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associated with infant gut microbiota and metabolic modifications and increased 
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ABSTRACT
Artificial sweetener consumption by pregnant women has been associated with an increased risk of 
infant obesity, but the underlying mechanisms are unknown. We aimed to determine if maternal 
consumption of artificially sweetened beverages (ASB) during pregnancy is associated with mod-
ifications of infant gut bacterial community composition and function during the first year of life, 
and whether these alterations are linked with infant body mass index (BMI) at one year of age. We 
studied 100 infants from the prospective Canadian CHILD Cohort Study, selected based on maternal 
ASB consumption during pregnancy (50 non-consumers and 50 daily consumers). BMI was higher 
among ASB-exposed infants. Infant stool (16S rRNA gene sequencing) and urine (untargeted 
metabolomics) were acquired in early (3–4 months) and late (12 months) infancy. We identified 
four microbiome clusters, of which two recapitulated the maturation trajectory of the infant gut 
bacterial communities from immature (Cluster 1) to mature (Cluster 4) and two deviated from this 
trajectory (Clusters 2 and 3). Maternal ASB consumption did not differ between clusters, but was 
associated with community-level shifts in infant gut bacterial taxonomy structure and depletion of 
several Bacteroides sp. in Cluster 2. In the complete dataset, urine succinate and spermidine levels at 
3 months were higher in ASB-exposed infants, and urine succinate was positively associated with 
BMI at one-year-old. Overall, gestational exposure to ASB was associated with gut microbiota 
structure in infants from Cluster 2, and gut microbiota structure was associated with infant BMI. 
Gestational exposure to ASB was positively associated with infant urine succinate and spermidine. 
Succinate was found to mediate 29% of the effect of ASB exposure on BMI at one-year-old, 
revealing a potential role of this metabolite in increased infant weight linked to gestational ASB 
consumption. As we face an unprecedented rise in childhood obesity, future studies should 
evaluate the causal relationships between maternal ASB consumption (a modifiable exposure), 
gut microbiota and metabolites, infant metabolism, and body composition.
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Introduction

Childhood obesity in the United States increased 
from 5% to 18.5% between 1978 and 2016,1 magni-
fying the risk of cardiometabolic disease and men-
tal health disorders later in life.2 Recent work from 
the CHILD Cohort Study showed that maternal 
consumption of artificially sweetened beverages 
(ASB) during pregnancy is associated with higher 
infant body mass index (BMI) at one year of age.3 

Importantly, this association was independent of 
key obesity risk factors, such as maternal BMI, 
smoking, poor diet, diabetes, short breastfeeding 
duration, and earlier introduction of solid food.3 

Similar associations have been reported in several 
other prospective birth cohorts,4 but the underlying 
mechanism has not been studied.

The gastrointestinal tract, a key site for host 
metabolic regulation,5,6 is colonized by a vast 
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community of microbes including bacteria, viruses, 
and micro-eukaryotes.7 The gut microbiome is 
highly heterogeneous during infancy, characterized 
by colonization patterns8–10 that are influenced by 
the maternal microbiome,11,12 method of birth,13–15 

infant nutrition (breast milk or formula),16–18 and 
antibiotic treatment.14,19 Simultaneously, impor-
tant aspects of metabolic development occur during 
this period of life, many of which rely on interac-
tions between microbes and host cells.20 Recent 
studies in mice show that artificial sweetener con-
sumption during pregnancy predisposes offspring 
to increased weight gain through behavioral (i.e. 
preference for sweet foods, appetite increase) and 
physiological mechanisms (i.e. stimulation of 
intestinal sugar absorption, increased postnatal 
weight gain, altered lipid profiles, downregulation 
of hepatic detoxification, and increased insulin 
resistance).21–24

Common low-calorie sweeteners include syn-
thetic artificial sweeteners (e.g. non-acesulfame- 
potassium, aspartame, advantame, neotame), 
sugar alcohols (e.g. erythritol, xylitol), and plant- 
based sweeteners (e.g. sucralose, thaumatin, monk 
fruit).25 The effects of artificial sweeteners on the 
gut microbiome are diverse, including impacts on 
composition and function (see Suez et al.26 for 
a synthesis). Suez et al.27 also demonstrated that 
artificial sweetener consumption in adult mice 
directly impacts gut microbiome composition and 
function, leading to an increase in host glucose 
intolerance. More recently, Stichelen et al.24 

addressed gestational exposure to artificial sweet-
eners, finding changes in bacterial metabolites and 
a decrease in Akkermansia municiphila in the pups’ 
gut microbiome. However, the consequences of 
maternal artificial sweetener consumption during 
pregnancy on the infant gut microbiota have not 
been reported in humans.

