables is denoted by S. To each signal species i 2 S

Fig 2. Illustration of the reaction networks. The solid circles and squares display the species and the reactions, respectively. A reaction could be reversible (full

square) or irreversible (empty square). A dashed arrow shows that the species concentration is driven externally. (a) a single pathway, (b) two non-interacting

pathways, (c)-(d) two pathways interacting through common reactions and species, (e)-(f) two pathways interacting through a link, (g)-(h) two pathways

interacting through a coherent (h) or incoherent (g) cycle, (i) a pathway with an irreversible reaction which also interacts with two externally driven species, (j) a

larger reaction network of interacting pathways with M = 6 reactions and N = 13 species.

https://doi.org/10.1371/journal.pcbi.1007889.g002
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we assign the subset of associated response species RðiÞ. The signal generated by species i is

transmitted through the network to species j 2 RðiÞ. This means that a change in the concen-

tration of signal molecules is expected to significantly affect the activation level of the response

molecules.

In general, a reaction r = 1, . . ., M is represented by the stoichiometric coefficients n�r ðiÞ
and nþr ðiÞ

XN

i¼1

n�r ðiÞXi !
XN

j¼1

nþr ðjÞXj: ð1Þ

The coefficients n�r ðiÞ; n
þ
r ðiÞ take only non-negative integer values. The reactions happen sto-

chastically with a probability that is determined by a propensity function ηr(X). From the sto-

chastic simulation of this process one can extract the probability distribution of the number of

species. Let Pr(Xi, Xj) be the joint probability distribution of variables Xi and Xj in a stochastic

process governed by the above reactions. The mutual information of the two variables, which

measures any statistical dependency of the variables, is given by

MIði; jÞ ¼
X

Xi

X

Xj

PrðXi;XjÞ log
PrðXi;XjÞ

PrðXiÞPrðXjÞ
: ð2Þ

We need the above measure later to quantify the degree of statistical correlations between the

signal and response variables.

The average value of a single variable is denoted by

hXii ¼
X

Xi

XiPrðXiÞ: ð3Þ

The activation level of species i can be represented by a coarse-grained variable xi 2 {−1, 0, +1},

where

xi ¼ � 1 if hXii < X�i � dXi

xi ¼ þ1 if hXii > X�i þ dXi

otherwise xi = 0. Later, we use these variables as the signs in a probabilistic model of disease

diagnosis. Here X�i defines the threshold value for variable i and δXi denotes the standard devi-

ation in Xi. We shall set X�i ¼ Xmax=2. The threshold value here is defined according to the

number of coarse-grained levels, but in practice its precise value would depend on the biologi-

cal details of the system.

The linear correlation coefficient of two variables is defined as follows

Cði; jÞ ¼
hXiXji � hXiihXji

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðXi � hXiiÞ
2
ihðXj � hXjiÞ

2
i

q : ð4Þ

Note that in general the mutual information MI(i, j) gives more information about the statisti-

cal dependence between the variables than the above linear correlations. Nevertheless, it is

easy to see from the sign of C(i, j) that the two variables are positively or negatively correlated.

The above definitions give the basic statistical measures that are used in the following to char-

acterize the statistical state of the system.

Evolution by the stochastic chemical kinetics. The system evolves in time by M (revers-

ible or irreversible) chemical reactions, where Xi(t) gives the number of species i at time t.
Each chemical reaction r = 1, . . ., M is identified with the state-change vectors (stoichiometric
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coefficients) ν�r ; ν
þ
r and the propensity function ηr(X), which determines the reaction flux

and in general depends on the Xi. The state-change vectors give the changes in the number

of molecules; i.e., after reaction r the Xi change to Xi þ ðn
þ
r ðiÞ � n

�
r ðiÞÞ. The propensity func-

tion ηr(X)dt gives the probability that reaction r happens in the time interval (t, t + dt) given

the X(t) = {X1(t), . . ., XN(t)}. Note that each reaction happens with the above probability

independently of the other reactions as in a Poisson process [31]. However, a single specie

may be involved in several reactions affecting the dynamics of the associated reactions. The

propensity function depends on the number of molecules in the left hand side of the reaction

Lr ¼ fi : n�r ðiÞ > 0g. The propensity function can take different forms depending on the

nature of reaction. For instance, within the mass-action kinetics [9]:

ZrðXÞ ¼ kr

Y

i2Lr

Xi!

n�r ðiÞ!ðXi � n
�
r ðiÞÞ!

