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Currently, there are many effective pharmacological treatments for generalized anxiety disorder (GAD), formulated herbal
granule is also an alternative way. Our research intends to construct a pharmacological network on genetic targets and pathways
between Jiu Wei Zhen Xin Formula (JWZXF) and GAD. ,rough the TCMSP database, we collected the active ingredients of
JWZXF and potential targets of the active ingredients. ,e GAD-related proteins collected from GeneCards database and
DisGeNETdatabase were combined. Component-target protein networks were constructed and visualized using Cytoscape 3.8.2
software to comprehensively clarify the relationships between ingredients, components, and targets. ,e intersection targets were
imported into the STRING database, and the protein-protein interaction (PPI) network was constructed. We constructed and
analyzed the visualized “drug-target-disease” network. Gene Ontology (GO) enrichment together with Kyoto encyclopedia of
genes and genomes (KEGG) enrichment analysis were conducted on the common target through R language. Forty-one effective
components and 106 potential targets of JWZXF were found. ,ere were top ten hub genes and multiple important signaling
pathways involved in the treatment of GAD with the JWZXF. ,is study expounded the pharmacological actions and molecular
mechanisms of the JWZXF in treating GAD from a holistic perspective. ,e potential pharmacological effects of the JWZXF are
closely related to regulation because not only does it comprehensively analyze the possible mechanism of JWZXF treatment of
GAD but it can also facilitate further in-depth research and provide a theoretical basis for the clinical expansion of its application.

1. Introduction

Generalized anxiety disorder (GAD) is a chronic mental
disorder characterized by excessive tension, worry, and
feelings of apprehension that last at least six months. ,e
term GAD was first used in ICD-9; it got the attention of
clinical researchers with the publication of DSM-III [1].
Later, DSM-V stated that individuals with GAD might
experience restlessness, be easily fatigued, have difficulty
concentrating, experience irritability, muscle tension, or
sleep disturbance [2]. It is a chronic disease that is prevalent
worldwide, with a combined lifetime prevalence of 3.7%, 12
months prevalence of 1.8%, 30 days prevalence of 0.8%, and

comorbidity of 81.9%, respectively [3]. In urban China, the
prevalence of GAD was 5.3%, with a low diagnosis rate [4].
Currently, many studies that focused on the effective phar-
macological treatments of GAD mainly include selective
serotonin reuptake inhibitors (SSRIs), serotonin-norepi-
nephrine reuptake inhibitors (SNRIs), quetiapine, agomela-
tine, benzodiazepines, buspirone, and pregabalin [5, 6].
Among them, escitalopram and paroxetine of SSRIs, and
venlafaxine and duloxetine of SNRIs are the most studied,
respectively. However, those medicines may not be well
tolerated in GAD patients [7], and both SSRIs and SNRIs are
associated with decreased efficacy at higher doses [8]. Al-
though there are many recommended pharmacological
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treatments of GAD, they inevitably have some side effects and
may even aggravate treatment-resistant patients. Comple-
mentary and alternative medicine (CAM) treatments are now
recognized as an efficient alternative treatment [9]. Herbal
medicine as a part of CAM is beneficial to the GAD, with an
abundance of researchers highlighting the molecular mech-
anisms, signaling pathways, and neurotrophic factors in
mental disorders [10–12]. Novel approaches like pharmaco-
genetics and pharmacoepigenetics are safer and may improve
the treatment response while reducing the socioeconomic
burden [13]. A meta-analysis revealed Jiu Wei Zhen Xin
Formula (JWZXF) and concluded that a formulated herbal
granule is less effective than SSRIs but is safer [14]. ,is
research intends to construct a pharmacological network on
JWZXF andGAD genetic targets and reveal their relationship.

