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Abstract

Introduction Severe sepsis, septic shock, and resulting organ
failure represent the most common cause of death in intensive
care medicine, with mortality ranging from 40% to 70%. It is still
unclear whether necrosis or apoptosis plays the predominant
role in severe sepsis. Determining the prevalent mode of cell
death would be valuable, as new therapeutic agents (eg,
antiapoptotic drugs such as caspase inhibitors) may improve
unsatisfactory outcomes in patients with severe sepsis.
Furthermore, the prognostic value of newly developed cell death
serum biomarkers is of great interest.

Methods In total, 147 patients (101 patients with severe sepsis,
28 postoperative patients after major abdominal surgery, 18
healthy volunteers) were enrolled. Baseline and clinical data
were evaluated. Blood samples from patients with severe sepsis
were collected at the time of sepsis diagnosis, and 48 and 120
hours later; samples from healthy volunteers were collected
once, and from postoperative patients, once immediately after
surgery. We measured caspase-cleaved and uncleaved
cytokeratin-18 (CK-18, intermediate filament protein) as a
marker of cell death, isolated CK-18 fragments as a marker of
apoptosis, as well as IL-6, soluble vascular cell adhesion
molecule, and soluble intercellular adhesion molecule.

Results Age and sex of patients with severe sepsis and
postoperative patients were comparable, whereas healthy
volunteers were significantly younger. In healthy volunteers, the
mode of cellular turnover was primarily apoptotic cell death.
Postoperative patients showed comparable levels of apoptotic
activity, but necrotic cell death was markedly increased,
probably due to surgical tissue injury. In contrast, patients with
severe sepsis, and especially non-survivors of the septic group
showed increased levels of markers for both apoptotic and
necrotic cell death. In severe septic patients with liver
dysfunction, necrosis is increased relative to severe septic
patients with intact hepatic function. For severe septic patients
with liver dysfunction, a cut-off value for caspase-cleaved and
uncleaved cytokeratin-18 could be calculated, in order to
identify patients at high risk for death due to severe sepsis.

Conclusions The measurement of caspase-cleaved and
uncleaved cytokeratin-18 appears to be an early predictor for
survival in severe septic patients with hepatic dysfunction.
Furthermore, the loss of parenchymal cells due to necrosis may
be the primary mode of cell death in these patients. This may
limit possible therapeutic options.

Introduction
Severe sepsis, septic shock, and the resulting multiple organ
failure/dysfunction syndrome represent an ongoing challenge

in intensive care units [1-5]. With mortality ranging from 40%
to 70%, septic shock is the most common cause of death in
intensive care medicine [2,6].
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APACHE II: Acute Physiology and Chronic Health Evaluation II; CK-18: cytokeratin-18; ELISA: enzyme-linked immunosorbent assay; IL-6: interleukin-
6; ROC: receiver operator curve; sVCAM-1: soluble vascular cell adhesion molecule-1; SOFA: Sequential Organ Failure Assessment; sICAM-1: sol-
uble intercellular adhesion molecule-1.
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The pathogenesis of multiple organ failure/dysfunction syn-
drome in patients with severe sepsis is a multifactorial proc-
ess. Global tissue hypoxia due to an imbalance between
systemic oxygen delivery and peripheral oxygen demand plays
an important role. The resulting dysfunction and death of epi-
thelial cells is detrimental to patients' survival in sepsis [7-13].
There is increasing evidence that, in addition to cellular necro-
sis, the apoptotic mode of cell death in critically ill patients
plays a pivotal role in the pathogenesis of sepsis syndrome
[14]. The key mediators of apoptosis are caspases, leading to
the caspase-dependent pathway of apoptotic cell death. Cas-
pases are intracellular cysteine proteases that cleave various
substrates including structural proteins such as cytokeratins
[15]. In addition to caspase-dependent cellular apoptosis, a
caspase-independent pathway exists [16-20]. Despite the
absence of caspase-specific proteolytic activity, the dying
cells retain the main cytoplasmic features of classic caspase-
dependent apoptosis (ie, cell shrinkage, membrane blebbing,
phosphatidylserine externalization, and dissipation of the mito-
chondrial inner transmembrane potential). Furthermore, over-
lapping forms of apoptotic and necrotic modes of cell death
have been reported [21].

Cytokeratin 18 (CK-18) is a structural protein of the intermedi-
ate filament group present in most simple epithelial and paren-
chymal cells [22,23]. Induction of caspase-dependent
apoptosis leads to cleavage of CK-18 at various sites by cas-
pases 3, 6, 7, and 9 [24]. The resulting fragments of CK-18
are released into the plasma after plasma membrane disinte-
gration at later stages of apoptosis [25,26]. Fragments of CK-
18 are more specific for apoptotic cell death; in contrast, dur-
ing necrosis, only full-length CK-18 is released into the
plasma. Determination of the predominant mode of cell death
is facilitated by using a recently developed monoclonal anti-
body (M30) that recognizes caspase-cleaved CK-18 frag-
ments containing the CK-18 Asp 396 neoepitope without
detecting native or intact CK-18 [24,27] for assessing apop-
tosis, in combination with measuring total CK-18 as an indirect
marker for necrosis [28].