; ð5Þ

where the reaction rate κr scales with the system volume O as 1=O
jLr j� 1

. It is assumed that the

molecules are confined in a bounded region of space denoted by O. The scaling of the reac-

tion rates with the volume is to ensure that Xi/O is well defined in the thermodynamic limit

O!1.

The average values of stochastic variables Xi(t) satisfy the following equation

dhXiðtÞi
dt

¼
X

r

ðnþr ðiÞ � n
�

r ðiÞÞhZrðXÞi: ð6Þ

We see that even solving for the averages hXi(t)i is difficult due to the coupling of the variables

in the right hand side of the equation. In the following, however, we resort to a numerical sim-

ulation of the above process. By simulating a large population of identical reaction networks

we also obtain the joint probability distributions which are needed for computation of the

mutual informations.

One can use the Stochastic Simulation Algorithm (or Gillespie algorithm) to simulate the

time evolution of a reaction network [32]. Let us assume that a reaction happened at time t.
Then, we need to know the time to the next reaction (τ) and the index of the next reaction (r).
Given that the system is currently in state X(t), the joint probability distribution of two ran-

dom variables ρ(τ, r) is:

rðt; rÞ ¼ ZrðXÞe� ZðXÞt; ZðXÞ �
X

r

ZrðXÞ: ð7Þ

Note that no reaction should happen in the time interval τ. That is why we need the exponen-

tial factor with the total propensity function η(X). The Gillespie algorithm then goes as follows

[32]:

• compute the ηr and η given the X(t)

• extract τ and r from the probability distribution ρ(τ, r):

• draw two random numbers u1, u2 from the uniform distribution in (0, 1)

• then t ¼ 1

Z
log ð1=u1Þ and r is the smallest integer satisfying

Pr
r0¼1

Zr0 > u2Z

• change t! t + τ and X! Xþ ðνþr � ν�r Þ

Note that we should always check to have 0� Xi� Xmax. That means that a reaction should

have enough reactants to happen, and we keep the Xi� Xmax.
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This is a simple but very time consuming algorithm for simulation of large reaction net-

works. The reader can refer to other references in [32] and [33, 34] for more efficient and

sophisticated algorithms.

Modelling disease evolution

In this section, we introduce a simple dynamical model for the time evolution of defects in the

reaction network. We shall assume that the number of species and the pattern of interactions

by the reactions are fixed. Moreover, we assume that the healthy state is an optimal state for an

appropriately defined objective function, which depends on the nature of functions we expect

from the system. For instance, if the main task of a system is to remember a number of pat-

terns, then a good objective function could be the number or quality of the stored patterns. A

reaction network of interacting pathways can be considered as a signal transaction and pro-

cessing system, among the other functions [26–28]. To be specific, in the following we assume

that the healthy state is defined by the state of maximum mutual information between the sig-

nal variables and the associated responses. A more suitable measure is the transfer entropy

from the signal to response variables. This is a directed measure of information transmission

(or causal relation) which is expected from the signal transduction part of the reaction network

in a cell. Mutual information is however a symmetric measure of statistical dependence which

is closely related to the transfer entropy and at the same time it is computationally easier to

estimate; because here one needs two-point joint probabilities whereas for computation of

transfer entropy one needs three-point conditional probabilities.

Given the structure of the reaction network, we first use an approximate optimization algo-

rithm (e.g. a zero-temperature Monte Carlo) to find the reactions rates that maximize the fol-

lowing objective function:

E �
X

i2S

1

jRðiÞj

X

j2RðiÞ

MIði; jÞ

 !

: ð8Þ

Note that the mutual information are obtained from the stochastic simulation of the species

dynamics which depends on the reaction rates. Therefore, one can search in the space of the

reaction rates to find the optimal parameters that maximize the mutual information and so the

objective function.

