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Purpose: Evaluating mobility aids in naturalistic conditions across many days is
challenging owing to the sheer amount of data and hard-to-control environments. For
a wearable video camera-based collision warning device, we present the methodology
for acquisition, reduction, review, and coding of video data for quantitative analyses of
mobility outcomes in blind and visually impaired participants.

Methods: Scene videos along with collision detection information were obtained from
a chest-mounted collision warning device during daily use of the device. The recorded
data were analyzed after use. Collision risk events flagged by the device were manually
reviewed and coded using a detailed annotation protocol by two independent masked
reviewers. Data reduction was achieved by predicting agreements between reviewers
based on a machine learning algorithm. Thus, only those events for which disagree-
ments were predicted would be reviewed by the second reviewer. Finally, the ultimate
disagreements were resolved via consensus, and mobility-related outcome measures
such as percentage of body contacts were obtained.

Results: There were 38 hours of device use from 10 participants that were reviewed by
both reviewers, with an agreement level of 0.66 for body contacts. The machine learn-
ing algorithm trained on 2714 events correctly predicted 90.5% of disagreements. For
another 1943 events, the trained model successfully predicted 82% of disagreements,
resulting in 81% data reduction.

Conclusions: The feasibility of mobility aid evaluation based on a large volume of
naturalistic data is demonstrated.Machine learning–baseddisagreementprediction can
lead to data reduction.

Translational Relevance: These methods provide a template for determining the real-
world benefit of a mobility aid.

Introduction

Vision impairments have been associated with
overall decreased mobility and with an increased risk
of collisions and falls.1–5 Mobility-related deficits
reported in the literature are predominantly either
self-reported via questionnaires and surveys,6,7 or
observed in studies in controlled environments featur-
ing mobility courses,1 including device/intervention

evaluation studies.8–10 Only certain aspects of mobil-
ity can be measured in controlled environments;
for example, contacts with obstacles,8,11 walking
speed,9 object recognition distance,12 or street-crossing
performance,13 among others. Such studies have a
limitation; it is unknown whether mobility deficits
associated with visual impairments that are self-
reported or observed in constrained, artificial environ-
ments accurately represent the mobility challenges
during daily activities in a natural environment,
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including home, work, outdoors, stores, and other
environments.

Some naturalistic walking studies indeed measured
real-world mobility in people with visual impair-
ments.14–16 However, those studies only monitored
mobility at a high level via measures such as step
counts and/or number of serious falls over a period
of time. These studies primarily relied on motion
sensors (accelerometers and gyroscopes) and/or GPS
sensors to obtain objective mobility data such as step
counts14 and the number of trips made away from
home.17 Motion sensors in some studies also indicated
whether there was a fall experienced by the users.18
Falls can be somewhat easily detected because sensor
signals during normal walking can be distinguished
from those associated with the fall events. However, fall
events are rare and therefore data related to falls are
relatively difficult to obtain and require recording for
very long periods of time. Usually, motion sensors used
for fall detection cannot reliably detect situations where
visually impaired users bump into obstacles while
walking. Moreover, the nature of the hazard and other
relevant factors (environmental conditions during the
walk) are not captured by these sensors. Wearable
cameras provide an opportunity to obtain rich infor-
mation about mobility-related challenges, such as colli-
sions with obstacles, along with a more detailed
description of the operating environment that can be
helpful in providing a more realistic assessment of
mobility.

We had previously developed a video camera-based
wearable collision warning device as a mobility aid
for blind and visually impaired individuals.11,19 We
are conducting a home use trial of the device where
the study participants wear the device during their
daily activities over multiple weeks, both indoors and
outdoors. With this device, we can record video data
during device use to provide information about the
naturalistic mobility of the users in unconstrained
environments. This study is the first we know of
that is attempting to investigate collision incidents in
naturalistic walking using video cameras. One of the
challenges is the sheer volume of video data that are
collected and need to be parsed to extract relevant
mobility-related information. Currently, there are no
known established methods for doing this type of
analysis for walking mobility.

