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Introduction

Morphea (localized scleroderma) is a rare cutaneous 
disease characterized by two consecutive, inflammato-
ry and sclerotic phases. Additionally, after some time, 
many patients show spontaneous skin softening, clini-
cally manifested as atrophy with depigmentation [1, 2]. 
Although skin hardening is the prominent clinical symp-
tom (which is at the same time the reason for disease 
classification as “scleroderma”), the clinical picture as 
well as immunologic abnormalities differ from the ones 
observed in systemic scleroderma [1–8]. Unfortunately, 

the disorder being rare, clinically diversified and poten-
tially spontaneously reversible leads to the fact that its 
pathogenesis remains unknown, leaving no undoubtedly 
proven successful therapy [9, 10].

There are three known isoforms of transforming 
growth factor-β (TGF-β), i.e. TGF-β1, TGF-β2 and TGF-β3, 
all synthesized as inactive pro-peptides. The cytokine is 
multi-functional, yet it is believed to be the leading profi-
brotic factor in sclerotic disorders [11–13]. It interacts with 
extracellular matrix components, including fibrillin-1. In-
terestingly, a defective fibrillin-1 coding gene (FBN1) is the 
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Abst rac t
Introduction: Morphea (localized scleroderma) is a rare cutaneous disease characterized by skin fibrosis of unknown 
pathogenesis. Transforming growth factor-β (TGF-β) is a potent profibrotic factor. The role of TGF-β in morphea 
remains unclear. 
Aim: The goal of this study was to estimate the expression level of TGF-β1 in skin and peripheral blood mononuclear 
cells as well as the plasma levels of TGF-β1 in plaque morphea (MEP).
Material and methods: The study involved 20 MEP patients. Three control groups were involved: 1 – plasma:  
36 healthy volunteers; 2 – PBMC: 47 healthy volunteers; 3 – skin biopsies: 13 samples collected during mastectomy 
(breast cancer was not skin involved). The analysis of TGF-β1 plasma levels was performed with the use an adequate 
ELISA kit, while real-time polymerase chain reaction was employed for the expression of TGF-β1 in peripheral blood 
mononuclear cells (PBMC) and skin.
Results: In our study we have not detected differences in TGF-β 1 expression in PBMC, skin, nor in plasma levels of 
TGF-β1 between MEP patients and healthy controls, regardless of disease activity and its duration.
Conclusions: The results of our study contradict the claim of the substantial role of TGF-β1 in the most common 
morphea subtype – MEP.
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characteristic of the SSc – Tsk1/+ murine model, while 
a mutation of this gene has been found in a group of 
native Americans, in which the risk of developing SSc is 
higher [14]. Almost 30% of morphea patients show the 
presence of anti-fibrillin-1 antibodies [15]. The activation 
of TGF-β is mediated by thrombospondin, plasmin, integ-
rins and THY-1 (CD90), as well as matrix metalloprotease 
9. Not only is TGF-β believed to initiate the production 
of extracellular matrix components (including collagen, 
fibronectin and proteoglycans) but also it inhibits their 
degradation due to interactions with matrix metallopro-
teinases and stimulation of synthesis of their inhibitors 
[12, 16, 17]. It has been shown that TGF-β increases fi-
broblast susceptibility for apoptosis [18]. There are other, 
numerous in vitro and in vivo studies acknowledging the 
role of TGF-β in fibrotic diseases. Indirectly, the role of 
TGF-β in morphea may be underlined by a case study 
of a patient in whom tyrosine kinase blocking (through 
which TGF-β mediates a Smad-independent intracellular 
signal) resulted in an improvement of the clinical con-
dition [19]. Yet, the role of TGF-β in morphea remains 
unclear, while the results of scientific studies do vary 
greatly.

Aim

The goal of this study was to estimate the expression 
level of TGFB1 in skin and peripheral blood mononuclear 
cells (PBMC) as well as the plasma levels of TGF-β1 in 
plaque morphea (MEP).