The aim of this study was to measure serum concentrations of
CK-18 neoepitope in relation to total CK-18, to detect the
leading mode of cell death in patients with severe sepsis, post-
operative patients after major abdominal surgery, and healthy
volunteers.

Materials and methods
The observational clinical study was approved by the local eth-
ics committee and was conducted in the surgical intensive
care units of the university hospitals of Heidelberg and Man-
nheim, Germany. All study and control patients or their legal
designees gave written informed consent. In total, 147
patients in three groups were enrolled in the study. The three
groups included 101 patients with severe sepsis (the septic
group), 28 patients after major abdominal surgery (the postop-

erative group), and 18 healthy volunteers (the volunteer group;
Table 1). The 101 patients were classified as having severe
sepsis based on the criteria of the International Sepsis Defini-
tions Conference [29]. Patients were eligible for enrollment
with an onset of sepsis syndrome of 24 hours or less. The ini-
tial blood draw was also performed within this period. In con-
trast, patients with an onset of sepsis syndrome of more than
24 hours were excluded from the study.

The management of patients with severe sepsis in the inten-
sive care unit included early goal-directed therapy (according
to Rivers and colleagues [30]), elimination of the septic focus,
and administration of broad-spectrum antibiotics [31,32].
Patients with central nervous system disorders (eg, traumatic
brain injury due to severe trauma, as indicated by a Glasgow
Coma Scale ≤14, according to Sequential Organ Failure
Assessment (SOFA) score), renal disorders (as indicated by a
serum-creatinine ≥1.2 mg/dl or 20.5 μmol/L, according to
SOFA score) as well as liver diseases (as indicated by a
serum-bilirubin ≥1.2 mg/dl or 20.5 μmol/L, according to SOFA
score) prior to the onset of sepsis were excluded from the
study. The second group included 28 patients undergoing
major abdominal surgery, with negative parameters for sys-
temic inflammatory response syndrome (Table 1). As a control
group, we chose 18 healthy young volunteers with no signs of
infection (Table 1). After enrollment of patients, data were
masked as to group status to avoid potential bias.

Blood samples from patients with severe sepsis were col-
lected after the diagnosis of sepsis, and 48 and 120 hours
later. Relevant baseline data (demographic data, primary site
of infection, outcome) and clinical data (systolic, diastolic, and
mean arterial pressure, central venous pressure, heart rate,
administration of norepinephrine, corticosteroids, fraction of
inspired oxygen, Horowitz index (oxygenation ratio), tempera-
ture) were collected. In the septic group, severity of illness was
estimated using the Acute Physiology and Chronic Health
Evaluation (APACHE) II score. Patients with sepsis were
reevaluated for survival 90 days after enrollment in the study.
This evaluation was performed using available hospital
records. In the case of the patient's discharge from hospital,
the family doctor was contacted. If necessary, we made con-
tact with the patient himself. Blood samples from the postop-
erative group were collected once immediately after surgery,
and from the volunteer group, once.

After blood collection, serum of all study participants was
immediately obtained by centrifugation, transferred into cryo-
tubes, and stored at -80°C until further processing. Serum
tests for creatinine, urea, bilirubin, pH, arterial oxygen partial
pressure, base excess, lactate, leukocytes, and C-reactive
protein were performed at the same time.

Measurement of cleaved and uncleaved soluble CK-18 (M65
antigen), also known as total CK-18, represented overall cell
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death due to both apoptosis and necrosis. For the quantitative
determination of total CK-18 in serum, we used the M65
ELISA kit (Peviva AB, Bromma, Sweden) according to the
manufacturer's instructions. The M65 ELISA uses two mono-
clonal antibodies (clones M5 and M6) specific for conven-
tional epitopes on CK-18, present on both intact/uncleaved
and cleaved CK-18. Serum samples react with solid phase-
catcher M6 antibody directed against CK-18 and horseradish
peroxidase-conjugated M5 antibody directed against a differ-
ent epitope on CK-18.