Even though there are no established methods
for obtaining quantifiable outcomes from naturalistic
walking video data in the field of walking mobility,
we can borrow some concepts from naturalistic driving
research, where driving behavior related outcomes have
been obtained from the video data captured by in-car
cameras and sensors in the participants’ cars.20

Our goal is to establish methods for obtaining
mobility-related data from naturalistic walking videos
captured by a wearable camera, specifically deter-
mining the contacts with surrounding objects and
categorization of the objects as collision hazards.
Such quantitative mobility outcome measures can
be recorded by experimenters observing participant’s
mobility along a predefined indoor or outdoor route
in a laboratory study, but that is not possible for home
use studies. An intensive manual review is required for
annotating the naturalistic videos. Typically, it will take
much longer to review and extract information from
a video to annotate the details and categorize each
mobility event than the actual length of the video.
Therefore, our aim is to develop an accurate, objec-
tive, and feasible scheme for review and analysis of the
naturalistic walking video data.

The objectivity of the outcomemeasures needs to be
maintained by using multiple independent reviewers,
given that there is an element of subjectivity in manual
video review. Accuracy refers to the ability to obtain
specific mobility-related information unambiguously
from the video data, such as body contacts with obsta-
cles. Feasibility is an important consideration because
a review of all video data may be practically infeasi-
ble, and methods for efficient data reduction have to
be devised without affecting the overall accuracy of the
outcomes.

This article describes the data acquisition scheme,
the bases for data review and annotation, along
with the formal definitions of each event annotation
category or item, and a novel approach for data reduc-
tion using machine learning to predict disagreement
between the independent reviewers, using the previ-
ously known review patterns.

Methods

Naturalistic Walking Data Acquisition

Data acquisition was conducted in the context of
a double-masked, randomized controlled clinical trial
(NCT03057496) of a wearable video camera based
collision warning device that we had previously devel-
oped for blind and visually impaired individuals.21 The
study followed the tenets of theDeclaration of Helsinki
and informed consent was obtained from all the study
participants. The protocol was approved by the institu-
tional review board at the Massachusetts Eye and Ear
Infirmary and the U.S. Army Medical Research and
Materiel Command, Office of Research Protections,
Human Research Protection Office.
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Data reported in this article are from clinical trial
participants with either total blindness or ultralow
vision who were all independent travelers and used a
long cane or guide dog as their habitual mobility aid.
The collision warning device was used in conjunction
with their habitual mobility aid. In our overall study
sample of 33 participants for the clinical trial, 28 partic-
ipants reported used a long cane as their primary habit-
ual mobility aid, three participants reported using a
guide dog, and two participants indicated that they
used both a long cane and a guide dog. The data
reported for this manuscript were randomly sampled
from 10 of the 33 participants, including nine partic-
ipants who only used a long cane and one participant
who used a guide dog. For the purpose of video review,
we did not differentiate between these twomobility aids
because the overwhelming majority of events involved
a long cane as the mobility aid and the main goal was
to determine whether or not a body contact occurred
with a hazard after a valid collision warning.

The device camera sensed the environment,
computed collision risk, and gave simple directional
warnings of collision hazards to the users via vibro-
tactile wristbands only when collision risk was high
(exceeded a predefined, time-to-collision threshold).
The goal of the clinical trial was to determine the
mobility benefit of the device in the users’ daily life
activities. Therefore, the study participants used the
device over a period of 4 weeks in their everyday
mobility.

The device switched intermittently between active
mode (providing vibrotactile warnings for detected
hazards) and silent mode (hazards detected but no
warnings given) in a random manner. The schedule
of switching and the duration for which the device
remained in each mode varied. The silent mode was
the control condition for the clinical trial. Participants,
study staff and video reviewers were masked, that is,
whether the device was in active or silent mode was
unknown to the participants when they used the device,
and to the study staff when they reviewed the videos.
Although it is crucial for evaluation of the device in
the clinical trial, device operating mode is incidental in
the context of this article, which focuses on the devel-
opment of methodology for data acquisition from the
videos, data reduction, and development of mobility-
related outcome measures.