We start from the stationary state of the optimal (healthy) state and denote the associated

objective function value by Eold. We also attribute an elementary defect d̂r to each reaction

which means that the associated reaction rate is deviating from the healthy value, e.g. due to

mutations in the related genes. A general defect pattern is obtained by a combination (or a set)

of these elementary defects D ¼
PM

r¼1
Drd̂r . The number of nonzero coefficients Dr = 0, 1

gives the number of present elementary defects in D, which is denoted by |D| (cardinality of

set D). We call D a defect pattern because in general it can be a superposition of multiple ele-

mentary defects. Then, the time evolution of a defect (or pathologic variation) pattern D is

modelled in the following way: For t = 1, . . ., tmax do:

• each reaction rate changes with (mutation) probability αr(t|D) from κr to κr ± δκ

• run the stochastic simulation (Gillespie) algorithm to compute the new objective function

Enew

• accept the changes in the reaction rates if the objective function increases, otherwise, accept

the changes with probability exp ðbðtjDÞDEÞ. If the changes are accepted set Eold ¼ Enew
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The mutation probabilities αr(t|D) are expected to be negligible at the beginning (for a

healthy state) and increase with time step t. This probability is greater than zero only for the

elementary defects that are presented by D. For instance, in case that only elementary defect

Da is present, the mutation probability is denoted by αr(t|Da) which is nonzero only for r = a.

On the other hand, the parameter β(t|D) in the acceptance probabilities is expected to be very

large for a healthy state and decrease with t depending on D. Here β(t|D)� 0 plays the role of

an inverse temperature in a reverse simulated annealing algorithm [29]. While the probabili-

ties αr(t|D) control the rate of local changes (mutations) in the reaction network, the global

parameter β(t|D) determines the system susceptibility to such local mutations (as the immune

system). Note that in the standard simulated annealing the temperature decreases slowly to

reach an optimal state of the system, which maximizes the objective function (minus the

energy function). Here, however, we are deviating from the optimal state by increasing a tem-

perature-like parameter 1/β. That is why we call the above process a reverse annealing.

Let τr(D) denote the time scale in which αr(t|D) changes from zero to one. Similarly we

define the time scale τβ(D), for changing the probability of accepting a decrease in the objective

function. The rates 1/τr(D) could in general be nonzero for an arbitrary subset of the reactions.

Interactions between two evolving defects Da and Db may change the rate of mutations and

acceptance probabilities, for instance, by

1

trðDa þDbÞ
¼

1

trðDaÞ
þ

1

trðDbÞ
þ

l
ab
r

trðDa �DbÞ
; ð9Þ

1

tbðDa þDbÞ
¼

1

tbðDaÞ
þ

1

tbðDbÞ
þ

l
ab
b

tbðDa �DbÞ
: ð10Þ

The additional rates 1/τr(Da
� Db), 1/τβ(Da

� Db) and couplings l
ab
r ; l

ab
b

show how much the

two defects alter the reactions that are not directly affected by the single defects. Here, we use

the fact that the rate of two independent Poisson processes with rates 1/τ1 and 1/τ2 is given by

1/τ = 1/τ1 + 1/τ2. Then, a deviation from this case, due to an interaction between the two pro-

cesses, is represented by an additional term λ12/τ12. Note that Da
� Db is not a simple multipli-

cation; it is just a notation we introduced to represent the interaction between the two defects.

Evaluation of diagnosis accuracy. Given a defect pattern D, we can compute the molecu-

lar numbers Xi(t) and the associated mutual information MI(i, j) and correlations C(i, j) at

each time step t of the disease evolution algorithm described above. Here, we are going to map

the coarse-grained variables xi to binary sign variables S = {Si = ±1: i = 1, . . ., N} in a diagnostic

problem. The aim here is to find out the underling defects D, assuming that we have observed

the values of NO� N signs at time t. We can compute the conditional defect probabilities from

a probabilistic model Pr(D, S) of the sign and defect variables given the observed signs. Then,

the most probable defect pattern is taken for the diagnosis. A computationally simple model

(call it the D1S1 model) is obtained by assuming that the elementary defects are marginally

independent of each other Pr(D) = ∏a Pr(Da), and the signs are conditionally independent of

each other Pr(S|D) = ∏i Pr(Si) [5–7].