Measurement of the caspase-generated neoepitope of CK-18
(M30 antigen) represented cell death due specifically to apop-
tosis. For the quantitative determination of the caspase-gener-
ated neoepitope of CK-18, we used the M30-Apoptosense
ELISA kit (Peviva AB, Bromma, Sweden) according to the
manufacturer's instructions. This ELISA uses a monoclonal
antibody that recognizes an epitope on the 238–396 fragment
of CK-18 as catcher and a horseradish peroxidase-conjugated
M30 as detector. Serum concentrations of the antigens in
each sample were calculated from the accompanying calibra-

Table 1

Baseline data of 101 patients in the septic group, 28 patients in the postoperative group and 18 individuals in the volunteer group

Septic group

Demographic data

Age, years 65.9 ± 12.4
(range = 28 to 97; median = 68; interquartile range = 60 to 74)

Male sex 60 (59.4%)

Primary site of infection/septic focus

Lung 59 (58.4%)

Gastrointestinal tract 4 (4.0%)

Genitourinary tract 11 (10.9%)

Surgical site 7 (6.9%)

Other 11 (10.9%)

Unknown 9 (8.9%)

Outcome

Survivor 52 (51.5%)

Postoperative group

Demographic data

Age, years 62.3 ± 14.2
(range = 37 to 84; median = 64; interquartile range = 51.5 to 73)

Male sex 15 (53.6%)

Primary site of surgery

Pancreas 13 (46.4%)

Colon 5 (17.9%)

Liver 2 (7.1%)

Genitourinary 3 (10.7%)

Other abdominal 5 (17.9%)

Volunteer group

Demographic data

Age, years 34.5 ± 8.6

Male sex 10 (55.6%)

Data are presented by number (%) except for age, which is presented by mean ± standard deviation.
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tion curves [24]. Samples with high values outside the stand-
ard curve were diluted, yielding satisfying linearity.

Furthermore, different serum biomarkers were measured in
order to determine the ongoing inflammatory response (IL-6)
and cellular activation (soluble vascular cell adhesion mole-
cule-1 (sVCAM-1), soluble intercellular adhesion molecule-1
(sICAM-1)) in sepsis syndrome [33,34]. We used ELISA kits
to determine serum concentrations of Il-6 (R&D Systems, Min-
neapolis, MN, USA), sVCAM-1 (Bender MedSystems, Vienna,
Austria), and sICAM-1 (Bender MedSystems, Vienna, Austria).

All assays were performed in duplicate. The resulting study
data were entered into an electronic database (Microsoft®

Excel 2002, Unterschleißheim, Germany) and evaluated using
SPSS software (Statistical Product and Services Solutions,
version 16.0, SPSS Inc, Chicago, IL, USA).

Categorical data were summarized by means of absolute and
relative frequencies (counts and percentages). Quantitative
data were summarized using the number of observations,
mean and standard deviation, minimum, median with quartiles,
or differences of the quartiles and maximum.

Wherever appropriate, data were visualized using box-and-
whisker plots. The Kolmogorov-Smirnov test was applied to
check for normal distribution. Due to non-normally distributed
data, non-parametric methods for evaluation were used (chi-
squared test for categorical data, Mann-Whitney U test for
continuous data). Logistic regression analysis was performed
with suitable parameters to determine the prognostic value of
each parameter with regard to survival. Furthermore, a receiver
operating characteristic (ROC) curve was established with
suitable parameters, in order to create cut-off values to deter-
mine the prognostic value of each parameter with regard to
survival. Correlation analysis was performed calculating Pear-
son's correlation coefficient. A P < 0.05 was considered sta-
tistically significant. Concerning symbolism and higher orders
of significance: * P < 0.05: ** P < 0.01: *** P < 0.001.

Results
Age and sex of patients in the septic and postoperative groups
were comparable (Table 1). In the septic group, patients who
survived or died showed no significant differences concerning
their demographic data (data not shown). In contrast, healthy
volunteers were significantly younger compared with the sep-
tic and postoperative groups (Table 1).

The primary site of infection in the septic group was the respi-
ratory tract (59 patients, 58.4%), followed by the genitourinary
tract (11 patients, 10.9%), surgical site (7 patients, 6.9%), and
gastrointestinal tract (4 patients, 4.0%). In nine patients with
sepsis, the septic focus remained unknown (Table 1). A posi-
tive culture from the site of infection was obtained in 73% of
all septic patients. In these patients, cultures were found to be

Gram-negative in 53% and Gram-positive in 47%. Patients in
the postoperative group primarily underwent surgery of the
pancreas (46.4%), whereas surgery of the colon (17.9%), liver
(7.1%), and the genitourinary tract (10.7%) were less frequent
(Table 1). In the septic group, 52 of 101 patients (51.5%) sur-
vived (Table 1). No one in the postoperative or volunteer
groups died during the study.