In its physical form, the device was incorporated
within a single strap travel bag, with the video camera
situated approximately on the center of the chest,
which had a field of view of about 90° horizontally and
60° vertically, covering the head and chest level hazards
typically not detected by a long cane (see Pundlik
et al.11 for details regarding the device). Along with

Figure 1. Data recordedby the collisionwarning device. The chest-
mounted video camera captures scene videos, and each video frame
is embeddedwith relevant device data includingwhether a collision
warningwas provided, the direction of collisionwarning (left, center,
right), device operatingmode, and the real-timemotion sensor data.
If a collisionwarning is provided, its location is indicatedon the video
frame (white box with a dot in the center). This helps in determining
the object for which thewarningwas provided. The text information
embedded at the top and bottom of the video frames are extracted
byOCRprocessing, for computerizedpreprocessing, but they arenot
visible to study staff in video reviewing.

sensing, the chest-mounted video camera also recorded
scene videos during use, thus providing a log of the
mobility events encountered by the users.

The device also recorded instantaneous device
status information, including whether a collision
warning was provided and, if so, the location of the
collision warning in the current video frame (denoted
by a box with a dot in the center). These device data
were embedded into the scene video frame and were
therefore a part of the recorded videos (Fig. 1). Embed-
ding device data as text within video frames allowed
for easier synchronization between the device action
and the scene video. For example, when a collision
warning was provided to the user, it was logged within
the video and the reviewer could view and analyze the
marked video segments to see where and why the colli-
sion warning was provided. Throughout use, the device
recorded these videos (grayscale, 320 × 288 resolution)
and stored themon amemory card. After use, the video
data from the memory card was transferred to desktop
computers for further processing.

Data Processing

After the walking videos were obtained, we
extracted the embedded text data, detected mobility
events of interest, and masked the videos to prepare
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Figure 2. Flowchart showing the steps in video data processing to
obtain quantifiable mobility outcomes.

for video review. The steps involved in this operation
are shown as a flowchart in Figure 2. Video icons
were visually inspected to check for valid data, so that
occasional recording failures (black screen) could be
eliminated from further processing. Each video was
then processed frame by frame. The top and bottom
strips containing text data were cropped and the video
part saved for further viewing, to ensure that the
reviewers were masked to device status while reviewing

the videos. An optical character recognition (OCR)
software routine22 processed the top and bottom strips
of the frames to extract the device status and motion
sensor information, respectively. These extracted data
were stored in text files (a text file for a video contains
frame-by-frame information).

The OCR software made occasional transcription
mistakes, particularly because the videos were low
resolution and occasionally suffered from compression
artifacts. Thus, there was a possibility that data for
certain frames could be garbled, which needed to be
either corrected or eliminated. A follow-up software
routine was run on the extracted text data to detect and
wherever possible, correct the OCR mistakes. Because
the format of the text data, their location within the
video frame, and the expected ranges of the values
within each field were known, error correction could
be done to recover most of the text data. The most
common mistakes were missing spaces, and with the
known text format, those could be corrected. Missing
or seriously garbled text data were eliminated. The
entire process of extraction of text from video frame
along with OCR error correction was automated.

After cleaning up the text data obtained via the
OCR software, collision warning event detection was
performed. The device provided collision warnings on
a per-frame basis, which means either the given frame
had a collision warning or did not. In actual use, a colli-
sion threat could unfold over a span of multiple video
frames. For example, with the participant approaching
an obstacle, the device could provide warnings over a
short duration of time on the order of a few seconds.
To make review consistent and feasible, all collision
warnings within a span of 2 seconds were grouped
as a single event. This time window of 2 seconds for
grouping the collisionwarningswas chosen empirically.
Once all the collision risk events were computed within
a video, further processing and review was done with
reference to these events rather than the video frames.
The event identification process within the recorded
videos was automated.