2. Materials and Methods

2.1. Identification and Screening Strategy of Candidate
Components in the JWZXF. ,e components of interest re-
garding the JWZXF were extracted based on their botanicals,
which are Panax ginseng C. A. Mey (P.G.), Ziziphi Spinosae
Semen (Z.S.S.), Schisandrae chinensis Fructus (S.C.F.), Poria
cocos Wolf (P.C.W.), Polygala tenuifolia Willd (P.T.W.),
Corydalis Rhizoma (C.R.),Asparagi radix (A.R.), Rehmanniae
radix Praeparata (R.R.P.), and Cinnanmomi cortex (C.C.).
,e total component list of each ingredient was identified
from the TCMSP [1] (Traditional Chinese Medicine Systems
Pharmacology https://tcmsp-e.com/) database and TCM-ID
(TCM-information database https://bidd.group/TCMID/
index.html); due to the lack of component information of
P.T.W in TCMSP database, we inquired and listed P.T.W
component information from TCM-ID. Subsequently, we
identified the ADME (absorption, distribution, metabolism,
and excretion) properties from the TCMSP database based on
the candidate components’ information. Currently, drug-
likeness (DL) evaluation (e.g., Lipinski’s rule of five, Opera’s
rules of DL, and the ROES filter) is integrated into compu-
tational drug design/discovery pipelines. In this study, four
main filtering criteria have been implemented in our research
and used to screen components that could be involved in the
central nervous regulation.

With a DL value higher than 0.18, oral bioavailability
value higher than 30%, half-life time longer than four hours,
and blood-brain barrier (BBB) penetration rate >0.3 can be
retained as candidate components for subsequent analysis
[15]. Finally, 41 active components were screened for target
predictions within which three common components (CM1,
CM2, and CM3), and 106 related targets were identified after
removing repetitions, UniProt database (https://www.
uniprot.org) was used to convert and calibrate protein
names into gene official symbols that are potential genetic
targets of the JWZXF.

2.2. Disease Target Prediction. With “generalized anxiety
disorder” as the keyword, from the databases, GeneCards
(https://www.genecards.org/) filtered from its highest “rel-
evance score” to the third quartile that retrieved 1338 items

and DisGeNET (https://www.disgenet.org/search, update by
May 2020, v7.0) filtered by its “Score_gda” needed to be
greater than and equal to 0.8 to help identify 1594 items.,e
GAD-related proteins collected from the GeneCards and the
DisGeNET databases were combined to finally obtain 1977
related genetic targets (without duplication), after using the
UniProt database to convert and calibrate gene names to
official gene symbols, which are the potential genetic targets
of GAD.

2.3. Network Construction and Analysis. Combining the
result of potential target proteins of the JWZXF from above
with the GAD-related proteins, we took the intersection of
two datasets and found 50 drugs with shared targets.
Component-target protein networks were constructed and
visualized using Cytoscape 3.8.2 software to comprehen-
sively clarify the relationships between ingredients, com-
ponents, and targets. ,is showed common components of
ingredients and off-target components.

,e software allows data integration to analyze and
visualize complex interactive networks. In these networks,
nodes represent components, proteins, pathways, and GAD,
while edges represent their interactions.

2.4. Construction of the Protein-Protein Interaction (PPI)
Network and Analyses of Topological Properties. ,e inter-
section targets were imported into STRING (version 11.5
https://string-db.org/cgi/) database, with the “species” set as
“Homo sapiens.” Under the condition that the lowest in-
teraction score was equal to 0.400, the TSV result file of
protein to protein interactions was obtained, and the PPI
network was constructed using the Cytoscape 3.8.2 software.
,e topological attributes of the PPI network were analyzed,
and the value (degree) was calculated, representing the
number of connected nodes.

Based on the PPI network, we can use the Cytoscape
plug-in to extract subnetwork and hub genes. Cytoscape
MCODE plug-in based on the K-core algorithm can be used
to find clusters (highly interconnected regions) in a network
(degree cutoff� 2, max. Depth� 100, K-core� 2 and node
score cutoff� 0.2). After extracting the subclusters of PPI, we
use the DAVID (version 6.7 October 31, 2020, https://david.
ncifcrf.gov/) database to analyze those subcluster interac-
tions and reveal the biological processes of each cluster.

Meanwhile, using CytoHubba plug-in to identify hub
genes: we used the maximum cluster centrality (maximum
clique centrality, MCC) algorithm to screen hub genes. MCC
algorithm integrates 11 topology analysis methods and six
centrality analysis methods, which produced high accuracy.