Levels of IL-6 were significantly elevated in the septic and
postoperative groups compared with the volunteer group
(Table 2). Furthermore, IL-6 was the only inflammatory marker
that had significantly different levels between the postopera-
tive and volunteer groups. In the septic group, the level of IL-6
decreased significantly by 120 hours, but still remained signif-
icantly higher than the volunteer group (data not shown). The
level of sICAM-1 was significantly elevated at the time of diag-
nosis of sepsis compared with levels in the postoperative and
volunteer groups (Table 2), and it remained significantly ele-
vated at 48 and 120 hours. However, no significant changes
in sICAM-1 levels occurred within the first 120 hours in the
septic group (data not shown). Levels of sVCAM-1 did not dif-
fer in the three groups (Table 2).

Levels of total CK-18 and CK-18 fragments in the septic group
at baseline were significantly higher than in the postoperative
and volunteer groups (Figure 1 and Table 2). Levels of CK-18
fragments were comparable in the postoperative and volun-
teer groups, but levels of total CK-18 were significantly higher
in the postoperative group (Figure 1 and Table 2). The ratio of
CK-18 fragments and total CK-18 was significantly higher in
the volunteer group compared with the septic and postopera-
tive groups. In contrast, the ratio was not significantly different
in the septic and postoperative groups (Figure 1 and Table 2).
In the septic group, levels of CK-18 fragments and total CK-
18 did not change significantly by 120 hours (Figure 1).

In comparing subgroups of patients in the septic group who
did and did not survive, the APACHE II score was significantly
higher at the time of diagnosis of sepsis in patients who ulti-
mately died (median score, 30.5 in patients who died versus
26 in patients who survived; P = 0.003**). Logistic regression
analysis revealed a significant association between the initial
APACHE II score and survival. Concerning organ dysfunction,
both septic subgroups showed comparable reduction of pul-
monary function and comparable occurrence of acute renal
failure. In this context, creatinine and urea were increased but
did not differ significantly between the two subgroups.
Bilirubin as a marker of liver function was increased but did not
differ significantly between the two subgroups. Lactate was
significantly higher in the non-surviving subgroup (P =
0.009**), whereas the rest of the parameters of acid-base
metabolism were comparable. Both subgroups were compa-
rable concerning hemodynamic parameters (mean arterial
pressure, central venous pressure), but non-survivors showed
an increased heart rate and received more vasoactive medica-
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tion (norepinephrine) to maintain sufficient circulation. Both
subgroups received comparable amounts of corticosteroids
(data not shown).

Routine inflammatory markers (C-reactive protein, leukocytes)
were not significantly different between the two subgroups. In
contrast, maximum body temperature (P = 0.017*) was signif-
icantly higher in non-surviving patients (data not shown). Lev-
els of sICAM-1, sVCAM-1, and IL-6 were comparable
between the surviving and non-surviving subgroups at the time
of diagnosis of sepsis, but in the non-surviving subgroup at
later stages, levels were markedly (sICAM-1) or significantly
(IL-6/sVCAM-1) higher at 48 hours and 120 hours (Table 3) in
comparison to the surviving subgroup.

At the time of diagnosis of sepsis, levels of total CK-18 and
CK-18 fragments were significantly higher in the non-surviving
subgroup. The levels of CK-18 fragments remained signifi-
cantly higher at 48 hours and decreased to comparable values
at 120 hours. At 120 hours, levels of total CK-18 in non-sur-
viving patients were still higher but not statistically significantly
(P = 0.073). The ratio of CK-18 fragments to total CK-18 was
comparable between the two subgroups at each time (Table
3).

In patients with sepsis and preserved liver function (bilirubin <
1.2 mg/dL or 20.5 μmol/L, according to SOFA score), levels
of total CK-18 and CK-18 fragments were comparable
between the surviving and non-surviving subgroups at each

Table 2

Comparison of inflammatory marker levels and cytokeratin measurements in the volunteer, postoperative, and septic groups at 
baseline

Healthy (n = 18) Postoperative (n = 28) Sepsis (n = 101)

IL-6 (pg/ml) 0.0; 0.0 to 0.8 216.7; 48.8 to 360.5 160.5; 58.8 to 448.8

P values Healthy vs. Postoperative: P < 0.001***

Healthy vs. Sepsis: P < 0.001***

Postoperative vs. Sepsis: P = 0.604

sICAM-1 (ng/ml) 219.6; 195.2 to 285.1 213.7; 192.3 to 293.8 444.7; 330.3 to 665.5

P value Healthy vs. Postoperative: P = 0.819

Healthy vs. Sepsis: P < 0.001***

Postoperative vs. Sepsis: P < 0.001***

sVCAM-1 (ng/ml) 1524.7; 991.2 to 2038.0 1268.0; 1167.7 to 1550.8 1147.9; 883.5 to 2047.4

P value Healthy vs. Postoperative: P = 0.545

Healthy vs. Sepsis: P = 0.280

Postoperative vs. Sepsis: P = 0.450

Total CK-18 (U/l) 241.9; 216.9 to 285.3 558.7; 465.6 to 793.0 1643.8; 1096.5 to 2633.5