Video Review

Manual review of the detected collision warning
events was required to determine why the device gave
warnings and what really happened when the warnings
were given. The detected events and the correspond-
ing scene video (devoid of embedded text informa-
tion) were fed to custom video review software for
manual inspection. Reviewers could move from one
event to another and play a short video clip around
the detected event to annotate the relevant event
details. Event details such as whether there was a
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Figure 3. Reviewing and coding a collision warning event. (Left) An event can unfold in a complex manner, and depending on how it
unfolds and the action taken by the user could result in contact with the obstacle. Following a complex tree for detailed annotation of an
event may not be feasible or possible directly via video review. Success and failure can be either defined from a user’s perspective or from
device’s perspective. From user’s perspective, not having a body contact can be considered as a success, irrespective of the reason. From
device’s perspective, a cane contact may be considered a failure even if there is no body contact, depending on when the cane contact
happens. (Right) Conceptually breaking down an event into three categories: device performance, user action, and the final result, can help
to simplify the coding of an event while maintaining thoroughness of the review process.

collision hazard, whether there was any contact with
the hazard, the nature of the hazard, and the nature
of the scene/location where the collision hazard was
observed (whether the collision hazard was in partici-
pants’ familiar environment [home/office] or not), were
annotated.

The main goal of event annotation was to obtain
quantifiable mobility measures from video observa-
tion. The main mobility-related outcome of interest
was the number of body contacts with detected
hazards. Other relevant mobility-related data included
the number of cane contacts, the number of true
hazards encountered, the nature of the collision
hazard, and the walking environment, among others.
Just considering the mobility-related outcomes, each
event can unfold in various different ways leading to
a complex flow diagram (Fig. 3, left) because there
are many interdependent steps between the first stage
of the device issuing a warning to the final outcome
(contact or no contact). Annotating these details is
difficult just based on the video captured from the
chest-mounted camera. Therefore, to simplify and
streamline the review process, the event-related details
that needed to be annotated were classified into the
following broad categories: device action (whether it
was true hazard or false alarm), user action (what did
the user do), event outcome (whether there was a body
contact, cane contact, or none), and the environment
(Fig. 3, right). This process resulted in a hierarchical
review flowchart, where certain quantities such as body
contact depended on whether there was a contact of

any kind, including contact with long cane, which in
turn depended on whether there was a true hazard.
Given that most of the events involved a long cane as
the mobility aid, any contacts with mobility aids are
generally referred to as cane contacts in the text of this
article.

Even after further simplification in reviewing
categories, it may not always be possible to accurately
annotate the details in an event just based on the
video. For example, in certain cases it might not be
possible to tell whether the participant hit an object
with their cane because the end of the cane might
not be within the field of view of the video. Similarly,
in many other situations the action of the partici-
pant as well as the outcome of the event may not be
obvious and therefore subjective judgment could lead
to arbitrary outcomes. To address this issue, we first
drafted formal definitions of all the event annotation
categories based on observable evidence that would
help in the subjective judgment. The formal defini-
tions were based on preliminary scoring of 338 events
by authors SP, VB, and MM. The definitions were
then refined through an iterative process involving all
authors in which unambiguous and ambiguous events
of various types were reviewed in a group setting and
possible interpretations discussed until consensus was
reached (Table 1). After developing the definitions, we
implemented a reviewing scheme involving twomasked
reviewers (VB and MM) independently reviewing the
data to further improve the objectivity of the review
process.
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Table 1. Definitions of the Annotation Categories Used to Rate Events

Annotation Category Options Meaning

Valid eventa Yes/no Yes: Camera view was unobstructed, device operation
as expected.

No: Device operation was disrupted in some way. E.g.
user hand obstructed camera, light glare created a
visual artifact, or the device is not being worn.

True hazarda Yes/no Yes: The warning was valid and associated with a true
hazard; a collision would have occurred if the
trajectory of motion was maintained.

No: the warning was a false alarm.
Evasion attempta Yes (cane not involved, cane

involved, not sure)/no
Yes (cane not involved): There was an evasion attempt
(e.g. step to the side) with no clear use of long cane.

Yes (cane involved): There was an evasion attempt after
cane contact with the obstacle.

Yes (not sure): There was an evasion attempt, but it is
unclear whether the long cane made contact. Use
sparingly.

No: There was no visible evasion attempt.
Contacta (all
contact/body
contact)

Cane contact/body
contact/not sure/no

Cane contact: Participant made contact with the
obstacle with their habitual mobility aid (long cane or
the guide dog). In the absence of direct visual
evidence, contact could be inferred by a sudden
pause, sharp change of walking direction, or
jolting/shaking of the camera, together with the
relative distance to the object in the scene.