2.5. Kyoto Encyclopedia of Genes and Genomes (KEGG) En-
richment Analysis. KEGG is a database that systematically
analyzes the metabolic pathways and functions of gene
products in cells. ,e KEGG database helps study genes and
express information as a complete network by integrating
data from genomes, chemical molecules, and biochemical
systems, including metabolic pathways, drugs, diseases, gene
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sequences, and genomes. We selected the DAVID online
database to implement the KEGG enrichment analysis.

,e intersection genes were introduced into the DAVID
database, the “select identifier” was set to “official gene
symbol,” “list type” was set to “gene list,” with the species
defined as Homo sapiens, P-value ≤0.05 was set as the initial
selection threshold. KEGG pathway enrichment analysis was
realized, and the ascending order was sorted following the
FDR to screen for the top 12 information pathways (ggplot2
package of R).

2.6. Gene Ontology (GO) Analysis. To study meaningful
functional annotation and biological characteristics of po-
tential targets, GO enrichment analysis was conducted to
extract key GO terms (BP: biological process, MF: molecular
function, CC: cellular components). In this case, we chose to
use the DAVID database to conduct an online analysis that
would allow researchers to use the KEGG enrichment to-
gether with the GO analysis. ,e targets, organized and
condensed into several functional groups as denoted by their
most significant leading term, were visualized in the net-
work. ,e GO terms that had a P-value ≤0.05 were regarded
significant and were studied further. Finally, we listed the top
15 GO terms sorted in the ascending order of FDR.

3. Results

3.1. Screeningof theEffectiveCompoundsandPotentialTargets
of JWZXF. ,e effective components were extracted based
on the criteria we mentioned before, Table 1 lists out the
potential effective components from the JWZXF. We also
discovered that ingredient C.C did not contain any com-
ponent that fulfilled our ADME selection criteria.

3.2. Component-Target Protein Network Construction and
Analysis. We used the data extracted above and Cytoscape
3.8.2 software to build a component-target protein network,
which contains 151 nodes (1 formula name, 9 ingredients, 41
effective components, and 106 potential targets of JWZXF),
and 528 edges with the size of node based on its degree value
is clearly represented in Figure 1. In the central layer of this
network, the blue diamond represents target proteins from
the center to the outside. Each layer represents common
molecules with red hexagons, unique molecules of each
ingredient with pink red, orange, yellow, green, lavender,
rose red hexagons, ingredients with bluish-purple triangles,
and off-target molecules of each ingredient, respectively.
From the “common molecules” layer, stigmasterol (CM1)
was present in P.G., A.R., and R.R.P.; sitosterol (CM2) was
present in C.R., A.R., and R.R.P.; and beta-sitosterol (CM3)
was present in P.G. and A.R. From the “molecules” layer,
C.R. contains more active components than other ingre-
dients with relatively higher degree values.

3.3. Protein-Protein Interaction Network of Targets.
Proteins normally regulate their physiological functions
through protein-protein interactions and other pathways. To

better reveal the mechanism of the JWZXF in treating GAD,
STRING, a database designed to collect and integrate all
functional interactions between expressed proteins by in-
tegrating known and predicted protein-protein association
data from a large number of organisms, was used. ,e in-
tersection targets obtained above were entered into the
STRING database, the PPI data obtained from the STRING
database were imported into the software Cytoscape 3.8.2, to
construct a PPI network related to GAD (with 49 nodes and
218 edges, one free node was removed) that is represented in

Table 1: Active components identified from nine herbs.

Ingredients Number Components (abbreviations)

Panax ginseng C. A.
Mey. (P.G.) 7

Stigmasterol (CM1),
Beta-sitosterol (CM3),

Inermin (P.G.1),
Arachidonate (P.G.2),
Frutinone A (P.G.3),
Girinimbin (P.G.4),

Alexandrin_qt (P.G.5)
Ziziphi Spinosae
semen (Z.S.S.) 2 Daucosterol (Z.S.S.1),

Phytosterol (Z.S.S.2)
Schisandrae
chinensis fructus
(S.C.F.)