To address this knowledge gap and build on our 
prior observations in the CHILD Cohort Study, we 
evaluated the association of maternal artificially 
sweetened beverage consumption during preg-
nancy with the infant gut microbiota in a subset 
of 100 infants (50 with daily maternal ASB con-
sumption during pregnancy and 50 unexposed 
controls; see Table 1 for maternal participants’ 
characteristics). We employed next-generation 
sequencing of the 16S rRNA amplicon gene 

combined with a community typing analysis 
(Dirichlet Multinomial Mixtures [DMM] 
modeling)28 and urine untargeted metabolomics 
to understand if ASB intake was associated with 
a shift in infant microbiota composition and func-
tion that might explain the relationship between 
maternal ASB intake during pregnancy and infant 
BMI at one year of age.

Results

Microbiome clusters

We performed community typing analysis based on 
Dirichlet Multinomial Mixtures (DMM) modeling28 

to identify clusters of similar bacterial community 
structure amongst our samples. Based on their micro-
biota composition, the infant fecal samples clustered 
in four groups (Figure 1–2 and eFigure 1). Gut bac-
terial species richness (Figure 1b), alpha- (Figure 1c) 
and beta-diversity (Figure 1a) and taxonomic compo-
sition (Figure 2) differed between clusters, reflecting 
broad community differences. Clusters 1 and 4 com-
prised microbial communities reflecting the well- 
described effect of temporal maturation during the 
first year of life; with cluster 1 comprising only three- 
month (3 M) samples and cluster 4 comprising almost 
exclusively twelve-month (12 M) samples. Clusters 2 
and 3 comprised a mixture of 3 M and 12 M samples. 
Compared to the other three clusters, cluster 1 
showed a higher proportion of exclusive breastfeed-
ing. Cluster 3 included a higher proportion of 
mothers receiving intrapartum antibiotics, infants 
born by C-section, and formula feeding (Figure 1). 
However, there was no difference in maternal ASB 
consumption between clusters, suggesting that this 
exposure did not influence the compositional differ-
ences that drove cluster classification (Figure 1f). In 
addition, the clusters did not differ in terms of mater-
nal sugar intake, gestational diabetes, age, ethnicity, 
education, maternal gestational antibiotics, study site, 
infant antibiotics, or infant or mother secretor status.

Relative association of ASB on microbial community 
structure

Envfit analysis (univariable models) identified 
thirteen variables as significant drivers of gut bac-
terial beta-diversity from which we selected eight 
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non-redundant variables to build our models: 
infant age, maternal intrapartum antibiotics, 
maternal ethnicity, birth mode, breastfeeding sta-
tus at three months, presence of older siblings, 
infant secretor status, and maternal ASB con-
sumption (Figure 3a and eFigure 2). Considering 
the complete dataset, the significant predictors 
were infant age, maternal ethnicity, intrapartum 
antibiotics, and birth mode. The same four vari-
ables, plus breastfeeding status at 3 months, were 
tested in a PERMANOVA (multivariable model), 
altogether explaining 14.2% of community var-
iance (Table 2). Maternal ASB consumption was 
a significant predictor of infant gut bacterial com-
position only in the multivariable model 

(R2 = 0.7%; Table 2). Birth mode (vaginal vs. 
C-section), intrapartum antibiotics, and breast-
feeding status at three months had also 
a significant influence on community composition 
(respectively R2 = 0.8%, 1.7%, and 1.9%), but to 
a lesser extent than infant age (R2 = 7.3%) and 
mother’s ethnicity (R2 = 2.5%; Table 2).

Next, we repeated the beta-diversity analyses sepa-
rately within each of the four clusters. Envfit univari-
able models identified distinct drivers for each 
cluster (Figure 3a). Interestingly, the drivers of beta- 
diversity in cluster 1 (only 3 M samples) were mainly 
maternal factors (i.e. birth mode, mother’s ethnicity, 
intrapartum antibiotics) whereas the drivers of clus-
ter 4 (mostly 12 M) were infant factors (infant’s 

Table 1. Participant characteristics for mothers exposed or unexposed to ASBs during pregnancy
Participant 
Characteristics Unexposed* to ASB Exposed* to ASB

[N = 50] [N = 50]

Other variables mean (SD) (range) mean (SD) (range) p

Added Sugars (g) 58.3 (29.4) (20.0–152.7) 68.3 (47.8) (19.7–342.3) 0.21
Breastfeeding (months) 8.0 (7.1) (0.0–24.0) 7.6 (7.4) (0.0–24.0) 0.68
Education (years) 16.6 (2.6) (12.0–24.0) 16.4 (2.5) (11.0–22.0) 0.80
Gestational Age (weeks) 39.2 (1.4) (35.0–42.0) 38.9 (1.4) (35.0–41.0) 0.38
Gestational Weight Gain 30.8 (12.5) (5.0–65.0) 37.3 (35.3) (5.0–224.0) 0.29
Healthy Eating Index-2010 (score) 72.6 (9.1) (55.2–86.1) 71.6 (7.1) (57.7–91.2) 0.54
Maternal Age (years) 33.2 (4.28) (23.7–42.8) 32.6 (4.6) (20.5–40.9) 0.36
Maternal Body Mass Index 26.0 (6.0) (17.6–40.5) 27.5 (6.1) (19.3–42.1) 0.24
Total Sugar (g) 141.6 (54.2) (47.0–255.9) 141.0 (80.4) (49.5–586.0) 0.96