NOTE: This option was also considered when a
participant used their hand to find an obstacle that
they were aware of.

Body contact: Participant collided with the obstacle
directly. Notable by more severe camera jolt and
close camera view. If both cane and body contact
occur, mark as body.

Not sure: a contact occurs, but it is ambiguous whether
with cane or body. Use sparingly.

No: there was no contact of any kind.
Home/office vs. other
environment

Yes/no Yes: The scene is inside participant’s home/work
environment.

No: The scene is outside participant’s home/work
related environment, such as streets, shopping mall,
or transit stations, etc.

Nature of the hazard Pedestrian, furniture, poles,
walls, overhanging, trees,
other

Pedestrian: the hazard was a person
Furniture: desks, chairs, shelves, racks, etc.
Poles: Poles, posts, pillars, bollards, columns, other
similar standing structures.

Walls: Walls, doors, building structures, etc.
Overhanging: Tree branches, flags, banners and similar
hanging/head-height objects.

Trees: Tree trunks, bushes, hedges, etc.
Other: Anything that doesn’t fit the above categories
(lights, vehicles, etc.)



Mobility Evaluation from Video Data TVST | June 2020 | Vol. 9 | No. 7 | Article 14 | 7

Table 1. Continued

Annotation Category Options Meaning

Moving camera Yes/no Yes: The user was in motion (walking, swaying, on an
escalator).

No: the user is still (sitting/standing).
Moving object/hazard Yes/no Yes: the hazard is moving (e.g., a walking pedestrian)

No: The hazard is still (e.g., stationary furniture)
Left turn Yes/no This is only selectable if there is an evasion attempt,

and notes the direction of the evasion.
Right turn Yes/no This is only selectable if there is an evasion attempt,

and notes the direction of the evasion.
aThe categories of valid event, true hazard, evasion attempt, and contact are critical for assessing mobility outcomes

and device performance. Only these categories were relevant for disagreement reconciliation. The other categories provide
additional detail, such as what the hazard was, or where the user was at the time of the collision hazard event.

The home use trial data for a given participant
consisted of multiple short videos (maximum duration
of 15 minutes; longer videos were broken down into
15-minute segments by the video recorder). Each video
could contain a different number of events (some had
no events detected). For reviewing, the video order for
a given participant was randomized, but the events
occurring in the same video were not randomized.
For the data presented in this article, events were
reviewed by both the reviewers independently and
then the annotations were compared to determine
disagreements. Disagreements between the reviewers
were reconciled with consensus for the following review
categories: valid event, true hazard, all contacts, and
body contacts. These four items were important in our
study for determining the mobility-related outcomes
for naturalistic walking. They were coded hierarchi-
cally: first whether the event was valid, then whether
it was a true hazard if it was valid, then whether there
was any kind of contact if it was a true hazard, and
finally whether there was a body contact if there was
a contact. The probability of agreement and Cohen’s
kappa values were computed to provide inter-rater
reliability metrics between the two reviewers for these
four categories.

Data Reduction

The feasibility of data review is a big concern
because a large amount of video data requires a lot
of manual effort. In particular, when multiple review-
ers review the same data, the total effort level becomes
even higher. However, multiple independent reviewers
are needed formaintaining the objectivity of the assess-
ments. Therefore, techniques for data reduction had to
be devised for making reviewing and coding feasible to

perform. Data reduction here refers to the duration of
video data that needs to be manually reviewed relative
to the overall duration, and therefore larger data reduc-
tion is preferable for the feasibility of manual review, as
long as we do not eliminate relevant events as part of
the data reduction process. One obvious way of data
reduction, which is inherent in the method we imple-
mented, was reviewing only the segments of videos
where the device provided collision warnings. Thus,
the event-driven review cut down on the overall time
and we could avoid reviewing the entire videos at full
length. However, this data reduction was still not suffi-
cient owing to the large number of events detected by
the device.