2 Angeloylgomisin O (S.C.F.1),
Wuweizisu C (S.C.F.2)

Poria cocos (schw.)
wolf. (P.C.W.) 2

Ergosta-7,22e-dien-3beta-ol
(P.C.W.1),

Hederagenin (P.C.W.2)

Polygala tenuifolia
Willd (P.T.W.) 6

4-Methoxycinnamic acid
(P.T.W.1),

Onjixanthone I (P.T.W.2),
Perlolyrine (P.T.W.3),

Trans-asarone (P.T.W.4),
1,7-Dihydroxyxanthone

(P.T.W.5),
Trans-asarone (P.T.W.6)

Corydalis rhizoma
(C.R.) 16

Stigmasterol (CM1),
Sitosterol (CM2),
Berberine (C.R.1),
Coptisine (C.R.2),
Cryptopin (C.R.3),

Dihydrochelerythrine (C.R.4),
Dihydrosanguinarine (C.R.5),

Cavidine (C.R.6),
(R)-canadine (C.R.7),

(-)-alpha-N-
methylcanadine (C.R.8),
Dehydrocavidine (C.R.9),

Leonticine (C.R.10),
24240-05-9 (C.R.11),
Stylopine (C.R.12),

Tetrahydrocorysamine (C.R.13),
C09367 (C.R.14)

Asparagi radix
(A.R.) 4

7-Methoxy-2-methylisoflavone
(A.R.1),

Stigmasterol (CM1),
Sitosterol (CM2),

Beta-sitosterol (CM3),
Rehmanniae radix
praeparata (R.R.P.) 2 Stigmasterol (CM1),

Sitosterol (CM2)
Cinnanmomi cortex
(C.C.) 0 —
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Figure 2(a). ,en, the Cytoscape MCODE plug-in based on
the K-core algorithm was used to find clusters (highly
interconnected regions) in a network. After calculation, five
subcluster interactions were obtained which have network
feature scores from 3.333 to 4.625, in the meantime, the
DAVID database was used to analyze those subcluster in-
teractions and to reveal the biological process of each cluster
represented in Figure 2(b). With the help of Cytoscape
CytoHubba plug-in under the algorithm of MCC, the top 10
hub genes found in the PPI network are represented in
Table 2.,e hub gene interaction with its neighbor genes are
represented in Figure 3.

3.4. Kyoto Encyclopedia of Genes and Genomes Functional
Enrichment Analysis and Gene Ontology Analysis. To mac-
roscopically and comprehensively understand the biological
function of the active ingredient target in the JWZXF, we
implemented the GO functional enrichment analysis and
KEGG pathway enrichment analysis on intersection targets.
,e results were mapped using the R software as bar plot and
bubble plots for both KEGG and GO analysis. ,e top 12
pathways were screened based on the parameter of counts, as
well as in combination with FDR-values in Figure 4, in-
cluding neuroactive ligand-receptor interaction (hsa04080),
serotonergic synapse (hsa04726), nicotine addiction
(hsa05033), cocaine addiction (hsa05030), morphine ad-
diction (hsa05032), retrograde endocannabinoid signaling

(hsa04723), calcium signaling pathway (hsa04020), cAMP
signaling pathway (hsa04024), amphetamine addiction
(hsa05031), dopaminergic synapse (hsa04728), GABAergic
synapse (hsa04727), and estrogen signaling pathway
(hsa04915).

,e GO analysis showed that the result of BP was sig-
nificantly enriched in response to drug (GO:0042493), re-
sponse to cocaine (GO:0042220), response to estradiol (GO:
0032355), chemical synaptic transmission (GO:0007268),
gamma-aminobutyric acid signaling pathway (GO:
0007214), and so on. CC was significantly enriched in the
plasmamembrane (GO:0005886), integral component of the
plasma membrane (GO:0005887), postsynaptic membrane
(GO:0045211), GABA-A receptor complex (GO:1902711),
cell junction (GO:0030054), and so forth. MF was signifi-
cantly enriched in extracellular ligand-gated ion channel
activity (GO:0005230), drug binding (GO:0008144), GABA-
A receptor activity (GO:0004890), dopamine binding (GO:
0035240), serotonin binding (GO:0051378), and the like.
Based on the FDR value, the top 15th BPs, CCs, and MFs are,
respectively, presented in Figures 5–7.