Matching variables N n % n % p

Sex 
Female 
Male

46 
54

23 
27

46.0 
54.0

23 
27

46.0 
54.0

1.00

Birth mode 
Vaginal 
C-section

64 
36

32 
18

64.0 
36.0

32 
18

64.0 
36.0

1.00

Breastfeeding (3 months) 
Exclusive 
Partial 
None

32 
30 
38

16 
15 
19

32.0 
30.0 
38.0

16 
15 
19

32.0 
30.0 
38.0

1.00

Breastfeeding (12 months) 
No 
Yes 
Missing

68 
28 
4

34 
14 
2

68.0 
28.0 
4.0

34 
14 
2

68.0 
28.0 
4.0

1.00

Child Antibiotics (oral/IV) 3–12 M** 
No 
Yes 
Missing

54 
20 
26

27 
10 
13

54.0 
20.0 
26.0

27 
10 
13

54.0 
20.0 
26.0

1.00

Maternal Body Mass Index 
Normal 
Overweight 
Missing

46 
51 
3

26 
23 
1

52.0 
46.0 
2.0

20 
28 
2

40.0 
56.0 
4.0

0.45

Ethnicity 
Asian 
Caucasian 
First Nations 
Other

10 
81 
5 
4

7 
37 
3 
3

14.0 
74.0 
6.0 
6.0

3 
44 
2 
1

6.0 
88.0 
4.0 
2.0

0.33

*Unexposed = no consumption by the mother during pregnancy; Exposed = daily consumption 
**Antibiotics before 3 months is an exclusion criterion
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Figure 1. Discrepancies in covariate distribution, alpha- and beta-diversity between microbiota clusters. (A) Principal component 
analysis (PCoA) ordinations of variation in beta-diversity of infant gut bacterial communities based on Bray-Curtis dissimilarities among 
samples. Ellipses represent 95% confidence intervals. (B-C) Box plots showing the alpha-diversity (richness and Shannon’s diversity) per 
DMM cluster. The central line denotes the median, the boxes cover the 25th and 75th percentiles, and the whiskers extend to the most 
extreme data point, which is no more than 1.5 times the length of the box away from the box. Points outside the whiskers represent 
outlier samples. Letters denoted significant differences (non-parametric Kruskal-Wallis test followed by post-hoc test of Dunn with FDR 
correction following Benjamini-Hochberg method; P < .05). (D-K) Variable distribution between clusters tested with non-parametric 
Kruskal-Wallis test followed by either a post-hoc generalized linear model (glm) with a binomial/logistic distribution (D-I) or (J-K) a 
post-hoc Dunn test with FDR correction following Benjamini-Hochberg method. Minuscule letters indicate statistical differences 
between clusters from post-hoc generalized linear model (glm) with a binomial/logistic distribution. “BF at 3 M” stands for 
“breastfeeding at three months” and “FF at 3 M” for “formula feeding at three months”. Aside from maternal ASB consumption (F), 
only the variables that showed a statistical difference in distribution between clusters are presented. No differences were found for 
maternal age, ethnicity, education, diabetes; study site, household pets, siblings, or introduction of solid foods at 3 or 6 months. Cluster 
1 included 48 samples from 48 infants; cluster 2 included 59 samples from 49 infants; cluster 3 included 47 samples from 39 infants; 
and cluster 4 included 44 samples from 43 infants. See methods for definition of variables. For all clusters with the same letter, the 
difference between groups is not statistically significant. If two variables have different letters, they are significantly different.
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secretor status, breastfeeding at three months, and 
infant age (Figure 3a). Cluster 2 was the only cluster 
in which maternal ASB consumption was associated 
with beta-diversity (R2 = 3.2%), and this association 
was confirmed by the univariable (Figure 3a, 
eFigure 2) and multivariable (Table 2) analyses.

We tested for associations of specific bacterial 
features in the infant gut with maternal ASB con-
sumption. In the complete dataset, we identified 
two ASVs associated with maternal consumption 
of ASB, one species being depleted (Bacteroides sp. 
ASV45, log2 fold change = −27.2 and another spe-
cies enriched (Prevotella copri ASV42, 24.2) among 
infants exposed to high maternal ASB intake 
(Figure 3b). Repeating this test within each cluster, 
we identified 15 additional ASVs enriched or 

depleted. For cluster 2, one ASV was enriched 
(ASV19, Akkermansia municiphila, 24.9) and four 
depleted (Bacteroides ovatus ASV27, −25.9; 
Parabacteroides sp. ASV83, −25.2; Bacteroides sp. 
ASV45, −24.9; Bacteroides sp. ASV25, −10.7) with 
maternal ASB consumption (Figure 3b). All 
adjusted p-values were below 0.001 and corrected 
with Benjamini-Hochberg for FDR.