P value Healthy vs. Postoperative: P < 0.001***

Healthy vs. Sepsis: P < 0.001***

Postoperative vs. Sepsis: P < 0.001***

CK-18 fragments (U/l) 143.7; 134.4 to 168.1 116.0; 106.6 to 165.1 392.6; 258.4 to 654.5

P value Healthy vs. Postoperative: P = 0.250

Healthy vs. Sepsis: P < 0.001***

Postoperative vs. Sepsis: P < 0.001***

Ratio 0.58; 0.55 to 0.67 0.22; 0.18 to 0.25 0.24; 0.14 to 0.35

P value Healthy vs. Postoperative: P < 0.001***

Healthy vs. Sepsis: P < 0.001***

Postoperative vs. Sepsis: P = 0.507

Data are presented by median and interquartile range (Q1 to Q3).
CK = cytokeratin; sICAM = soluble intercellular adhesion molecule-1; sVCAM = soluble vascular cell adhesion molecule-1.
*** P < 0.001.
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time point (data not shown). Cytokeratin measurements in
patients with sepsis who had no preexisting hepatic dysfunc-
tion (serum bilirubin <1.2 mg/dL or 20.5 μmol/L, according to
SOFA score prior to the onset of sepsis syndrome) but sepsis-
induced hepatic dysfunction are shown in Figure 2 by survivor
and non-survivor status. Non-surviving patients with sepsis
and impaired hepatic function showed a considerable trend
toward increased levels of total CK-18 (Figure 2), whereby lev-
els of CK-18 fragments remained comparable (Figure 2).
When comparing cytokeratin measurements in patients with
sepsis and either impaired (bilirubin ≥1.2 mg/dL or 20.5 μmol/
L → liver-SOFA ≥1) or preserved (bilirubin < 1.2 mg/dL or
20.5 μmol/L → liver-SOFA = 0) liver function, Figure 3 shows
significantly increased levels of total CK-18 and CK-18 frag-
ments in septic patients with an impaired liver function, in com-
parison with patients with sepsis and preserved liver function.
Furthermore, there was a high correlation (r = 0.72, according
to Pearson's correlation analysis) in non-surviving patients with
severe sepsis between the levels of total CK-18 and the levels
of bilirubin 120 hours after the diagnosis of sepsis. In a com-
parable manner, levels of sICAM-1 were also highly correlated
(r = 0.74, according to Pearson's correlation analysis) with the
levels of bilirubin in the non-surviving subgroup, whereas levels
of CK-18 fragments, IL-6, and sVCAM-1 failed to show such a
correlation. In the surviving subgroup of patients with severe
sepsis, there was no correlation between bilirubin and either
CK-18 fragments or total CK-18 (data not shown).

In patients with severe sepsis and hepatic dysfunction, ROC
curve revealed a cut-off value for total CK-18 at the onset of
sepsis syndrome (Area under the curve = 0.78) of 1900 U/l for
early discrimination of survivors and non-survivors with a sen-
sitivity of 0.92 and a specificity of 0.60. In contrast, such a cut-
off value could not be calculated for isolated CK-18 fragments.

In addition, serum levels of lactate and the amount of required
vasoactive medication (norepinephrine) revealed a weak cor-
relation (0.2<r < 0.5, according to Pearson's correlation anal-
ysis) with the levels of either total CK-18 or CK-18 fragments
in the group of all severe septic patients, as well as in the dif-
ferent subgroups.

Discussion
Severe sepsis, septic shock, and related multiple organ dys-
function syndrome is still the most common cause of death in
intensive care medicine [1-6]. Many of the pathophysiologic
changes during sepsis are related to inflammation [35]. Not
surprisingly, different markers of systemic inflammation (eg,
sICAM-1, sVCAM-1, IL-6) are significantly elevated during
ongoing sepsis [34], whereas only IL-6 differed between
patients after major abdominal surgery and healthy volunteers.
This reflects generalized infection during sepsis, while patients
after major abdominal surgery experience only mild activation
of their inflammatory system [36].