4. Summary and Discussion

Establishing the PPI network of the JWZXF andGAD revealed
different pathways, as Figure 2(b) demonstrates that GABA
signaling is a crucial pathway. ,e prolonged c-aminobutyric
acid (GABA) transmitter regulatory dysfunction in the animal
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Figure 1: Component-target protein network. ,e hexagons represent the 41 candidate compounds in the Jiu Wei Zhen Xin formula
(JWZXF). ,e blue diamond represents the genetic names of the target proteins of the nine herbs found by text mining.
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and human brain contributes to anxiety disorders, especially in
limbic systems. Brain circuits in the amygdala are thought to
contain an inhibitory network of gamma-aminobutyric acid
(GABAergic) interneurons, and thus this neurotransmitter
plays a key role in regulating anxiety responses in both normal
and pathological states [16]. Reducing GABA-mediated in-
hibition is one of the effective methods available for the
modulation of neuronal excitability [17]. Many researchers
have expressed great interest in developing novel medications
acting on different subtypes of GABA receptors to manage
GAD [18, 19] (Figure 8). Significantly, in second place are the
pathways of chemical synaptic transmission and membrane
depolarization during the action potential.,e excitability and
modulation of nerve synapses and the effective release of
neurotransmitters also act on anti-anxiety [20, 21]. Psychiatric

disorders are closely related to synaptic genes; additionally,
mutations of the synaptic genes are also considered as risk
factors for mental illness [22]. Moreover, GAD is mostly as-
sociated with peripheral inflammatory responses and changes
in synaptic transmission profoundly affect these inflammatory
responses [23]. Depolarization of the cell membrane potential
can cause the alteration of neural connectivity, circuit, and
neuron growth, which leads to neurological diseases [24].
Changes in the membrane potential that regulate brain
metabolism can cause a series of pathophysiological processes,
homeostatic alteration effectively acts on the whole body to
reduce anxiety disorder [24, 25]. Moreover, evidence reveals
that neuropsychiatric diseases bring about a dysregulation of
the dopamine system and pathways [26].

,rough the PPI network, the influence and effect of the
JWZXF on several important pathways of GADwas observed.
Many classical antipsychotic medications have a regulatory
effect on the GABA pathway, and the JWZXF primarily acts
on this pathway as well. Many studies now focus on finding
new medications that selectively act on GABA subunit re-
ceptors of benzodiazepine (BZD) anxiolytics that have ob-
vious side effects [18]. We must consider whether the active
ingredients of JWZXF action GABA with a broad or selective
spectrum are worthy of further discussion. As previously
mentioned, selected active ingredients can all pass through the
BBB which act on the central nervous system, but the pe-
ripheral regulation cannot be ignored in the treatment of
GAD. In the future, more experiments and research should be
conducted by applying JWZXF to influence both central
nervous system and peripheral nerves.
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Figure 2: PPI network of JWZXF in the treatment of GAD-related proteins (a) and MCODE analysis of the PPI network and their
corresponding GO biological processes (b).

Table 2: Top 10 hub genes ranked by MCC scores in the PPI
network.

Ranks Gene symbol Score
1 MAOA 1536
2 MAOB 1394
3 HTR3A 1260
4 DRD2 1220
5 HTR2A 1038
6 CASP3 796
7 SLC6A4 717
8 SLC6A3 691
9 JUN 673
10 ESR1 629
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Figure 3 depicts the relationship among hub genes and
their neighbors, as Table 2 reveals that the top 10 hub genes
ranked by MCC sores in the PPI network are MAOA,
MAOB, HTR3A, DRD2, HTR2A, CASP3, SLC6A4, SLC6A3,
JUN, and ESR1, respectively. GAD is a heritable disorder

with a risk of series genes [27]. In the psychotherapy-epi-
genetic aspect, JWZXF is more involved in the monoamine
oxidase genes, which are key enzymes to degrade neuro-
transmitters, and levels of MAOA gene methylation may be
related to the categories and severity of the neuropsychiatric
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Figure 3: Top 10 hub genes with their neighboring gene interactions. ,e blue circles are the neighbor gene, red and yellow circles are the
hub gene, and the color changes from dark to light according to the MCC score from high to low.
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Figure 4: KEGG enrichment analysis of the identified JWZXF in GAD treatment by DAVID database, ranked by an FDR value from low to
high.
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disorder [28, 29]. ,e activity genotype of the MAOA gene
also correlates with emotional stability, impulse control, and
emotion control [30]. HTR3A and HTR3B genes, which
code subunits of serotonin receptors and their polymor-
phisms, may serve as predictors of 5-HT3 antagonists and
SSRIs as well [31–33]. Some researchers demonstrated that
the loss of the HTR3A gene or HTR3A inactivation can
induce anxiolytic-like features that have comparability of 5-
HT3 antagonists [34]. More interestingly, anxiety disorder
and pain share the same pathway that gives us more chance
to focus on the polymorphism of theHTR3A gene to manage
chronic pain [31, 35, 36]. DRD2 is also a risk gene related to

