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Background: Radiomics is characterized by high-throughput extraction of texture

features from medical images and the mining of information that can potentially be used

to define neuroimaging markers in many neurological or psychiatric diseases. However,

there have been few studies concerning MRI radiomics in post-traumatic stress disorder

(PTSD). The study’s aims were to appraise changes in microstructure of the medial

prefrontal cortex (mPFC) in a PTSD animal model, specifically single-prolonged stress

(SPS) rats, by using MRI texture analysis. The feasibility of using a radiomics approach

to classify PTSD rats was examined.

Methods: Morris water maze and elevated plus maze were used to assess behavioral

changes in the rats. Two hundred and sixty two texture features were extracted

from each region of interest in T2-weighted images. Stepwise discriminant analysis

(SDA) and LASSO regression were used to perform feature selection and radiomics

signature building to identify mPFC radiomics signatures consisting of optimal features,

respectively. Receiver operating characteristic curve plots were used to evaluate the

classification performance. Immunofluorescence techniques were used to examine the

expression of glial fibrillary acidic protein (GFAP) and neuronal nuclei (NeuN) in the mPFC.

Nuclear pycnosis was detected using 4
′
,6-diamidino-2-phenylindole (DAPI) staining.

Results: Behavioral results indicated decreased learning and spatial memory

performance and increased anxiety-like behavior after SPS stimulation. SDA analysis

showed that the general non-cross-validated and cross-validated discrimination

accuracies were 86.5% and 80.4%. After LASSO dimensionality reduction, 10

classification models were established. For classifying PTSD rats between the control

and each SPS group, these models achieved AUCs of 0.944, 0.950, 0.959, and 0.936.

Among four SPS groups, the AUCs were 0.927, 0.943, 0.967, 0.916, 0.932, and 0.893,

respectively. The number of GFAP-positive cells and intensity of GFAP-IRwithin themPFC
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increased 1 day after SPS treatment, and then decreased. The intensity of NeuN-IR

and number of NeuN-positive cells significantly decreased from 1 to 14 days after SPS

stimulation. The brightness levels of DAPI-stained nuclei increased in SPS groups.

Conclusion: Non-invasive MRI radiomics features present an efficient and sensitive way

to detect microstructural changes in the mPFC after SPS stimulation, and they could

potentially serve as a novel neuroimaging marker in PTSD diagnosis.

Keywords: post-traumatic stress disorder, magnetic resonance imaging, radiomics, texture analysis, medial

prefrontal cortex, single prolonged stress

INTRODUCTION

Post-traumatic stress disorder (PTSD) is a trauma and stressor-
related disorder that results in complex somatic, cognitive,
affective, and behavioral effects after exposure to traumatic events
(1, 2). The typical symptoms of PTSD include re-experiencing
trauma, increased alertness, persistent avoidance, and negative
alterations in cognition or emotion (2, 3). While for the majority
of individuals, these symptoms resolve within several weeks
or months after exposure to trauma, ∼10–20% of individuals
experience PTSD symptoms that persist and are associated
with impairment (4). In recent years, owing to the frequent
occurrence of severe stress events, such as military combat,
serious natural disasters, notable diseases, and major traffic
accidents, the incidence of PTSD has increased (5).

The coronavirus disease 2019 (COVID-19) pandemic
has posed unprecedented challenges to healthcare systems
worldwide, and a relatively high proportion (7–53.8%) of PTSD
has been reported in the general population during the COVID-
19 pandemic in countries including China, Turkey, Spain, Italy,
Nepal, Iran, the United States, and Denmark (6, 7). PTSD is
closely associated with a patient’s physical or psychological
health problems and social dysfunction (8, 9), and it has attracted
increasing attention from many research fields.

At present, the diagnostic criteria and assessments for PTSD
rely on clinical interviews or subjective reports from the affected
subjects, and occasionally on relevant collateral information from
patients’ intimates, using the fifth edition of the Diagnostic and
Statistical Manual of Mental Disorders (DSM-5) or comparable
criteria (10). Despite study having suggested that the DSM-
5 description is an improvement over the previous model, it
still may not represent the true underlying factor structure of
PTSD (11). Due to the heterogeneity of patients, their differing
experiences of different traumatic events, and different diagnostic
criteria, the findings of pertinent studies are difficult to generalize
and interpret with clinical significance (12). In addition, a
reliable assessment is closely correlated with the experience of the
assessing clinician (1).