In the following, we shall use the above model for diagnosis, assuming that the number of

present defects |D| is one. This simplification is to avoid the unnecessary complications of the

diagnosis problem and focus on the temporal evolution of diagnosis accuracy. To construct

the D1S1 model (i.e. to set the model parameters), we need the conditional probabilities

Prt(Si|nodefect) and Prt(Si|Dr), in the healthy state (with no defect) and in presence of only

one elementary defect (Dr) [14]. This information is obtained (for all the Dr) from the disease

evolution algorithm as describe above.
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To evaluate the model predictions, first we run the disease evolution algorithm for a given

elementary defect Dr. This results to the associated sign values Si(t) (obtained from the molecu-

lar numbers) for different times t. Then, it is assumed that we know only the value of NO signs

(the observed signs) which is used by the diagnostic model (D1S1). From this model we infer

the most probable defect and take it as the model prediction, which can be compared with the

true one Dr. In this way, we obtain the accuracy of diagnosis by the D1S1 model, conditioned

on the number of observed signs:

ACðt : NOÞ ¼
Ptrue þ Ntrue

Ptotal þ Ntotal
: ð11Þ

This is the ratio of true positive (Ptrue) and true negative (Ntrue) to the total number of posi-

tive (Ptotal) and negative (Ntotal) cases. Obviously 0� AC(t: NO)� 1 and AC(t: NO) = 1/2

for a completely random diagnosis. Moreover, the accuracy is expected to increase with the

observation time at which the NO signs are measured; the larger time t the more specific are

the observed signs regarding the involved defects.

Now, imagine that we are to find the best time for observing NO signs assuming that |D| =

1. In one hand, we have the objective function EðtÞ which is a decreasing function of time

and shows the disease progress. On the other hand, we have the diagnosis accuracy AC(t: NO)

which improves with the disease progress in time. An optimal intervention time t�(NO) then

can be obtained by maximizing a weighted sum of the two functions:

Lðt : NOÞ � l
EðtÞ
Eð0Þ

þ ð1 � lÞ
ACðt : NOÞ �

1

2

� �

1=2
; ð12Þ

using the normalized quantities (divided by the maximum values) with 0� λ� 1. The value of

λ determines the importance that we associate with each term. In practice, the λ value is gradu-

ally adjusted in a learning process to find the optimal value, which could depend on the num-

ber of present defects |D| and the nature of diseases. Fig 3 displays schematically the expected

behaviour of the above quantities. In practice, we do not have access to the future values of the

objective function and the unobserved signs to compute the diagnosis accuracy. But, we can

use the microscopic model of disease evolution (here the reaction network) in addition to the

probabilistic diagnostic model (here the D1S1 model) to simulate the above process and find

an estimation of the optimal intervention time. This highlights the importance of simulation-

based methods in a diagnostic problem.

Note that here for simplicity we assume that the number of involving (present) elementary

defects is one (|D| = 1). In addition, more accurate (and sophisticated) diagnostic models can

be used by considering the possibility of direct defect-defect and sign-sign interactions in the

probabilistic model. Such models could be very useful to deal with the case that multiple inter-

acting defects are at work [14]. Finally, the stochastic dynamics of the reaction network and

the defects in the disease evolution algorithm provides an ensemble of sign histories which

are consistent with a given defect pattern D. This statistical information would be very useful

for having a more accurate diagnosis considering the effect of such disorders on the system

dynamics.

Numerical simulations. In this section we present the results of numerical simulation for the

reaction networks of Fig 2. For example, consider the reaction network of Fig 2(j) with three inter-

acting pathways, N = 13 species, and M = 6 reversible reactions. We assume that each reaction

pathway has its own signal and response species; the selection of these variables in general depends

on the specific function of the reaction network which is considered. Here, the signal variables

and the associated responses are: S ¼ fX0;X3;X6g, RðX0Þ ¼ X2;RðX3Þ ¼ X5;RðX6Þ ¼ X8.
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And, the objective function is

E ¼ MIðX0;X2Þ þMIðX3;X5Þ þMIðX6;X8Þ: ð13Þ

We use a zero-temperature Monte Carlo algorithm to find a local maximum of the objective func-

tion by changing only the reaction rates, with the constraint that κr2 (0, 2); this range of values

was chosen such that the models can display different non-trivial phases in a reasonable computa-

tion time.