GAD and may predict mental disorders at an early age
[37, 38]. SLC6A4 gene, which is a serotonin transporter gene,
encodes a membrane protein through the transportation of
serotonin to play a role in GAD [39, 40]. Additionally,
caspase-3 action on neuronal metabolism is also significant
to GAD [41].

,e hub gene targets associated with the active
components of the JWZXF mainly act on monoamine
oxidase and serotonin receptors, especially selective 5-
HT3 receptors. It is difficult to determine how the JWZXF
affects the pharmacokinetics of monoamine oxidase; so,
JWZXF may have a monoamine oxidase inhibitor-like
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according to the FDR value sorted from small to large.
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component. Drug interactions between the JWZXF and
other drugs should be looked into [42, 43]. However, for
patients with anxiety and chronic pain, such as fibro-
myalgia, JWZXF can regulate pain by acting on the HTR3
gene, making it a good choice when GAD is combined
with chronic pain.

,e KEGG pathway enrichment analysis showed
multiple signaling pathways involved in the treatment of
GAD with JWZXF. Particularly, the neuroactive ligand-
receptor interaction, serotonergic synapse, calcium sig-
naling pathway, and the cAMP signaling pathway, in
which JWZXF-associated hub gene targets closely related
to GAD were enriched. ,e neuroactive ligand-receptor
interaction triggers intracellular signaling that modulates
important gene expression dedicated to neural plasticity
and stress processing that leads to emotional disorders
[44, 45]. A higher level of the neuroactive ligand-receptor
interaction gene expression can reduce anxiety-related
behavior [46]. ,rough up- and downregulated signal
pathways in the prefrontal cortex, neuroactive ligand-
receptor interaction and serotonergic synapse may relate
to the susceptibility and resilience of stress [47]. Notably,
neurotransmitters also act on different calcium pathways
which channels Cav 1.2 and Cav 1.3 are key signal
pathways in neuro. Calcium activates calcium senor
calmodulin, then, Ca+ combines with CaM-dependent
protein kinases. ,e Ca+/CaM-dependent protein kinases
is activated in a successive way. Additionally, cascade

pathways of Ras/mitogen-activated protein kinase and
cAMP-responsive element-binding protein (CREB) to
make gene expression are related to neuronal plasticity
and GAD [48, 49] (Figure 9).

5. Conclusion

,is study investigated the molecular mechanism of the
JWZXF in the treatment of GAD by establishing multiple
network models. Studies have shown that the most ef-
fective ingredient of the JWZXF in treating GAD is Co-
rydalis, and the most involved compounds may be
stigmasterol, sitosterol, and beta-sitosterol. ,e potential
pharmacological effects of the abovementioned active
compounds are closely related to regulated GABA re-
ceptors, dopamine receptors, chemical synaptic trans-
mission, and membrane depolarization during action
potential. Gene MAOA, MAOB, HTR3A, DRD2, HTR2A,
CASP3, SLC6A4, and SLC6A3 are possible targets of
treatment by the JWZXF. Additionally, JWZXF may
primarily modulate the neuroactive ligand-receptor in-
teraction, serotonergic synapse, calcium signaling path-
way, and cAMP signaling pathway. ,e network
pharmacology analysis of JWZXF treatment of GAD is of
great significance. Not only does it holistically analyze the
possible mechanism of JWZXF treatment of GAD, it also
facilitates further in-depth research and provide a theo-
retical basis for the clinical expansion of its application.
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GAD: Generalized anxiety disorder
SSRIs: Selective serotonin reuptake inhibitors
SNRIs: Erotonin-norepinephrine reuptake inhibitors
CAM: Complementary and alternative medicine
JWZXF: Jiu Wei Zhen Xin formula
P.G.: Panax ginseng C. A. Mey
Z.S.S.: Ziziphi spinosae semen
S.C.F.: Schisandrae chinensis fructus
P.C.W.: Poria cocos wolf
P.T.W.: Polygala tenuifolia willd
C.R.: Corydalis rhizoma
A.R.: Asparagi radix
R.R.P.: Rehmanniae radix praeparata
C.C.: Cinnanmomi cortex
TCMSP: Traditional Chinese Medicine Systems