Figure 1

Comparison of cytokeratin measurements in the volunteer, postopera-tive, and septic groups at baseline and at 48 and 120 hours in the sep-tic groupComparison of cytokeratin measurements in the volunteer, postopera-
tive, and septic groups at baseline and at 48 and 120 hours in the sep-
tic group. Concentrations were measured of total cytokeratin-18 (CK-
18) and CK-18 fragments (CK-18-F), and the ratio of CK-18-F to total 
CK-18 was calculated from the sera of healthy volunteers ('Healthy', n 
= 18, white box), postoperative patients after major abdominal surgery 
('Post-op', n = 28, light grey box), and patients with sepsis ('Sepsis', n 
= 101, dark grey box), at t0 (measured once for the volunteer group, 
immediately after surgery for the postoperative group, and at the time of 
diagnosis of sepsis for the sepsis group). In addition, for the septic 
group, the two other times of data collection are represented, t48 and 
t120 for 48 and 120 hours, respectively, after the diagnosis of sepsis. 
Data in box plots are given as median, 25th percentile, 75th percentile, 
and the 1.5 interquartile range. Outliers are shown in form of circles 
(1.5 to 3 interquartile ranges above 75th percentile or below 25th per-
centile) or rectangles (>3 interquartile ranges above 75th percentile or 
below 25th percentile). *** P < 0.001.
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As in many other diseases, it is still unclear whether necrosis
or apoptosis plays the predominant role in severe sepsis.
Although overlapping forms of the two modes of cell death can
be observed [21], determination of the prevalent mode of cell
death would be of great value because this may serve as an
early prognostic marker for outcome in sepsis syndrome. Fur-
thermore, newly developed therapeutic agents (eg, antiapop-
totic drugs such as caspase-inhibitors) may represent
potential therapeutic options in optimizing the unsatisfactory
outcome of patients with severe sepsis [37].

The necrotic mode of cell death is independent of ATP, leads
to uncontrolled release of cellular constituents, and is associ-

ated with a subsequent inflammatory response. Currently,
detection of necrotic cell death involves measuring intracellu-
lar components (eg, in the liver, alanine and aspartate ami-
notransferases; in the heart, creatine kinase and troponin T),
which are released into the serum during ongoing necrosis.
These markers are widely used in clinical practice. However,
the results of Bantel and colleagues [38] remind us that meas-
uring different modes of cell death may provide additional
information. In patients with chronic hepatitis C, levels of apop-
totic cell death were increased, despite normal levels of serum
aminotransferases, suggesting a non-critical stage of preexist-
ing liver disease. Increased levels of apoptosis were associ-
ated with significant liver damage on liver biopsy. Therefore, it

Table 3

Comparison of inflammatory marker levels and cytokeratin measurements in survivors and non-survivors in the septic group at 
baseline and at 48 and 120 hours

Survivor (n = 52) Non-survivor (n = 49) P value

IL-6 (pg/ml) t0 104.5; 34.0 to 430.0 249.4; 96.5 to 460.2 0.099

t48 21.0; 8.0 to 46.0 82.1; 37.4 to 188.5 0.001**

t120 17.2; 8.9 to 38.3 71.6; 15.7 to 107.1 0.01*

P value t0-t48-t120 < 0.001*** 0.005**

sICAM-1 (ng/ml) t0 447.5; 323.14 to 663.6 399.8; 327.9 to 655.4 0.841

t48 434.1; 308.6 to 613.6 683.2; 348.3 to 1003.7 0.067

t120 467.8; 320.4 to 593.0 630.2; 419.2 to 933.3 0.083

P value t0-t48-t120 0.432 0.829

sVCAM-1 (ng/ml) t0 1146.3; 911.3 to 1975.7 1227.5; 857.2 to 2242.5 0.837

t48 882.0; 569.6 to 1236.1 1275.1; 1040.0 to 2799.2 0.027*

t120 748.5; 639.1 to 1202.6 1685.5; 958.7 to 2201.2 0.021*

P value t0-t48-t120 0.097 0.505

Total CK-18 (U/l) t0 1581.9; 1030.0 to 2152.0 2006.5; 1169.9 to 4611.6 0.038*

t48 1579.5; 1359.8 to 2058.7 2007.1; 1239.0 to 4488.8 0.212

t120 1829.6; 1581.9 to 2076.9 2533.0; 1675.2 to 3535.5 0.073

P value t0-t48-t120 0.396 0.814

CK-18 fragments (U/l) t0 357.7; 248.8 to 554.8 475.4; 301.5 to 1028.2 0.035*

t48 355.4; 229.0 to 455.46 603.6; 410.7 to 973.5 0.007**

t120 324.6; 283.7 to 499.9 508.5; 314.8 to 881.3 0.108

P value t0-t48-t120 0.717 0.939

Ratio t0 0.3; 0.16 to 0.33 0.2; 0.12 to 0.36 0.436

t48 0.2; 0.15 to 0.30 0.3; 0.15 to 0.35 0.651

t120 0.2; 0.15 to 0.27 0.3; 0.15 to 0.36 0.534

P value t0-t48-t120 0.405 0.939

Data are presented by median and interquartile range (Q1 to Q3).
CK = cytokeratin; sICAM = soluble intercellular adhesion molecule-1; sVCAM = soluble vascular cell adhesion molecule-1.
* P < 0.05; ** P < 0.01; *** P < 0.001.
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was concluded that the ensuing responses of cell repair,
inflammation, regeneration, and fibrosis may all be triggered by
apoptosis [39-42].