Association between ASB exposure and urine 
metabolites

Using the software MetaboAnalyst,29 we identified 
twenty metabolites that varied across clusters 
(eFigure 3). Since functional features in the meta-
bolome are reflective of microbial metabolism 
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Figure 2. Differences in relative abundances of the dominant bacterial genera between clusters. (A-J) Relative abundance across DMM 
clusters of the ten most dominant bacterial genera and (K) of the 15 most dominant bacterial genera. Letters indicate significant 
differences between clusters (non-parametric Kruskal-Wallis test, post-hoc Dunn test with Benjamini-Hochberg FDR correction). For all 
clusters with the same letter, the difference between groups is not statistically significant. If two variables have different letters, they 
are significantly different. Cluster 1 contains only three months of age. Clusters 2 and 3 are composed of a mix three and twelve 
months of age, and Cluster 4 only 12 M (except two samples).
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b

a

Figure 3. Drivers of gut bacterial beta-diversity and indicator taxa associated with maternal consumption of ASB differ between 
clusters. Univariate models showing significance and explained variance of 10 variables on bacterial community structure across all 
data and each cluster subset. Horizontal bars show the amount of variance (R2) explained by each covariate in the model as determined 
by envfit. Asterisk denotes the significant covariates in each data subset (P < .05). All 32 variables considered in this study are shown in 
eFigure 2. In this figure, ASB represents artificially sweetened beverages and BF at 3 M represents infant’s breastfeeding status at three 
months (see methodology). (B) 14 bacterial taxa identified as significant features associated with maternal consumption of ASB by 
DESeq2.
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redundancy, and less susceptible to interindividual 
variability typical of taxonomic datasets, we tested 
for a significant effect of maternal ASB consump-
tion on the complete dataset at 3M and 12M old. 
Two urine metabolites, spermidine (log2 fold 
change = 2.27, p = .01) and succinate (log2 fold 
change = 1.77, p = .001), were significantly higher 
in 3M old infants exposed to ASB (Figure 4).

Association of ASB, gut microbiome and urine 
metabolites with infant BMI at one-year-old

Finally, using a multivariable linear model on the 
complete dataset, we tested the association of 
maternal ASB consumption, microbial community 
composition and the two metabolites linked to high 
ASB consumption with infant BMI z-score at 
one year of age. In this cohort, infant birth weight 
was not correlated with BMI at one-year-old 
(p = .28). However, our multivariable linear model 
confirmed that daily maternal ASB consumption is 
associated with higher infant BMI (ß-estimate 
= 0.42, 95%CI 0.03:0.80, P = .037; Table 3), and 
showed that BMI was associated with the micro-
biome composition at 12 months (PCoA1 axis; ß- 
estimate = −0.71, 95%CI −1.40:-0.01, P = .048; 
Table 3) but not at three months (not shown). 
These results suggest that features of PCoA1 (i.e. 
lower relative abundance of Bacteroidetes and 
Faecalibacterium, and higher relative abundance 
of Escherichia, Klebsiella, Bifidobacterium, 

Haemophilus, Clostridium, and Veillonella; 
eFigure 4) are inversely associated with infant 
BMI. Notably, succinate was positively associated 
with BMI (ß-estimate = 0.45, 95%CI 0.15:0.76, 
P = .004; Table 3, Figure 4d) but not spermidine 
(P = .49), revealing that this association may also 
involve microbial-derived metabolites. We then 
performed a mediation analysis which showed 
that urine succinate mediated 29% of the observed 
association between ASB and BMI at one-year-old 
(mediation effect of ß-estimate = 0.29, 95%CI 
0.03:2.19, P = .04).

Discussion

In defining links between maternal ASB consump-
tion and infant BMI, our results suggest that mater-
nal consumption of ASB during pregnancy (1) may 
influence the establishment of the infant gut micro-
biome in infants diverging from what has pre-
viously been described as the typical microbiome 
maturation trajectory (Table 2, Figure 3a); and (2) 
is associated with an increase in infant BMI at one- 
year-old that may be mediated by succinate (Table 
3). The estimated impact of maternal ASB con-
sumption on the infant microbiome is notably 
smaller than other known drivers (which uniformly 
affected infants across all clusters) such as breast-
feeding, birth mode, ethnicity, infant age, and intra-
partum antibiotics (Figure 3a, eFigure 2). However, 
ASB consumption was also linked to differences in 
urine metabolites known to be produced by micro-
bial metabolism of putrescine in the gut, supporting 
the role of ASBs in taxonomic and functional 
changes of the early life microbiome. To our knowl-
edge, this is the first human study to report the 
association of maternal consumption of ASB, infant 
gut microbiome, and urine metabolites, and their 
potential influence on infant BMI. In light of recent 
data showing that ASB can drive dysregulation of 
energy metabolism in mice through changes in the 
gut microbiome,24,27,30,31 our study suggests that 
infants exposed to ASB through their mothers 
may be at higher risk of shifts in microbial com-
munity structure related to early-life predisposition 
to metabolic diseases.32,33

The first year of life has been suggested to be 
a “window of opportunity” for the training of the 
immune system through interactions between host 

Table 2. Maternal consumption of ASB during pregnancy is 
associated with bacterial community assembly during the 
first year of life. Permutational Analysis of Variance 
(PERMANOVA) of gut bacterial community composition (Bray- 
Curtis dissimilarities) testing associations with different explana-
tory variables. The model on the complete dataset (ALL) 
accounts for repeated measures. The set of variables to be tested 
was chosen based on results from univariate envfit models.