Fig 4 shows the optimal features of some selected reaction networks (from Fig 2) obtained

in this way. The figure displays the coarse-grained activities xi, the mutual information MI(i, j),
and the correlation coefficients C(i, j). Note that the coefficients C(i, j) display only linear cor-

relations between Xi and Xj. Nevertheless, it is easier to say that the two variables are positively

or negatively correlated by looking at the sign of C(i, j) than the value of mutual information.

We observe in the figure that negative correlations appear in networks of interacting pathways

due to the presence of feedback loops; a single pathway like the one on panel (a), displays

merely positive correlations as expected. Moreover, due to the same interactions in the revers-

ible network of panel (e), we see that by maximizing the above objective function we also

obtain considerable cross mutual informations, e.g., for MI(X0, X5) and MI(X3, X8).

The optimized reaction network gives the initial condition for the time evolution of the

model with defects D as follows. At each step t, we change the κr to κr ± δκ with probability

α(t) = min(1, t/τα) for the reactions that are affected by D. Here δκ = 0.05, τα = 100, 400, and

still we have the constraint that κr 2 (0, 2). The other parameter decreases with time step t as

β(t) = max(0, β0(1 − t/τβ)), where β0 = 100 and τβ = 100, 400. The mutual informations after

Fig 3. A schematic behaviour of disease progress and diagnosis accuracy with time. An optimal intervention time t�(NO) can be

defined by maximizing another measure Lðt : NOÞ constructed by the objective function EðtÞ plus the diagnosis accuracy AC(t: NO),

given the number of observed signs NO, and the number of present diseases |D|.

https://doi.org/10.1371/journal.pcbi.1007889.g003
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each update of the reaction rates are estimated by the stochastic evolution of the reaction net-

work for Δteq = 200 iterations. Then, we run the algorithm for another Δtav = 200 iterations to

extract the necessary statistical information. Note that all parameters here are dimensionless

and should be scaled to be related to the real quantities. The parameters like the reaction rates

and the time scales are chosen to display the typical behaviour of the system in different

regimes. To be specific, in the following we focus on the temporal evolution of diseases in the

larger reaction network of Fig 2(j).

Figs 5 and 6 display the average objective function (mutual information) and distance from

the healthy state we observe for some defect patterns D. Here the average is taken over at least

100 realizations of the stochastic disease dynamics. The numerical results for the behaviour of

single dynamical realizations are given in S1 Text. As the figures show, besides the number of

present defects which is displayed in panels (b),(e), it is the relative difference of the two time

scales τα and τβ that determines the qualitative behaviour of the system. For instance, in panels

(c),(f) of the figures we observe that the transition from the healthy state is usually sharper

when the rate of mutations 1/τα is smaller than the rate of accepting the mutations; it makes

Fig 4. Statistical characterization of the optimal (healthy) reaction networks. The matrix displays mutual informations MI(i, j) (the upper triangle of the

matrix), correlations coefficients C(i, j) (the lower triangle of the matrix), and concentration values xi (the diagonal elements) for the reaction networks of Fig 2

(a), 2(d), 2(f) and 2(j): (a) the single chain ðS ¼ X0;RðX0Þ ¼ X2Þ, (b) the two-chain network with two common reactions

ðS ¼ fX0;X1g;RðX0Þ ¼ X3;RðX1Þ ¼ X4Þ, (c) the two-chain network with a connecting link ðS ¼ fX0;X3g;RðX0Þ ¼ X2;RðX3Þ ¼ X5Þ, (d) and (e) the three-

chain network with reversible and irreversible reactions ðS ¼ fX0;X3;X6g;RðX0Þ ¼ X2;RðX3Þ ¼ X5;RðX6Þ ¼ X8Þ. The MI(i, j) and C(i, j) are scaled to have

maximum value one.

https://doi.org/10.1371/journal.pcbi.1007889.g004
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sense as in this case the probability of accepting the changes is already considerable when the

chance of happening the mutations becomes large. On the other hand, a two-stage behaviour

is observed in panels (c),(f) when the rate of mutations is significantly larger than 1/τβ. Here,

there is a period where the mutations happen frequently but the rate of accepting the muta-

tions is small and they are mostly rejected. Fig 6 shows the distance of the system state at time

step t from the initial state dðtÞ ¼
PN

i¼1
jciðtÞ � cið0Þj=N, where ci(t) = hXi(t)i/Xmax. The figure

shows the times that the system spends around a microscopic state and how the distance

changes in presence of various defects.