To further decrease the reviewing effort, we focused
on a novel strategy to predict disagreements between
the two reviewers based on how they previously rated
the same events. If we could predict events where
the two reviewers were likely to disagree, then each
reviewer would only have to review a subset of the
entire data, thus saving on time and effort. So, in
this novel scheme, the two reviewers look at different
events in the initial round. Then, based on the events
that have been reviewed by both the reviewers previ-
ously (reviewing history), we can predict where they
might disagree. Then, they swap the events with each
other and only review those that they were predicted
to disagree with. In this manner, the amount of data
that they were expected to review can be substantially
decreased while maintaining the accuracy and objectiv-
ity of the outcomes.

To predict events where the reviewers might
disagree, we used RUSBoost classifier23,24 imple-
mented in the MATLAB Classification Learner App.
Training data consisted of each individual reviewer’s
coding of multiple events across 11 different items:
valid event, true hazard, all contacts, body contact, left
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turn, right turn, evasion attempt (all causes), evasion
attempts—cane not involved, moving camera, moving
object/hazard, and the scene settings (home/office vs.
others). Both the reviewers were highly trained before
on separate video data (not used here). After reviewing
the same data independently, disagreements for differ-
ent review items were obtained. These known disagree-
ments in the review of body contacts (our primary
mobility outcome) were the labeled output correspond-
ing to the rest of the review items, and together they
constituted the training data. The classifier was trained
on the data belonging to each reviewer separately, to
recognize the patterns of ratings in these 11 review
items that were more likely to lead to a disagree-
ment about body contact for an event. The disagree-
ment prediction algorithm was tuned to decrease the
false-negative rate (the proportion of events where the
algorithm did not predict a disagreement on body
contact when it should have). Automated feature selec-
tion was used to retain predictors that contributed
significantly to the overall model at 95% confidence. A
five-fold cross-validation scheme was used for evalua-
tion.

Implementation of the Review Scheme

First, data processing software was developed in
Matlab to automate gathering of collision warning
event data from the recorded videos (steps shown
in Fig. 2). Then, preliminary event scoring criteria were
conceived and a custom review software was devel-
oped that allowed playback and annotation/review (via
check boxes and drop down menus) of individual
events within a video. The software could jump back
and forth between events within a video. The initial
training of the reviewers and refining of the review
criteria were performed iteratively, with the review-
ers viewing the same videos during pilot stages of
the study and then reconciling differences in review in
joint meetings with all study investigators. At the same
time, the reviewers’ inputs regarding which scoring
items were feasible and important were incorporated
into the review software. Video data collected from
visually impaired and blind participants during pilot
testing of the device in habitual mobility were used
during the development of the review criteria. Once
the review criteria were finalized, the two reviewers
then independently reviewed a large number of events
from data collected in the early part of the clinical
trial, and these data were used to train the machine
learning algorithm to predict events where the two
reviewers might disagree on whether there was a body
contact.

Figure 4. Agreement/disagreement between the 2 masked
reviewers when performing manual review of the video data. A
total of 2712 events were reviewed independently by each reviewer
(rater A and rater B). The four review items shown here were
rated hierarchically in following order: valid event, true hazard,
all contacts, and body contacts. If both the reviewers rated no for
any given item, the event was dropped from consideration for
subsequent review items. Therefore, the total number of events was
lower for items lower in the hierarchy.

Results

A total of approximately 38 hours of device use
video data across 10 blind or visually impaired partic-
ipants were selected for analysis for this study. Text
extraction with the OCR engine was largely successful,
with only 0.35% of all the video frames returning no
text data (success rate of 99.65%). Automated process-
ing of the extracted text data from the video frames
revealed a total of 2712 collision warning events regis-
tered by the device. Detailed annotation of each event
separately performed by the two independent review-
ers was compiled. This event review for 2712 events
by both the reviewers along with their disagreements
regarding body contacts served as the training data
for the machine learning algorithm for disagreement
prediction.

Figure 4 shows the 2 × 2 agreement tables for
the four main review items between the two review-
ers over all 2712 events after the initial round of
review (before reconciliation). Because these itemswere
rated hierarchically, the events where both the review-
ers answered in negative were not considered in the
subsequent items at the lower hierarchy levels. There-
fore, the total number of events in the tables for true
hazard, all contacts, and body contacts progressively
decreased. Agreement probabilities and Cohen’s kappa
for the four items are shown in Table 2. The review-
ers concurred most (96% of events) for the valid event
category and concurred least (66% of events) for body
contacts. The Cohen’s kappa values ranged from 0.67
(valid event) to 0.05 (for body contacts).