Variables
All 

(R2%)

Cluster 
1 

(R2%)

Cluster 
2 

(R2%)

Cluster 
3 

(R2%)

Cluster 
4 

(R2%)

Infant age  
(3 M vs. 12 M)

7.3*** 8.5* 4.1*** 8.0*** 3.9**

Ethnicity 2.5*** NS NS NS NS
Breastfeeding at 3 M 1.9*** 5.1** 5.0*** 6.0* 6.4**
Maternal Intrapartum 

Abx
1.7*** NS NS NS NS

Birth mode 0.8** NS NS NS NS
Older siblings NS NS NS NS NS
Infant secretor status NS NS NS NS NS
Maternal ASB 0.7* NS 3.2** NS NS
Total R2 (%) 15.1 13.6 9.1 14.0 10.3

NSP > 0.05, * P < 0.05, ** P < 0.01, *** P < 0.001
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cells, gut microorganisms, and microbial metabo-
lites (see Arrieta et al.34 for a review). During this 
period, method of birth,9,35 infant nutrition,16–18 

and antibiotic treatment14 are major drivers of 
infant gut microbiome establishment and trajec-
tory, respectively, determining the initial set of pio-
neer species36 and stochastic perturbations 
potentially leading to dysbiosis (i.e. a state of com-
munity imbalance triggered by loss of taxa, diver-
sity, and/or metabolic capacity).37 Our results 
confirm the significance of these factors in driving 

infant gut microbial community structure during 
the first year of life (Figure 3a). Most interestingly, 
although we included multiple variables describing 
antibiotic treatment either received by the mother 
of the infant, intrapartum antibiotics was identified 
as a strong determinant of microbial community 
structure. This effect was detected in clusters 1 and 
2 only, suggesting its effect might resolve with time. 
In addition, intrapartum antibiotics could contri-
bute to the altered microbial trajectory of cluster 2 
and perhaps increase susceptibility to the effect of 

a) b)

c) d)

Figure 4. Association between maternal ASB consumption, urine metabolite concentration in 
3 M-old infants, and infant BMI at 12 months. Significant changes were detected in the normalized concentrations of (A) spermidine 
(log2 fold change = 2.27, p = .01) and (B) succinate (log2 fold change = 1.77, p = .001) in infant urine metabolomics by (C) volcano plot 
(combination of fold change and t-tests). (D) Linear regression of BMI at 12 months against normalized succinate concentration. 
Metabolite concentrations were normalized by median, log transformed and transformed with pareto scaling (mean-centered and 
divided by the square root of the standard deviation of each variable) with the software MetaboAnalyst.

e1857513-8 I. LAFOREST-LAPOINTE ET AL.



maternal ASB, which was only observed in this 
cluster.

In our study, broad shifts in bacterial community 
structure were significantly associated with infant 
BMI at one-year-old. We also identified nine bac-
terial taxa from Bacteroides sp. that were enriched 
(three ASVs) or depleted (six ASVs) at high levels 
of maternal ASB consumption, suggesting 
a mechanism of influence on infant weight gain 
involving specific taxa of the gut microbiome. The 
taxa Akkermansia municiphila and genus 
Bacteroides have previously been identified by var-
ious studies to be respectively decreased and 
enriched as a consequence of ASB 
consumption.27,30,31,38 Our results differ from pre-
vious findings for A. municiphila and suggest that 
Bacteroides patterns of enrichment or depletion 
might be species- or strain-specific, warranting 
further research with deeper resolution.