Now, we consider the temporal behaviour of the diagnosis accuracy in the above reaction

network with reversible reactions. The disease evolution algorithm is run for various elemen-

tary defects to obtain the binary sign variables Si(t) = ±1 from the molecular numbers Xi(t). Let

us assume that the value of NO signs are observed at time step t. The aim then is to find out the

elementary defect that resulted in the observed values. Fig 7 shows the average accuracy of the

predictions made by the D1S1 model of Ref [14], assuming that |D| = 1 and τα = τβ = 100. To

construct the probabilistic diagnostic model we need the conditional probabilities Prt(Si|node-

fect), and Prt(Si|Dr) at time step t. This information is obtained from numerical simulation of

the dynamics of the reaction network in the healthy state (no defect), and in presence of only

one defect (Dr), respectively. The reported accuracy is averaged over different elementary

defects and dynamical realizations.

The accuracy of diagnosis is expected to improve with the evolution time of the defects;

obviously, there is more statistical information about the defects in the data that are extracted

at larger times and this enhances the ability to distinguish between different defects. We

Fig 5. The average objective function (scaled to have maximum one) in presence of various defects. The data are for the reaction network of Fig 2(j) with N = 13

species and M = 6 reactions. Top panels show the results with reversible reactions for: (a) evolution with one defect (|D| = 1) for τα = τβ = 100, (b) evolution with one,

two, and four defects (|D| = 1, 2, 4) for τα = τβ = 100, (c) evolution with all defects (|D| = M) for different τα = 100, 400 and τβ = 100, 400. Bottom panels (d),(e),(f)

show the results with irreversible reactions.

https://doi.org/10.1371/journal.pcbi.1007889.g005
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Fig 6. The average distance d(t) = ∑i|ci(t) − ci(0)|/N of the concentration values ci(t) = hXi(t)i/Xmax at different time steps. The data are for the reaction network

of Fig 2(j) with N = 13 species and M = 6 reactions. Top panels show the results with reversible reactions for: (a) evolution with one defect (|D| = 1) for τα = τβ = 100,

(b) evolution with one, two, and four defects (|D| = 1, 2, 4) for τα = τβ = 100, (c) evolution with all defects (|D| = M) for different τα = 100, 400 and τβ = 100, 400.

Bottom panels (d),(e),(f) show the results with irreversible reactions.

https://doi.org/10.1371/journal.pcbi.1007889.g006

Fig 7. Accuracy of predictions with the probabilistic diagnostic model of Ref [14]. The accuracy (true positive + true negative)/(total positive + total negative) at

different time steps t with τα = τβ = 100: (a) Using the D1S1 model in the presence of one defect (|D| = 1) and (b) Time dependence of the accuracy in presence of

one defect (|D| = 1) for NO = 12.

https://doi.org/10.1371/journal.pcbi.1007889.g007
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observe in Fig 7(a) that this improvement (with respect to random predictions) in the accuracy

is very sharp; it is nearly zero for times less than 200 and then it takes a nearly constant value

(for given NO) at larger times. The figure (panel (b)) also shows how the accuracy (for a given

NO = 12) changes with time when the number of present defects |D| = 1. Here it is clearer to

see the discontinuous behaviour of the average accuracy; in particular, there is a transition

time interval (200, 400) where the system displays two macroscopic states with different values

for the diagnostic accuracy. When the accuracy exhibits such a behaviour, the optimal inter-

vention time for diagnosis, considering the decreasing objective function, is just after the

transition.

Note that here we are using only the statistical information that are obtained at a given time

step t. A more accurate diagnosis should take into account the whole history of the sign vari-

ables, which is the subject of our future studies.

Discussion

In summary, we presented a stochastic model using the reverse annealing algorithm for the

simulation of disease evolution in time. The dynamical model depends on two parameters,

which control the rate of introducing mutations (defects) and the rate of accepting a decrease

in the objective function. The relative strength of these parameters determines the overall

behaviour of the system. For instance, the transition to the disease state is sharper when the

rate of generating a mutation is lower than the rate of accepting the mutation. Moreover, we

used a probabilistic diagnostic model to estimate the accuracy of diagnosis as the system per-

formance degrades in time in the presence of some defects. The results show how much the

diagnostic accuracy improves by the elapsed time of a disorder. This allows us to quantify the

tradeoff between the accuracy of diagnosis and the degree of disease progression.