In neuroimaging, magnetic resonance spectroscopy (MRS),
resting-state functional magnetic resonance imaging, voxel-
based morphometry, and diffusion tensor imaging have
demonstrated abnormalities and dysfunction in different brain
regions in PTSD patients (13–17). A previous MRS study
conducted by us found that neurometabolite abnormalities in
the amygdala and hippocampus were involved in a PTSD rat

model (18). It is unfortunate that the limitations of these MRI
techniques, such as hardware or software limitations, accuracy,
reproducibility, or complicated sequences, have seriously
hindered their clinical application in the field of PTSD. As a
useful and valuable radiological examination, conventional MRI
[T1- or T2-weighted (T2W) imaging] is widely used in clinical
neurology. However, conventional MRI has little value for the
diagnosis of psychiatric diseases such as PTSD, and there are
currently no objective diagnostic tests available.

The term radiomics, which was first introduced by Lambin
et al. (19), refers to the high-throughput processing and analysis
of quantitative data extracted from medical images with a view
to discovering meaningful associations between these data and
particular disease features. Radiomics has been widely applied
in the management of a wide range of cancers, and it can
improve the accuracy of diagnosis, evaluate therapeutic effects,
and assess overall prognosis (20–25). Furthermore, emerging
clinical and experimental studies have shown that MR texture
analysis (MRTA) can be used to as neuroimaging markers for
many neurological diseases (26–31); it can provide an early, non-
invasive, and accurate method to detect many neurodegenerative
diseases because it can detect unseen or subtle signal changes and
thus obtain latent image information (32–35). Sørensen et al. (36)
has indicated that the major hallmarks (neurofibrillary tangles
and amyloid-bpeptide) cannot be observed with conventional
MRI in the early stages of Alzheimer’s disease (AD), but their
accumulated effects on the brain tissue can cause changes in
image pixel distribution or intensity. These changes can form
certain texture patterns in MRI images, and these can be
captured by texture analysis (36). Our previous study showed
that the differences in texture features in the neostriatum
between Parkinson’s disease (PD) patients and healthy controls
and radiomics signatures based on conventional T2W images
possessed good diagnostic performance for PD (37). However,
there have been few studies concerning MRTA in PTSD, and it
is not yet clearly understood whether a medial prefrontal cortex
(mPFC) radiomics approach based on T2W images can be used
to classify PTSD in rats.

The mPFC, which is receives extensive projections from
limbic regions and seems to be a brain region that is
highly sensitive to stress- or anxiety-related behaviors (38).
Neuropathological studies have shown that alterations of
structure and function in the mPFC can lead to decreases in the
ability of the mPFC to regulate the amygdala, leading to over-
response to fear stimulation in the amygdale (17, 39). Moreover,
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the ventral hippocampus-mPFC afferent pathways will further
affect the encoding and updating of spatial cues during spatial
working memory (40). ManyMRI studies have revealed evidence
of decreased mPFC volume and gray-matter signal in PTSD
patients, and a significant correlation has been found between
mPFC volume and the severity of PTSD symptomatology (39,
41–43). The mPFC plays a crucial role during the occurrence
and development of PTSD; furthermore, structural changes in
and dysfunction of the mPFC are important factors leading to
memory disorder and fear memory in PTSD patients.

In the past decade, we have been committed to studying
the pathogenic mechanisms of PTSD, and we have achieved
some interesting results. In previous studies, we discovered that
pathological changes of in neural cells, such as apoptosis and
autophagy, may induce mPFC atrophy and dysfunction in single
prolonged stress (SPS)-exposed rats (44–47). Acknowledging
these findings, we speculate that cellular abnormalities may
be associated with changes in MRTA results of the mPFC,
and furthermore that MRTA could be used as a potential
neuroimaging marker in clinical diagnosis of PTSD. The specific
aims of present study were to compare the microstructural
results obtained by MRTA to the cellular results obtained
by immunofluorescence analysis, appraise changes of the
microstructure of the mPFC of PTSD rats by using MRTA, and
investigate the feasibility of using a radiomics approach based on
conventional T2W images to classify PTSD rats.

MATERIALS AND METHODS

Animals and Grouping
A total of 66 male Wistar rats (220–250 g) were housed with free
access to food and water in an environment maintained at 22 ±

1◦C on a 12/12-h light/dark cycle. Rats were randomly divided
into five groups according to the time since SPS exposure: control
(n = 18), 1 day post-SPS (SPS 1d; n = 10), 4 days post-SPS (SPS
4d; n = 10), 7 days post-SPS (SPS 7d; n = 18), and 14 days post-
SPS (SPS 14d; n = 10). Eight rats each from the control and
SPS 7d groups were used for behavioral tests, and ten rats per
group were used for MRI examination and immunofluorescence.
Rats in the control group remained in their home cages with no
handling, and the SPS rats underwent the SPS procedure on the
first day.