In contrast to the microbiome sequencing findings, 
functional links between ASB consumption and the 
gut microbiome were evident using the complete 
dataset. Untargeted metabolomic analysis yielded 
two related metabolites, spermidine and succinate, 
associated with ASB consumption in the urine of 
3 M-old infants (Figure 4). Of these, succinate was 
significantly and positively associated with infant BMI 

at one-year-old (Table 3, Figure 4d). Both metabolites 
are derivatives of putrescine, a relevant polyamine 
exerting a wide array of biological functions (e.g. 
gene regulation, stress resistance, cell proliferation 
and differentiation).39,40 Spermidine is known to be 
produced by gut-colonizing bacteria and can have an 
impact on host metabolism (e.g. increasing glucose 
homeostasis and insulin sensitivity, reducing adipos-
ity and hepatic fat accumulation) in obesity mouse 
models.41,42 Succinate is produced by bacterial fer-
mentation of dietary fibers in the gut.43 High levels 
of succinate within the gut lumen have been related to 
dysbiosis, inflammatory bowel disease (IBD) and 
intestinal inflammation in animal models by activat-
ing immune cells via succinate receptor 1 
(SUCNR1).43 Of these two metabolites, succinate 
was also found to mediate 29% of the effect of ASB 
exposure on BMI at 1-year. Of interest, high level of 
circulating succinate has been previously linked to 
obesity in humans.44 This exciting finding suggests 
that a common gut microbial metabolite previously 
associated with human obesity may play a role in 
infant weight gain linked to ASB consumption. 
These novel findings support a functional role of the 
gut microbiome in mediating the impact of ASB 
exposure on infant weight.

As reported by Bian et al.30,31 in two studies with 
adult mice, and by Nettleton et al.45 in a study on 
dams and their offspring, ASB has been shown to 
alter gut bacterial community composition 
(increase of Bacteroides and reductions of 
Lactobacillus and Clostridium) and increase body 
weight in parallel with an enrichment of energy 
metabolism bacterial genes. The functional cluster 
analyses by Bian et al.30,31 revealed activation of 
genes related to carbohydrate absorption and 
increases in metabolic pathways related to glycoly-
sis and sugar and xylose transport.30 Sucralose 
treatment resulted in an increase in bacterial pro- 
inflammatory mediator genes in mice.31 Likewise, 
Chi et al.38 found that consumption of the artificial 
sweetener neotame altered the alpha- and beta- 
diversity of mice gut microbiome, and led to 
a decrease in butyrate synthetic genes and changes 
to the fecal short chain fatty acids cluster.

Overall, accumulating evidence suggests that the 
alterations of host gut bacterial community struc-
ture through the consumption of ASB are reflected 
in bacterial and host metabolic gene clusters, which 

Table 3. Maternal consumption of ASB during pregnancy and 
urine succinate are associated with higher infant BMI at one-year 
-old. Linear models showing the explanatory power of maternal 
ASB consumption and urine succinate at 3 M old on infant BMI 
z-score at one year old, as well as the two main axes of ordina-
tion of bacterial community structure (beta-diversity) on samples 
acquired at 3 M and 12 M old. The full models are: [1]BMI at 1y ~ 
Succinate; [2]BMI at 1y ~ ASB + PCoA1 + PCoA2. Microbial 
variables were transformed (squared root and order quantile 
normalized respectively) to achieve normality. Here we present 
only the best model for 12 months fitted by stepwise selection 
by Akaike information criterion because we detected no associa-
tion between BMI at one year old and microbiota composition at 
3 M old.

Variables

Infant BMI z-score at 1 year Total 
adj. R2ß-est. 95% CI P-value R2

Model 1 
Urine succinate 
(3 months)

0.45 [0.15,0.76] 0.004 7.4% 7.4%

Model 2 
Maternal ASB (daily vs. 
no consumption)

0.42 [0.03,0.81] 0.037 4.1% 8.1%

PCoA axis 1 −0.71 [−1.40, 
−0.01]

0.048 3.9%

PCoA axis 2 NS NS NS NS
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might explain the increase in weight gain. Based on 
this evidence and our current results, we hypothe-
size that gestational exposure to ASB impacts infant 
gut bacterial communities either indirectly through 
disruption of vertical transmission of the maternal 
microbiome, or directly through lactation during 
breastfeeding. Additional work will determine if the 
bacterial compositional and metabolic changes 
associated with high maternal ASB consumption 
in our study are causally implicated in energy meta-
bolism dysregulation and infant body composition.

Overall, our study agrees with previous findings3 

that maternal consumption of artificial sweeteners 
is associated with a higher BMI at one-year-old, 
and suggests that the infant gut microbiome could 
play a role in this effect, especially for susceptible 
infants displaying a disrupted maturation trajectory 
of their gut microbiome and a high relative abun-
dance of Bacteroides. Our study confirms recent 
descriptions of infant microbiome development 
and confirms the influence of several known deter-
minants of the gut microbiome during the first year 
of life11–14,16,17,19 including maternal antibiotics, 
breastfeeding, birth mode and ethnicity.