Material and methods

Material

The study involved 20 MEP patients (10 women and 
10 men). The mean age was 43 years, minimum 16, max-
imum 81, standard deviation (SD) = 19. The mean dis-
ease duration was 3.4 years (minimum 1, maximum 20, 
SD = 4). All patients were diagnosed both clinically and 
histopathologically. Whole blood samples were acquired 
from all patients, while 13 of them additionally were 
the source of skin biopsies. Three control groups were 
involved: 1 – plasma: 36 healthy volunteers (29 women,  

7 men), mean age was 34 years, minimum 20, maximum 
57, SD = 9; 2 – PBMC: 47 healthy volunteers (35 women, 
12 men), mean age was 33, minimum 20, maximum 57, 
SD = 9; 3 – skin biopsies: 13 samples collected during 
mastectomy. The neoplasms were not skin related. Mean 
age was 52 years, minimum 30, maximum 85, SD = 17. 
The study was approved by a local bioethical commit-
tee. All patients gave written consent. EDTA-collected 
whole blood samples (5 ml) were spun in ficoll gradient 
(Ficoll-Histopaque 1.077 g/cm3, Sigma Diagnostics, Inc. 
St. Louis, USA). Plasma samples were stored at –80°C. 
Upon collection, skin samples were immediately frozen 
in liquid nitrogen and stored at –80°C.

Methods

Evaluation of activity of the disease

A patient was qualified to the active process group, 
if within recent 6 months there had been an appearance 
of a new lesion, spread of a previously existing one or 
a presence of erythematous margins [20, 21].

ELISA

The assessment of TGF-β1 protein plasma level was 
done with the use of a commercially available kit accord-
ing to the manufacturer’s instructions (R&D System, Min-
neapolis, USA).

�Real-time polymerase chain reaction assessment 
of transforming growth factor-β1 expression in 
peripheral blood mononuclear cells

Whole RNA samples were isolated from PBMC accord-
ing to Chomczynski and Sacchi protocol [22]. Genomic 
DNA from 1 µg RNA samples was removed with the use 
of a recombined DNase I (Ambion, USA). Following re-
verse transcription (Roche Applied Science), cDNA sam-
ples were analyzed with the use of real-time PCR in rel-
ative analysis mode with standard curves. The analysis 
was performed with the use of Light Cycler 2.0 thermocy-
cler (Roche Diagnostics GmbH, Germany) and a dedicat-
ed commercial SYBR Green kit (Roche Applied Science). 

The amplified cDNA fragment was 81 bp long. The se-
quence covered fragments of exons 4 and 5 of the TGF-β 

Table 1. Primers used in this study

Name 5’-3’sequence Amplicon length [bp] References

GAPDH-F CTGCACCACCAACTGCTTAG
105

Ensembl: ENST00000229239  
Glyceraldehyde-3-phosphate dehydrogenase [23]

GAPDH-R TTCTGGGTGGCAGTGATG

TGFB1-F
GTGACAGCAGGGATAACA-

CACTG
81

Ensembl: ENST00000221930  
Transforming growth factor, beta1  
http://www.rtprimerdb.org/assay_report.php?as-
say_id=1005 [24]TGFB1-R CATGAATGGTGGCCAGGTC
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1 gene, spanning a 139 bp long intron, which due to short 
elongation time, minimized the chances of genomic DNA 
amplification. All RNA samples were subjected to no-RT 
PCR reactions for genomic DNA contamination analysis. 
PCR primer sequences, presented in Table 1, were acquired 
from other studies [23, 24]. The quantitative results are 
expressed in TGFB1 copy number for one million reference 
gene copies. Glyceraldehyde 3-phosphate dehydrogenase 
gene (GAPDH) was chosen as a reference. The choice of 
this particular gene had been suggested in literature [25].

�Real-time polymerase chain reaction assessment  
of TGFB1 expression in skin

Skin samples stored at –80°C were rotor-stator ho-
mogenized in TriPure reagent (Roche Applied Science). 
Due to the high level of impurities, phenol-chloroform 
extraction was doubled and separated with successive 
isopropanol, 75% ethanol washings and the removal of 
genomic DNA. The remaining steps of the procedure were 
the same as for PBMC samples. 

Statistical analysis

Arithmetical means and SD values were calculated 
for age and disease duration. Additionally, the analysis of 
other variables included median, as well as minimum and 
maximum values due to lack of normal distribution. The 

statistical significance of differences was calculated with 
the use of the two independent Mann-Whitney-Wilcoxon 
test, while correlation analyses were performed with the 
Spearman’s rank approach. Analyses were considered 
significant below p = 0.05 value.

Results

The median expression level values of TGFB1 in PBMC 
and skin as well as plasma TGF-β1 levels are presented in 
Table 2. No statistically significant differences have been 
found for these variables between the groups of MEP and 
controls.