Figure 5 shows the confusion matrices for disagree-
ment prediction related to body contacts for the two
reviewers after five-fold cross-validation with 2712
labelled event samples. For the 2712 events rated by
raterA, the algorithm correctly predicted 176 out of the
total 200 already identified disagreements (Fig. 4, far
right), a success rate of 88%. For the same events rated
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Table 2. Inter-Rater Reliability Between the 2 Independent Reviewers for Ratings of Valid Event, True Hazard, all
Contact, and Body Contact Across 2712 Events

Measure* Agree Disagree Agreement Probability Cohen’s Kappa

Valid Event 2592 120 0.96 0.67
True Hazard 2035 539 0.79 0.57
All Contacts 902 428 0.68 0.24
Body Contacts 391 200 0.66 0.05

*The order of listing of the items in the table represent the hierarchy followed when scoring these items for a given event.
Therefore, the total events reduce as we move from valid event to body contact ratings.

Figure 5. Results for predicting disagreements in rating of body
contacts during event review by the two raters. The machine learn-
ing algorithm was trained on each reviewer’s ratings for the same
2712 events with 200 known disagreements. The % values in the
table are relative to the total events reviewed (2712). Results were
computed using five-fold cross-validation for these set of events.
For data reviewed by rater A, the algorithm predicted 176 disagree-
ments, with rater B correctly, while missing 24 (success rate of 88%).
For data reviewed by rater B, the algorithm predicted 185 disagree-
ments with rater A, while missing 15 (success rate of 93%).

by Rater B, the algorithm predicted 185 out of 200
disagreements (success rate of 93%). The total number
of disagreements predicted with data reviewed by rater
A were 1093, amounting to a data reduction of about
60%. For the data reviewed by rater B, the total number
of disagreements predicted by the algorithm was 201,
and the data reduction was at about 92%.

In a further test of the algorithm, a new dataset,
which was not previously used in training the machine
learning algorithm, was fed to it to predict the disagree-
ments in body contacts. For the 1943 events reviewed
first by rater A, the algorithm predicted body contact
disagreement for 511 events. After review by rater B,
actual disagreements were found to be 25 (with 100%
overlap between actual disagreements and algorithm
prediction) and an overall data reduction of approxi-
mately 74%. For a separate set of 1875 events reviewed
by rater B, the algorithm only predicted disagreements
in body contact for 35 events. Actual disagreements
were 34, and the algorithm predicted 25 of the 34
disagreements (success rate of 74%). The data reduc-
tion in this case was approximately 98%. On average,
the algorithm could predict disagreements between the

two reviewers with 82% success rate, with an average
data reduction rate of 81%.

Discussion

The approach described in this article provides
a blueprint to tackle challenging big data analy-
sis problems related to collisions in daily mobil-
ity of visually impaired and blind participants. The
main contributions of our approach are (i) applying
robust methods for quantification of mobility related
outcomes from video data recordings in the daily
mobility of people with severe visual impairments, and
(ii) proposing a novel algorithm for data reduction to
make the analysis effort feasible.

Our approach focuses on the previously
unaddressed issue of analyzing large amounts of video
data to obtain mobility-related outcome measures
relevant to the use of devices to assist in obstacle
detection and collision avoidance when walking.
Previous studies about naturalistic walking mobil-
ity in visually impaired individuals mainly analyzed
motion sensor data (number of steps and/or falls) and
primarily focused on a particular group of patients
or disease category (such as glaucoma14,17,18,25 or
AMD15,26), where the collision risk was presumably
lower compared with people with more severe visual
impairments or blindness who were the focus of our
study. Although the proposed methods were designed
and tested for data involving blind or severely visually
impaired individuals, the same methods could be used
when investigating real-world mobility in other patient
populations.