SPS Procedure
In the present study, the PTSD rat model was established using
the SPS procedure developed by Liberzon et al. (48). Briefly, rats
were restrained for 2 h in a plastic container and then forced to
swim in a plastic tub for 20min. After a 15min rest, the rats
were then exposed to ether anesthesia until consciousness was
lost (as tested by the loss of toe- and tail-pinch responses). After
induction of general anesthesia, rats were placed in their home
cages and fed routinely.

Morris Water Maze (MWM) Test
In the MWM tests, each rat was placed in water facing the wall
of the pool, with the drop location changing for each trial. They
were then allowed 120 s to locate the submerged platform, where

each was allowed to remain for 20 s. If a rat failed to find the
platform within 120 s, it was guided gently onto the platform
and allowed to stay there for 20 s. The tests lasted 5 consecutive
days with four trials on each day. The escape latency time (ELT)
was noted as an index of their learning capabilities. In the spatial
probe tests, each rat was given a probe test of the spatial location
of the platform after it was removed. The rats’ movement tracks
were recorded, and the percentages of distance and time spent in
the target quadrant were calculated (49).

Elevated Plus Maze (EPM) Test
In the EPM tests, each rat was placed on the central platform of
the EPM with its head pointing in the same direction. After 10 s
of adaptation, the rats’ movement tracks were recorded. The test
box was cleaned between each test using cotton balls containing
alcohol to eliminate the impact of the previous experiment. The
distance, number of entries to the open or closed arms, and time
spent in the open and closed arms were quantified (50).

Acquisition of MR Images
All MRI experiments were conducted in a 7.0-T horizontal-
bore animal scanner (Bruker BioSpec USR 70/30, Bruker BioSpin
GmbH, Germany) equipped with actively shielded gradient
systems that had a maximum strength of 660 mT/m. Under
anesthesia (intraperitoneal injection of 10 mg/kg xylazine and
80 mg/kg ketamine), rats were placed in a prone position on
the animal bed and then slid into the center of the magnet
bore. Radiofrequency excitation was accomplished with a linear
birdcage coil, and a 30-mm receiver surface coil was used for
signal reception. A first series of sagittal images was obtained with
a turbo spin-echo (TSE) sequence: field of view (FOV) = 35 ×

35mm, matrix size= 240× 320, slice thickness= 0.69mm, time
echo (TE) = 41ms, time repetition (TR) = 2,360ms, number
of excitations (NEX) = 2. Then, coronal T2W images were also
acquired with a TSE sequence (TR= 3,300ms, TE= 41ms, slice
thickness = 0.5mm, FOV = 40 × 40mm, matrix size = 240 ×

320, NEX= 2). After MRI scanning was completed, the rats were
perfusion fixed, and their brains were removed for histology.

Image Selection and Region of Interest
(ROI) Delineation
The MR image quality was evaluated, and the slices for feature
extraction were selected by two radiologists (SZ and JC). The
sagittal T2W images and rat-brain stereotaxic coordinates were
used as anatomical references for the ROI delineation and
placement, and the coronal T2W images were used for feature
extraction (Figures 1A,B). For further histological studies, a
visual coarse spatial registration was also carried out to define
the correspondences between the MR images and the histological
slices (Figures 1C,D).

Delineation of ROIs and texture extraction were performed
by using the MaZda v4.6 software package (Technical University
of Lodz, Poland). To minimize confounding effects, images were
normalized by discarding image intensities not within µ ± 3SD
(µ: gray-level mean, SD: gray-level standard deviation) (51). To
ensure the accuracy and stability of texture extraction, ROIs were
delineated as rectangles with the same size (8 × 9) and within
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FIGURE 1 | Spatial registration between MR images and histology (Paxinos and Watson, The Rat Brain in Stereotaxic Coordinates, 6th edition). (A,B) Sagittal T2W

images and consecutive coronal T2W images of mPFC. Detailed range (rectangles) in mPFC slices and MR images considered for immunofluorescence quantification

and texture extraction, as shown in (C,D).

the detailed region of the mPFC. Ten ROIs were extracted from
the mPFCs recovered from five coronal brain slices from each rat
(two ROIs on the left and right mPFC were pooled in each slice).
The ROIs were manually placed by radiologists SZ and JC, and
radiologist SZ placed the ROIs again within a 2-week interval.