A microscopic model of disease evolution could be useful for a diagnostic problem which

is to consider the history (dynamics) of the sign variables S(ti! tf) = {S(ti), . . ., S(tf)}. For

instance, given the time dependence of the molecular concentrations Xi(t) in a chemical reac-

tion network, then a relevant problem is to reconstruct the time evolution of the model param-

eters αr(t), β(t). Obviously, a diagnosis that relies on the likelihoods of defects for a given

history S(ti! tf), would be more accurate than a diagnosis that is solely based on the current

sign values.

The model presented in this study is of course a toy model, which does not recapitulate

fully the biological complexity of disease characterization and development. However, we

believe that it could be a good starting model to capture some of the essential ingredients of

disease progression and the clinical diagnostic problem. The main objectives behind this work

are:

• to provide a microscopic model that generates synthetic data which are needed for construc-

tion of deeper probabilistic models of signs and diseases.

• to present a dynamical model of disease evolution which (I) can be used to model explicitly

disease-disease interactions and (II) can be used directly in a diagnostic problem that is

based on the dynamics or history of the observed signs. That is to infer the effective parame-

ters αr and β to uncover the underlying defects behind the dynamics.

As a first application, we used the proposed simple diagnostic model to provide insights

into the optimal intervention time (considering the accuracy of diagnosis and the level of dis-

ease development). The second application can involve, for example, a well reconstructed part

of the cell reaction network with a history of observed molecular concentrations, to localize

the position of diverging reactions in the network from the inferred parameters αr. On the
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other hand, a global measure of the network deviation from the healthy state is provided by

the parameter β which somehow quantifies the overall level of destructive noises in the reac-

tion network.

It would be interesting to apply the methodology of this study to the Hopfield model of

associative neural networks [35]. In addition to connections with the study of mental disor-

ders, the Hopefield model is also related to simple models of the immune system [36, 37].

Finally, the study can also be done for a personal reaction network which has been recon-

structed from a single-person biomedical data [38–40]. This, in turn, would allow for a more

precise and personalized diagnosis.

Methods

The results of numerical simulations are obtained for the reaction networks of Fig 2. The reac-

tion networks are chosen in a way that mimic the biological structures. The number of mole-

cules for each species is restricted to 0� Xi(t)< Xmax = 1000. The value of Xmax is chosen to be

of the order of the molecular numbers in real biological systems. The initial number of mole-

cules is chosen randomly and uniformly in (0, Xmax). For the externally driven species, which

are indicated by dashed arrows in the figure, we assume that the number of molecules at any

time obeys a uniform probability distribution. It means that the number of these species is not

determined by the system dynamics but these species still affect the reactions in which they

play the role of reactants. To compute the probabilities and mutual informations we do the

numerical simulation in parallel for a population of N pop ¼ 105 independent and identical

reaction networks.

We use a zero-temperature Monte Carlo algorithm to find a local maximum of the objective

function. We start from random initial values for the κr. At each step, new reaction rates are

suggested around the current values. Then, the mutual informations are estimated from the

stochastic dynamics of the reaction network for Dt0
eq ¼ 4000 iterations to reach a stationary

state. We run the algorithm for another Dt0
av ¼ 1000 iterations to extract the statistical infor-

mation needed for computation of the objective function; at each iteration, we allow for M
reactions to happen according to the dynamical rules of the stochastic evolution (Gillespie)

algorithm. The suggested changes in the reaction rates are accepted only if the objective func-

tion increases.
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22. Sjölinder H, Jonsson AB. Imaging of disease dynamics during meningococcal sepsis. PLoS One. 2007;

2(2). https://doi.org/10.1371/journal.pone.0000241 PMID: 17311106

23. Bhalla US, Iyengar R. Emergent properties of networks of biological signaling pathways. Science. 1999

Jan 15; 283(5400):381–7. PMID: 9888852

24. de Ronde W, Tostevin F, Ten Wolde PR. Multiplexing biochemical signals. Physical review letters.