The inter-rater reliability varied between different
review items, with classification of valid events being
the highest, followed by true hazard, all contacts, and
body contacts. In other words, it was easier to tell
whether an event was valid or not than to tell whether
there was a body contact. Given the wide variability
between the scenarios where the events took place, it
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is conceivable that no matter how closely aligned the
two raters are, there will be disagreements when classi-
fying for body contacts. Therefore, multiple indepen-
dent reviews followed by consensus based reconcili-
ation can ensure that the most important outcome
measure is obtained with relatively high reliability
despite disagreements.

The data reduction technique was designed with
the same goal of obtaining important mobility-
related outcomes with high reliability. The disagree-
ment prediction algorithm was tuned to ensure most
potential disagreements were not missed, possibly at
the cost of an increased false alarm rate (predicting
disagreement for an event when there was no disagree-
ment). Failing to quantify a body collision has negative
consequences for data analyses. False alarms increase
the amount of data that need to be reviewed but, as
our study showed, the algorithm predictions covered
about 82% of the disagreements in the body contact
rating and greatly decreased the number of events that
needed to be reviewed by both reviewers (by 81%).

The two raters exhibited differing categorization
patterns when reviewing the data. These two individual
reviewing patterns were used to train the disagreement
prediction algorithm. Based on the review of events by
rater B, it was relatively easy to determine which events
rater A would disagree with in terms of body contact.
However, the opposite was not necessarily true for the
data reported here.

Once trained on a common set of data reviewed
fully by two individuals, the algorithm should work as
long as the same two individuals continue to do all the
reviewing. However, if a new pair of reviewers is to be
inserted, then they both will have to review a common
set of events in sufficient numbers for the machine
learning algorithm to learn their reviewing patterns. In
our case, when training the algorithm, we worked with
a sample of 2712 common events that were reviewed
by both reviewers. Considering each event takes on
average 1 minute to review (but new reviewers might
take longer than trained reviewers), the lead time to
retrain the disagreement prediction algorithm could be
about 45 hours of reviewing per reviewer (90 hours for
a new pair of reviewers). After the algorithm has been
trained, depending on the algorithm performance, we
can expect significant savings in the reviewing efforts
compared to full double reviewing of all events by both
reviewers. To put these savings in context, consider the
data set from the clinical trial which currently consists
of more than 29,000 events (at least 483 hours of
reviewing for each reviewer). Initial, full double review-
ing needs to be done only for about 10% of the total
events for training the algorithm. For the remaining
90% of the data, the reviewing effort reduction will

be substantial, on average 80%, resulting in approxi-
mately 12 fewer hours per thousand events reviewed.
The reviewing effort reduction will likely vary between
pairs of reviewers and could bemore or less than found
for the two reviewers in this study. Nevertheless, we
suggest that a data reduction of 80% is a realistic expec-
tation given that our two reviewers exhibited clearly
different categorization patterns when reviewing.

Possible alternatives to the presented approach of
video review might include crowdsourcing and artifi-
cial intelligence approaches. Crowdsourcing can be an
efficient way to save researchers’ effort, particularly
for relatively simple tasks such as image labeling, but
may not be feasible for complex tasks such as detailed
mobility video annotation that require nontrivial user
training. Given the complexities of obstacle avoid-
ance when walking in the real world, the reviewers
for our particular application need to be aware of the
functionality and limitations of the device. Also, there
is little control over who reviews what in crowdsourc-
ing, and therefore reconciliation of disagreements is
not as straightforward as in our approach (joint review
of items with disagreements). Another alternative
approach, based on artificial intelligence algorithms
to automatically review and annotate events, holds
promise for future work.

In conclusion, our novel approach resulted in a
data reduction of about 80%, which means that the
actual amount of video to be reviewed will only be
19% of the original data. For the first time, our
approach makes it possible to objectively study and
quantify collision incidents in daily mobility of visually
impaired and blind individuals, and makes it feasi-
ble to conduct clinical trials to objectively evaluate
the effectiveness of video camera-based mobility assis-
tance devices in habitual mobility. Furthermore, the
approach described in this article may be helpful in
providing a better understanding of the processes
involved in and difficulties encountered during obsta-
cle detection and avoidance when walking.
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