None of the analyzed variables (expression of TGFB1 
in PBMC, plasma TGF-β1 level and expression of TGFB1 in 
skin) correlated with the disease duration. Ten MEP pa-
tients (50%) were assigned to the group with the active 
process. There were no statistically significant differenc-
es between active and non-active process groups with 
respect to the three aforementioned variables (Table 3).

Discussion

Although TGF-β is thought to be the main profibrotic 
cytokine, its possible contribution to the pathogenesis 
of morphea remains a matter of debate as the results of 

Table 2. Expression of TGFB1 in PBMC, skin and plasma TGF-β1 level

Variable
MEP Control groups Value 

of pMedian Minimum Maximum Median Minimum Maximum

Expression of TGFβ1 in PBMC 
(per million GAPDH copies)

n = 20 n = 47
0.9

218674 136538 574074 217453 108746 513292

Plasma TGF-β1 level [pg/ml]
n = 20 n = 36

0.4
159 32 1131 180 40 730

Expression of TGFβ1 in skin 
(per million GAPDH copies)

n = 13 n = 13
0.8

29503 10067 77760 32090 19469 83284

Table 3. Expression of TGFB1 in PBMC, skin and plasma TGF-β1 level comparing the active and non-active process 
groups

Variable
MEP active process MEP non-active Value 

of pMedian Minimum Maximum Median Minimum Maximum

Expression of TGFβ1 in 
PBMC (per million GAPDH 
copies)

n = 10 n = 10
0.3

231408 139216 574074 218674 136538 276142

Plasma TGF-β1 level [pg/ml]
n = 10 n = 10

0.05
250 33 1131 70 32 466

Expression of TGF-β1 in skin 
(per million GAPDH copies)

n = 8 n = 5
0.5

31906 23431 62500 21504 10067 77760
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scientific studies concerning the subject contradict each 
other. Higley et al. detected elevated TGF-β1 levels in 
skin of morphea patients compared to healthy controls. 
Elevated TGF-β1 serum levels were detected in 8 out of  
15 morphea patients (53%) compared to 2 out of 31 he- 
althy controls (7%) [26]. Similarly, elevated TGF-β in mor-
phea patients was also detected by Uziel et al. and Lip-
ko-Godlewska [21, 27]. On the other hand, Querfeld et al. 
found up-regulated TGFβ1, β2 and β3 mRNA production 
only during the inflammatory phase of morphea, but not 
in the latter sclerotic one. These results were also sup-
ported by immunohistochemical analysis, yet the study 
involved only 2 patients with morphea in its inflamma-
tory phase and only 1 in the sclerotic phase [28]. Farell  
et al. presented the results of their study where they had 
found increased intensities of anti-TGF-β1, anti-TGF-β2, 
but not anti-TGFβ3 antibody staining in the upper and 
middle layers of the dermis of 2 morphea patients com-
pared to healthy skin of labia [29]. Kawakami et al. found 
that skin of deep morphea is more immunoreactive to 
anti-TGF-β3 [30]. El-Mofty et al. claimed that a group 
of 21 morphea patients treated with UVA photothera-
py showed a statistically significant down-regulation 
of TGFB1 expression compared to the levels detect-
ed before the treatment. What is more, the change in 
TGFB1 expression correlated with the effectiveness of 
the UVA treatment [31]. This study, however, should be 
approached with caution as the RNA was isolated from 
paraffin-embedded skin. Such procedure may cause RNA 
degradation, resulting in a substantially lowered PCR 
sensitivity [32, 33]. Additionally, the quantitative assess-
ment technique presented in this study is less precise 
than relative real-time PCR analysis.

In opposition to the aforementioned results, Re-
strepo et al. did not find differences in anti-TGF-β1 or in 
anti-TGF-β2 immunohistochemical staining between 10 
linear morphea patients and 2 healthy individuals [34]. 
Concordantly, Antiga et al. showed even a decrease in 
TGF-β+ cells in morphea skin compared to healthy con-
trols and a decreased level of this protein in the studied 
sera [35]. On the other hand, Kubo et al. assessed 5 mor-
phea skin biopsies (2 – MEP, 1 – generalized morphea,  
2 – linear morphea) using in situ hybridization and found 
elevated expression levels of TGF-β type I and II recep-
tors, predominantly in fibroblasts of the dermis, which 
was further supported by immunohistochemical staining 
[36]. In our study we have not detected differences in 
TGFB1 expression in PBMC, skin, or in plasma levels of 
TGF-β1 between MEP patients and healthy controls.