The major strength of our study is the combination 
of state-of-the-art community typing analysis of the 
gut bacterial communities combined with the standar-
dized prospective evaluation of maternal ASB con-
sumption. Limitations of our study lie in risk of 
measurement error in self-reported dietary exposures 
and our inability to distinguish between different types 
of ASB or account for artificial sweeteners in foods. 
Also, we did not assess maternal diet after delivery, so 
we could not directly investigate the impact of prenatal 
ASB exposure in utero versus postnatal exposure 
through lactation.46,47 In addition, we used 16S ampli-
con sequencing to characterize the gut bacterial com-
munities. This method is limited in resolution as many 
recent studies have revealed that host-microbe and 
microbe-microbe interactions occur at species and 
subspecies-level variants.48,49 Finally, aside from the 
gut microbiome, various other physiological mechan-
isms are altered in rodent offspring after exposure to 
artificial sweeteners in utero21–24 (i.e. intestinal sugar 
absorption stimulation, increased postnatal weight 
gain, altered lipid profiles, downregulation of hepatic 
detoxification, and increased adulthood insulin resis-
tance). Future work should explore if the infant gut 

microbiome may contribute to the physiologic effects 
of artificial sweeteners.

In this study, we characterized the infant gut 
microbiome composition and function of 100 
infants and found evidence that maternal ASB con-
sumption during pregnancy might have unforeseen 
effects on infant gut microbiome development and 
body mass index during the first year of life. As we 
face an unprecedented rise in childhood obesity 
and related metabolic diseases, further research is 
warranted to understand the impact of artificial 
sweeteners on gut microbiome and weight gain, 
especially during critical periods of early 
development.

Material and methods

Study design and population

We used data and samples collected through the 
CHILD Cohort Study,50,51 a Canadian general 
population birth cohort (3621 families recruited 
across four provinces) including singleton pregnan-
cies (>35 weeks gestational age with no congenital 
abnormalities) enrolled from 2008 to 2012. From 
this cohort, we completed a case-control study by 
selecting 100 infants divided equally between 
mothers that reported little or no ASB consumption 
(less than one per month) or high ASB consumption 
(one or more per day) during pregnancy. The 
groups were balanced for six potential confounding 
factors known to influence the gut microbiome: 
infant sex, birth mode, breastfeeding at three and 
12 months, maternal BMI, and antibiotic use in 
infants before 12 months (antibiotics before three 
months old was an exclusion criterion; Table 1). To 
characterize the gut microbiome, stool samples were 
acquired at three and 12 months of age for a total of 
200 samples. This study was approved by the 
University of Calgary Conjoint Health Research 
Ethics Board (CHREB) and ethics committees at 
the Hospital for Sick Children, and the Universities 
of Manitoba, Alberta, and British Columbia. 
Written informed consent was obtained from 
mothers during enrollment to the CHILD Study.
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Maternal diet in pregnancy

Maternal dietary assessment in pregnancy has pre-
viously been described.3 Briefly, a food frequency 
questionnaire (FFQ) was completed during 
the second or third trimester and ASB consump-
tion was evaluated using reports of “diet soft drinks 
or pop” (i.e. soda) (serving = 12 oz/one can) and 
“artificial sweetener added to tea or coffee” (ser-
ving = 1 packet). Other dietary variables included: 
sugar-sweetened beverages, Healthy Eating Index 
(HEI) total score (see eMethods) added sugar and 
total energy intake.

Infant BMI

BMI was measured by CHILD staff to the nearest 
0.1 kg around one year of age (mean = 12.0 months 
± 0.8 [sd]) and height to the nearest 0.1 cm. Age- and 
sex-specific BMI-for-age z-scores were calculated fol-
lowing the World Health Organization reference.52

Other variables

The following variables were considered in univari-
able analyses (see eMethods): (1) infant’s sex, age at 
sample collection, breastfeeding duration (BF dura-
tion; months), breastfeeding status at three months 
(BF at 3 M; yes or no), diet at three and six months 
(Diet at 3 M and Diet at 6 M; both defined in 8 
categories allocated based on the presence in the 
infant’s diet of breastfeeding, formula, and solids), 
solids at three and six months (Solids at 3 M and 
Solids at 6 M), formula feeding at three months (FF 
at 3 M), number of antibiotic treatments received 
from six to twelve months (Child 6–12 abx), and 
secretor status (determined from the single nucleo-
tide polymorphism rs601338 in the FUT2 gene); (2) 
mother’s gestational diabetes, age, ethnicity, educa-
tion, oral antibiotics received during gestation 
(Mother gestational abx), intrapartum antibiotics 
(Mother intrapartum abx), and secretor status 
(rs601338 SNP); (3) study site, presence of cats, 
dogs, and older siblings in the house.

Fecal samples DNA extraction and sequencing

After collection, fecal samples were frozen and 
stored at −80ºC. We extracted gut microbial DNA 

from fecal samples using the DNeasy PowerSoil kit 
(QIAGEN) according to the manufacturer’s 
instructions and amplified the V4 region of the 
16S rRNA gene to generate ready-to-pool dual- 
indexed amplicon libraries as described 
previously53 (see eMethods). Using the DADA254 

pipeline, the final dataset contained 4,553,000 qual-
ity sequences, a mean (range) of 6,509 (22,995–-
68,265) sequences per sample identified as 954 
unique bacterial Amplicon Sequence Variants 
(ASVs). Samples contained a mean of 40 (10–95) 
unique ASVs per samples.