Apoptosis represents a strictly ATP-dependent, controlled
form of cell death without inducing an inflammatory response
[43,44]. As expected, this mode of cell death is more frequent
in healthy people than in patients after trauma or surgery, or
with sepsis. We observed a higher ratio of apoptosis to necro-
sis in healthy volunteers.

Key mediators of the apoptotic mode of cell death are cas-
pases, intracellular proteases that cleave after aspartate resi-
dues. The resulting protein fragments represent new epitopes
for which antibodies can be developed [25]. Caspases are
activated via two different signaling routes [45,46]. The intrin-
sic pathway is related to the mitochondrial release of cyto-
chrome C, whereas the extrinsic pathway is induced by death-
mediating receptors [47,48]. Once caspases are activated,
they cleave intracellular proteins, some of which are cell-type
specific. CK-18, an intermediate filament protein, represents
about 5% of the total protein content in most simple epithelial
and parenchymal cells [22,23]. It is abundant in hepatocytes
but is also present in the kidney, gut, colon, and lung. Apopto-
sis leads to early cleavage of CK-18 in position 238VEVD-A
via the caspases 3, 6, and 7 and in position 396DALD-S medi-
ated by the caspases 3, 7, and 9 [24,49]. The 396DALD-S
cleavage generates a new epitope.

The CK-18 fragments can be detected by a newly developed
M30 antibody. Increased levels of CK-18 fragments using this
noninvasive parameter for evaluating apoptosis have already
been described in patients with acute and chronic liver dis-
eases [38,50-53], graft-versus-host disease [54], infectious
gastroenteritis [52], and carcinoma [28]. Reports of increased
apoptotic turnover in gastrointestinal epithelial cells of patients
with sepsis [10,11] and a possible detrimental influence on
survival [8] provided the first indication of an increased signif-
icance of apoptosis in the pathophysiology of sepsis. Sepsis
was suspected of accelerating physiologic apoptotic turnover
of cell types with a preexisting high rate of apoptosis, such as
the gastrointestinal epithelium [55]. As a consequence of
accelerated loss of gastrointestinal epithelial cells, the intesti-
nal wall losses its barrier function with subsequent leakage of
endotoxin and bacteria into the systemic circulation [56,57].

Increased levels of CK-18 fragments indicating elevated apop-
totic turnover in critically ill patients was first described by
Roth and colleagues [14]. Our observations agree with those
results, which showed increased levels of CK-18 fragments in
patients with sepsis compared with healthy volunteers and
patients after trauma. In contrast, levels of CK-18 fragments in
healthy volunteers and patients after trauma were comparable.
These results can also be supported by our investigation,
showing a comparable amount of CK-18 fragments in postop-

Figure 2

Comparison of cytokeratin measurements in survivors and non-survi-vors with impaired liver function in the septic group at baseline and at 48 and 120 hoursComparison of cytokeratin measurements in survivors and non-survi-
vors with impaired liver function in the septic group at baseline and at 
48 and 120 hours. Concentrations were measured of total cytokeratin-
18 (CK-18) and CK-18 fragments (CK-18-F), and the ratio of CK-18-F 
to total CK-18 was calculated from the sera of survivors (white box) and 
non-survivors (dark grey box) of the septic group with impaired liver 
function (bilirubin ≥1.2 mg/dL or 20.5 μmol/L according to Sequential 
Organ Failure Assessment (SOFA) score) at the time of diagnosis of 
sepsis (t0), and 48 hours (t48) and 120 hours (t120) later. Data in box 
plots are given as median, 25th percentile, 75th percentile and the 1.5 
interquartile range. Outliers are shown in form of circles (1.5 to 3 inter-
quartile ranges above 75th percentile or below 25th percentile) or rec-
tangles (>3 interquartile ranges above 75th percentile or below 25th 

percentile).
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erative patients (ie, after surgical trauma) and healthy volun-
teers. Different traumatic effects (eg, surgical trauma versus
bone fractures or organ rupture) seem to lead to increased
necrotic cell death. The necrotic mode of cell death can be
assessed indirectly by measuring cleaved CK-18 and
uncleaved CK-18 (total CK-18) by using the M65 ELISA. In
patients after surgical trauma we showed increased levels of
total CK-18, and in agreement with Roth and colleagues no
influence on apoptosis at early stages after trauma [14].