The reason for such incomparable results of these 
studies may be a significant diversity of the disease itself. 
Some of the authors, interestingly, did not include the 
relevant subtype of morphea, which might be of some 
importance regarding their results. On top of that, many 
of these studies, usually the older ones, involved only 

a few samples, which significantly decreases their cred-
ibility [26, 28, 29]. However, many authors underlined 
that TGF-β could play a significant role especially during 
the initial, inflammatory phase [10–12, 26], thus the mo-
ment of biopsy acquisition might have had an impact 
on the results. Yet, we have not observed any correlation 
between TGFB1 in skin, PBMC or plasma TGF-β1 levels 
and disease duration, while it is important to note that 
45% of our group suffered from morphea for less than 
a year, and the following 25% – less than 2 years. Similar 
conclusions were suggested by Restrepo et al. [34]. What 
is more, regardless of the disease duration, we have not 
detected relevant differences between active and non-ac-
tive morphea patients. Antiga et al. indicate a potential 
role of T regulatory lymphocytes in the autoimmunization 
process in morphea. These lymphocytes are a significant 
source of TGF-β and their activity results in the phenom-
enon of tolerance. The decrease in their numbers or their 
impaired activity may lead to the induction of autoimmu-
nization. During their biopsy studies, Antiga et al. found 
a lowered number of these cells, along with a decreased 
TGF-β1 levels in sera as well as fewer TGF-β+ cells in skin 
of morphea patients compared to psoriatic patients and 
healthy controls [35].

While discussing these results, a failure of a clinical 
study involving a CAT-125 monoclonal anti-TGF-β1 anti-
body therapy in SSc is worth noting. The study not only 
did not confirm the effectiveness of this drug, but also 
the side effects were more frequent, including 3 deaths 
(caused by disease complications) compared to the pla-
cebo group (no patient died). The most frequent side 
effect, leading to the elimination of patients from the 
clinical phase, was a progression of skin involvement. 
However, there were no statistically significant differ-
ences between the studied groups assessed with the 
use of the modified Rodnan skin thickness score during 
all study stages. All groups showed improvement that 
was correlated with disease duration. At the same time, 
elevated TGF-β1 expression was found in patients be-
fore treatment initiation and tended to remain that way 
during the treatment. Finally, authors postulated the use 
of TGF-β pathways blocking agents instead [37]. Imatinib 
is a tyrosine kinase inhibitor, registered as an anti-cancer 
(preferably as anti-lymphoproliferative neoplasms) drug. 
The kinases in question are a part of a Smad-indepen-
dent pathway induced by TGF-β [38]. There were two clin-
ical studies involving Imatinib in SSc. One of them was 
prematurely ceased due to side effects [39]. The other 
resulted in no improvement assessed with the modified 
Rodnan skin thickness score and diffusion capacity for 
carbon monoxide after 6 months of treatment [40]. To 
date, the effectiveness of direct TGF-β blocking or any 
inhibition of its signaling pathways have not been con-
firmed, yet there has been a report on a morphea patient 
clinically responding well to Imatinib [19].
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Conclusions

Our study was directed to the assessment of the in-
fluence of TGF-β1 in the pathogenesis of MEP. The results 
have not shown significant differences in TGFB1 gene ex-
pression in PBMC and skin, as well as in plasma TGF-β1 
levels between MEP patients and healthy controls, dis-
ease activity status or significant correlation with the 
disease duration. We are aware however of certain lim-
itations of our study. It was only directed towards TGF-β1, 
leaving TGF-β2, TGF-β3 and their receptors without anal-
ysis. Additionally, the choice of the GAPDH as a reference 
gene for fibrotic skin assessment remains to be analyzed. 
The lack of convincing evidence concerning this and oth-
er possible reference genes for fibrotic skin is a problem. 
Generally speaking though, the results of our study con-
tradict the claim of the substantial role of TGF-β1 in the 
most common morphea subtype – MEP, which was also 
the conclusion of the study by Restrepo et al. [34] and 
indirectly supported by the results of anti-TGF-β clinical 
studies in SSc [37, 39, 40].
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