Urine untargeted metabolomics

We have applied an untargeted quantitative meta-
bolomics approach to analyze the samples using 
a combination of direct injection mass spectrome-
try with a reverse-phase LC-MS/MS custom assay. 
This custom assay, in combination with an ABSciex 
4000 QTrap (Applied Biosystems/MDS Sciex) mass 
spectrometer, can be used for the identification and 
quantification of up to 150 different endogenous 
metabolites including amino acids, acylcarnitines, 
biogenic amines & derivatives, uremic toxins, gly-
cerophospholipids, sphingolipids and sugars.55,56 

The method combines the derivatization and 
extraction of analytes, and the selective mass- 
spectrometric detection using multiple reaction 
monitoring (MRM) pairs. Isotope-labeled internal 
standards and other internal standards are used for 
metabolite quantification. The custom assay con-
tains a 96 deep-well plate with a filter plate attached 
with sealing tape, and reagents and solvents used to 
prepare the plate assay. First 14 wells were used for 
one blank, three zero samples, seven standards and 
three quality control samples. For all metabolites, 
samples were thawed on ice and were vortexed and 
centrifuged at 13,000x g. 10 µL of each sample was 
loaded onto the center of the filter on the upper 96- 
well plate and dried in a stream of nitrogen. 
Subsequently, phenyl-isothiocyanate was added 
for derivatization. After incubation, the filter spots 
were dried again using an evaporator. Extraction of 
the metabolites was then achieved by adding 300 µL 
of extraction solvent. The extracts were obtained by 
centrifugation into the lower 96-deep well plate, 
followed by a dilution step with MS running sol-
vent. Mass spectrometric analysis was performed 
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on an ABSciex 4000 Qtrap® tandem mass spectro-
metry instrument (Applied Biosystems/MDS 
Analytical Technologies, Foster City, CA) equipped 
with an Agilent 1260 series UHPLC system (Agilent 
Technologies, Palo Alto, CA). The samples were 
delivered to the mass spectrometer by an LC 
method followed by a direct injection (DI) method.

Statistical analysis

We used Dirichlet Multinomial Mixtures (DMM) 
modeling28 on 16S rRNA gene sequencing data to 
identify clusters of similar bacterial community 
structure amongst our samples (a technique known 
as community typing analysis, increasingly used in 
human microbiome studies10,57–59). This technique 
is increasingly employed in microbiome studies for 
three reasons: (1) identification of unique microbial 
clusters is unsupervised; (2) cluster size depends on 
metacommunity variability; and (3) adequate expli-
cit probabilistic model penalizes model complexity 
to optimize cluster number. The lowest Laplace 
approximation grouped our samples in four unique 
clusters (Figure 1–2 and eFigure 1).

The distribution of variables as well as the varia-
tion in bacterial richness (Chao 1), alpha-diversity 
(Shannon index), and community evenness 
(Shannon index/logn(species richness)) across the 
DMM clusters were examined by non-parametric 
Kruskal-Wallis tests followed by post-hoc Dunn 
tests or generalized linear models (glm) with 
a binomial/logistic distribution. To explore the 
changes in taxonomical community structure at 
a fine scale, we tested for significant differences in 
the relative abundance of the 10 most dominant 
bacterial genera across clusters using non- 
parametric Kruskal-Wallis tests followed by post- 
hoc Dunn tests with Benjamin-Holmes False 
Discovery Rate (FDR) correction. To account for 
potential heteroskedasticity in bacterial community 
dispersion between groups and avoid the loss of 
information through rarefaction,60 we performed 
a variance stabilizing transformation60,61 prior to 
any statistical tests on beta-diversity. To select vari-
ables that could be drivers of infant gut bacterial 
community structure, we tested for correlations 

between our variables and community scores on 
the Principal Component Analysis (PCoA) ordina-
tion axes in univariable models (envfit function of 
vegan62). The relative influence of the significant 
drivers of gut bacterial community structure was 
then assessed statistically in multivariate models 
using a Permutational Multivariate Analysis Of 
Variance (PERMANOVA based on Bray-Curtis 
dissimilarities; adonis function of vegan62) with 
999 permutations and visualized using PCoAs. We 
used DESeq2 (with Benjamini-Hochberg False 
Discovery Rate (FDR) correction) to test for differ-
entially abundant bacterial taxa according to mater-
nal ASB consumption on the 100 most relatively 
abundant bacterial taxa to limit spurious signifi-
cance driven by very rare ASVs. Finally, we used 
linear models on the 3 M and 12 M-old samples to 
test for the influence of maternal ASB consump-
tion, urine metabolites, and microbial ordination 
axes (PCoA1 and PCoA2) on infant BMI z-score. 
We performed the mediation analysis using 
“Succinate” as mediator and “ASB” as mediated 
with the mediation package. All analyses and 
graphs were computed in R version 3.6.1 (R 
Development Core Team; http://www.R-project. 
org) and MetaboAnalyst29 for the metabolomics.
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