2011 Jul 19; 107(4):048101. PMID: 21867046

25. Van Wijk R, Tans SJ, Ten Wolde PR, Mashaghi A. Non-monotonic dynamics and crosstalk in signaling

pathways and their implications for pharmacology. Scientific reports. 2015 Jun 18; 5(1):1–3.

26. Schilling CH, Palsson BO. The underlying pathway structure of biochemical reaction networks. Pro-

ceedings of the National Academy of Sciences. 1998 Apr 14; 95(8):4193–8.

PLOS COMPUTATIONAL BIOLOGY Disease evolution in reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007889 June 4, 2020 16 / 17

https://doi.org/10.1038/srep14344
http://www.ncbi.nlm.nih.gov/pubmed/26399914
https://doi.org/10.1126/science.1257601
http://www.ncbi.nlm.nih.gov/pubmed/25700523
http://www.ncbi.nlm.nih.gov/pubmed/1762578
https://doi.org/10.1371/journal.pone.0167490
https://doi.org/10.1371/journal.pone.0167490
http://www.ncbi.nlm.nih.gov/pubmed/27930698
http://www.ncbi.nlm.nih.gov/pubmed/29776109
http://www.ncbi.nlm.nih.gov/pubmed/12576948
https://doi.org/10.1371/journal.pone.0000241
http://www.ncbi.nlm.nih.gov/pubmed/17311106
http://www.ncbi.nlm.nih.gov/pubmed/9888852
http://www.ncbi.nlm.nih.gov/pubmed/21867046
https://doi.org/10.1371/journal.pcbi.1007889


27. Kremling A, Jahreis K, Lengeler JW, Gilles ED. The organization of metabolic reaction networks: a sig-

nal-oriented approach to cellular models. Metabolic Engineering. 2000 Jul 1; 2(3):190–200. PMID:

11056061

28. Tyson JJ, Novák B. Functional motifs in biochemical reaction networks. Annual review of physical

chemistry. 2010 May 5; 61:219–40. https://doi.org/10.1146/annurev.physchem.012809.103457 PMID:

20055671

29. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. science. 1983 May 13; 220

(4598):671–80. PMID: 17813860

30. Temkin ON, Zeigarnik AV, Bonchev DG. Chemical reaction networks: a graph-theoretical approach.

CRC Press; 1996 Aug 5.

31. Van Kampen NG. Stochastic processes in physics and chemistry. Elsevier; 1992 Nov 20.

32. Gillespie DT. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 2007 May 5; 58:35–

55. PMID: 17037977

33. Gupta A, Briat C, Khammash M. A scalable computational framework for establishing long-term behav-

ior of stochastic reaction networks. PLoS computational biology. 2014 Jun; 10(6). https://doi.org/10.

1371/journal.pcbi.1003669 PMID: 24968191

34. Hepp B, Gupta A, Khammash M. Adaptive hybrid simulations for multiscale stochastic reaction net-

works. The Journal of chemical physics. 2015 Jan 21; 142(3):034118. PMID: 25612700

35. Amit DJ. Modeling Brain Function (Cambridge. Cambridge Univ. Press [2] PA Getting (1988), Neural

Control of Rhythmic Movements in Vertebrates, eds, AH Cohen, S. Rossignol, 8L S. Grillner, New York:

John Wiley. 1989;85:101-27.

36. Agliari E, Barra A, Guerra F, Moauro F. A thermodynamic perspective of immune capabilities. Journal

of theoretical biology. 2011 Oct 21; 287:48–63. PMID: 21824481

37. Agliari E, Annibale A, Barra A, Coolen AC, Tantari D. Immune networks: multitasking capabilities near

saturation. Journal of Physics A: Mathematical and Theoretical. 2013 Sep 27; 46(41):415003.

38. Papin JA, Hunter T, Palsson BO, Subramaniam S. Reconstruction of cellular signalling networks and

analysis of their properties. Nature reviews Molecular cell biology. 2005 Feb; 6(2):99–111. PMID:

15654321

39. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ. Global reconstruc-

tion of the human metabolic network based on genomic and bibliomic data. Proceedings of the National

Academy of Sciences. 2007 Feb 6; 104(6):1777–82.
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