Pharmacology
TCM–ID: TCM-Information database
ADME: Absorption, distribution, metabolism, and

excretion
DL: Drug-likeness
BBB: Blood-brain barrier
PPI: Protein-protein interaction
MCC: Maximum clique centrality
KEGG: Kyoto encyclopedia of genes and genomes
GO: Gene ontology
BP: Biological process
MF: Molecular function
CC: Cellular components
CM1: Stigmasterol
CM2: Sitosterol
CM3: Beta-sitosterol
P.G.1: Inermin
P.G.2: Arachidonate
P.G.3: Frutinone
P.G.4: Girinimbin
P.G.5: Alexandrin_qt
C.R.1: Berberine
C.R.2: Coptisine
C.R.3: Cryptopin
C.R.4: Dihydrochelerythrine
C.R.5: Dihydrosanguinarine
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C.R.7: (R)-Canadine
C.R.8: (-)-Alpha-N-methylcanadine
C.R.9: Dehydrocavidine
C.R.10: Leonticine
C.R.11: 24240-05-9
C.R.12: Stylopine
C.R.13: Tetrahydrocorysamine
C.R.14: C09367 (C.R.14)
P.T.W.1: 4-Methoxycinnamic acid
P.T.W.2: Onjixanthone I
P.T.W.3: Perlolyrine
P.T.W.4: Trans-asarone
P.T.W.5: 1,7-Dihydroxyxanthone
P.T.W.6: Trans-asarone
A.R.1: 7-Methoxy-2-methylisoflavone

P.T.W.1: 4-Methoxycinnamic acid
P.T.W.2: Onjixanthone I
P.T.W.3: Perlolyrine
P.T.W.4: Trans-asarone
P.T.W.5: 1,7-Dihydroxyxanthone
P.T.W.6: Trans-asarone
P.C.W.1: Ergosta-7,22E-dien-3beta-ol
P.C.W.2: Hederagenin
Z.S.S.1: Daucosterol
Z.S.S.2: Phytosterol
S.C.F.1: Angeloylgomisin O
S.C.F.2: Wuweizisu C
GABA: c-Aminobutyric acid
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CREB: CAMP-responsive element-binding protein.
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[24] N. Özkucur, K. P. Quinn, J. C. Pang et al., “Membrane po-
tential depolarization causes alterations in neuron arrange-
ment and connectivity in cocultures,” Brain and Behavior,
vol. 5, no. 1, pp. 24–38, 2015.

[25] R. Jerath,M.W. Crawford, V. A. Barnes, and K. Harden, “Self-
regulation of breathing as a primary treatment for anxiety,”
Applied Psychophysiology and Biofeedback, vol. 40, no. 2,
pp. 107–115, 2015.

[26] A. A. Grace, “Dysregulation of the dopamine system in the
pathophysiology of schizophrenia and depression,” Nature
Reviews Neuroscience, vol. 17, no. 8, pp. 524–532, 2016.

[27] M. G. Gottschalk and K. Domschke, “Genetics of generalized
anxiety disorder and related traits,” Dialogues in Clinical
Neuroscience, vol. 19, no. 2, pp. 159–168, 2017.

[28] C. Ziegler, J. Richter, M. Mahr et al., “Maoa gene hypo-
methylation in panic disorder—reversibility of an epigenetic
risk pattern by psychotherapy,” Translational Psychiatry,
vol. 6, no. 4, p. e773, 2016.

[29] C. Ziegler and K. Domschke, “Epigenetic signature of maoa
and maob genes in mental disorders,” Journal of Neural
Transmission, vol. 125, no. 11, pp. 1581–1588, 2018.
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