In addition to increased apoptotic turnover, patients with sep-
sis also showed significantly increased necrotic cell death as
indirectly assessed by the M65 ELISA. In particular, non-survi-
vors with impaired hepatic function showed a considerable
trend toward higher levels of total CK-18. Furthermore, the lev-
els of total CK-18 were highly correlated with the levels of
bilirubin. Therefore, we assessed the ability of total CK-18 and
CK-18 fragments to predict mortality in patients with severe
sepsis, especially in those with an impaired hepatic function,
because reliable prognostic parameters are still rare. Weigand
and colleagues already described that ICAM-1 may exhibit the
ability to predict mortality in septic shock, whereas endotoxin,
IL-6, and other different circulating adhesion molecules (e.g.
soluble L-selectin, soluble P-selectin, soluble E-selectin) failed
to be of prognostic value [34]. Our investigation now demon-
strates for the first time, that the measurement of caspase-
cleaved and uncleaved CK-18 (total CK-18) appears to be an
early predictor for survival in patients with severe sepsis and
hepatic dysfunction.

Indeed, whether the presence of liver dysfunction is com-
pletely responsible for the observed differences of total CK-
18/CK-18 fragments between survivors and non-survivors
remains unclear. As described earlier, this might be due to the
strict ATP-dependence of apoptosis, whereas necrosis also
occurs without ATP [43]. In a mouse model of acetaminophen-
induced hepatocellular dysfunction, Kon and colleagues dem-
onstrated that necrosis was reduced when ATP depletion was
prevented, whereas caspase-dependent apoptosis became
more frequent [58]. Furthermore, ATP-depletion-induced
necrosis as a result of mitochondrial dysfunction is consistent
with high lactate levels in critically ill patients, especially those
with acute liver failure, and is associated with a poor outcome
[59].

Therefore, our observations are in agreement with the investi-
gation by Volkmann and colleagues who showed that necrosis
and not apoptosis seems to be the more frequent mode of cell
death in critically ill patients with acute liver failure [53]. Fur-
thermore, they showed an association between increased cas-
pase activation and improved outcome in patients with acute
liver failure. Therefore, it was concluded that caspases are not
only key mediators of apoptotic cell death, but they also influ-
ence processes related to cell differentiation and proliferation.
Because of these possible effects related to cell regeneration,

Figure 3

Comparison of cytokeratin measurements in patients with impaired and preserved liver function in the septic group at baseline and at 48 and 120 hoursComparison of cytokeratin measurements in patients with impaired and 
preserved liver function in the septic group at baseline and at 48 and 
120 hours. Concentrations were measured of total cytokeratin-18 (CK-
18) and CK-18 fragments (CK-18-F), and the ratio of CK-18-F to total 
CK-18 was calculated from the sera of patients with sepsis and 
impaired liver function ('Liver-Sequential Organ Failure Assessment 
(SOFA) ≥1', bilirubin ≥1.2 mg/dL or 20.5 μmol/L according to SOFA 
score, dark grey box) compared with patients with sepsis and pre-
served liver function ('Liver-SOFA = 0', bilirubin <1.2 mg/dL or 20.5 
μmol/L according to SOFA score, white box) at the time of diagnosis of 
sepsis (t0), and 48 hours (t48) and 120 hours (t120) later. Data in box 
plots are given as median, 25th percentile, 75th percentile, and the 1.5 
interquartile range. Outliers are shown in form of circles (1.5 to 3 inter-
quartile ranges above 75th percentile or below 25th percentile) or rec-
tangles (>3 interquartile ranges above 75th percentile or below 25th 

percentile). * P < 0.05: ** P < 0.01.
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the purpose of antiapoptotic drugs (eg, caspase-inhibitors) in
critically ill patients has to be critically questioned, especially
in the early phase of ongoing sepsis with increased apoptotic
turnover [53]. All the more, it remains very important to accom-
plish optimal early goal-directed therapy, as promoted by Riv-
ers and colleagues [30]. To optimize central venous pressure,
mean arterial pressure, and central venous oxygen saturation,
patients with sepsis must be treated aggressively with volume
expansion (eg, crystalloids, colloids, and red blood cells) and
with catecholaminergic regimens. The whole purpose of this
strategy is to prevent the ATP-independent necrotic mode of
cell death in critically ill patients with sepsis by achieving a bal-
ance between systemic oxygen delivery and oxygen demand.

Conclusion
In summary, we have demonstrated that in healthy volunteers,
cellular turnover occurred primarily by the apoptotic mode of
cell death. Postoperative patients after major abdominal sur-
gery showed comparable levels of apoptotic activity; in addi-
tion, the necrotic mode of cell death was markedly increased
due to surgical tissue injury. In contrast, patients with severe
sepsis showed increased levels of markers for both apoptotic
and necrotic modes of cell death. The impact of these obser-
vations with regard to possible therapeutic options (such as
caspase inhibitors) has to be critically questioned, because
the loss of parenchymal cells due to necrosis may be the lead-
ing mode of cell death, especially in non-surviving patients with
sepsis-induced hepatic dysfunction. In these patients, the
measurement of caspase-cleaved and uncleaved CK-18
appears to be an early predictor for survival.
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