MRI Texture Extraction and Analysis
A total of 262 texture features were extracted from each ROI
using MaZda, and the results were saved as “.sel” files. In
this study, texture features were classified into the following
major categories: gray-level histogram, gray-level co-occurrence
matrix (GLCM), gray absolute gradient matrices, gray run-length
matrix, and autoregressive model. Stepwise discriminant analysis
(SDA) was used to identify which texture parameters could
characterize the changes of microstructure in mPFC ROIs among
the five groups. The SDA considered the parameter(s) that were
selected in the previous steps to obtain the best classification
using linear classification functions. The parameters that have
much higher coefficients than the others will show in these
functions, and the ability of these parameters to ensure an
acceptable classification was verified. The value of this texture
parameter in each ROI could then be used as an evaluation
of the microstructural changes (52). A least absolute shrinkage
and selection operator (LASSO) regression, which is a sparse
learning method, was used to select optimal features from
high-dimensional data and build radiomics signatures (53).
Briefly, LASSO regression reduced the penalty term lambda,
set the coefficient of diagnostic-unrelated features to zero,
and retained optimal features with non-zero coefficients. After
lambda was determined, the radiomics signature was generated
by multivariable LASSO regression analysis. Specifically, the
radiomics signature was a linear equation composed of intercept
and optimal features multiplied by their respective coefficients.
For each ROI in the control and SPS groups, we substituted the
feature values into the equation to obtain their radiomics score
and thus classify them.

Perfusion-Based Sections
Under deep anesthesia, rats were transcardially perfused with 4%
paraformaldehyde in phosphate-buffered saline (PBS) through

the left ventricle. The whole brains were removed and immersed
in 30% sucrose solution at 4◦C and then frozen in liquid
nitrogen for cryosections. Then, 15-µm thickness serial frontal
sections of brain tissue were sectioned using a cryostat
microtome (CM3050 S, Leica Biosystems Nussloch GmbH,
Nussloch, Germany) and stored at −20◦C in preparation for
immunofluorescence staining.

Immunofluorescence Staining
After being washed with PBS, sections were treated with 5
% bovine serum albumin and 0.3% Triton X-100 in PBS for
30min at 24◦C, followed by washing with PBS. Sections were
incubated with mouse anti-glial fibrillary acidic protein (GFAP)
polyclonal antibody (Santa Cruz Biotechnology, USA; 1:500)
or mouse anti-neuronal nuclei (NeuN) polyclonal antibody
(Abcam PLC, UK; 1:1000) at 4◦C overnight, respectively. After
washing with PBS, sections were incubated with Cy3-conjugated
secondary antibody (Boster Biotechnology, China; 1:200) for 2 h
at 24◦C and re-washed with PBS. Subsequently, the sections
were stained with 4

′
,6-diamidino-2-phenylindole (DAPI; Boster

Biotechnology, China) at 37◦C for 20min in the dark and
re-washed with PBS, and they were then observed using a
fluorescence confocal microscope (Eclipse80i, Nikon, Tokyo,
Japan). Three slides were randomly selected from each rat; from
each, two visual fields in the bilateral mPFC were randomly
selected. The fluorescence intensity and number of positive
cells were analyzed using MetaMorph/DPIO/BX41 morphology
image analysis system.

Statistical Analysis
All statistical analyses were performed using SPSS v22.0
(IBM, Armonk, NY, USA), RStudio v3.4.3 (R Foundation for
Statistical Computing, Vienna, Austria), and GraphPad Prism
v8.0 (GraphPad Software, Inc., San Diego, CA). Data are
expressed as mean ± SD. The differences in behavioral tests and
immunofluorescence between the control and SPS groups were
investigated by performing Student’s t-tests and one-way analysis
of variance (ANOVA) with Tukey’s honest significant difference
post-hoc test for multiple comparisons. Inter- and intra-observer
agreements of feature extraction reproducibility were evaluated
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FIGURE 2 | Behavioral test results. (A) Number of entries into open and closed arms. (B) Average distance traveled in open and closed arms. (C) Residence time in

open and closed arms. (D) Percentage of swimming time in target quadrant. (E) Percentage of swimming distance in target quadrant. (F) ELT in 5 test days. *P <

0.05 vs. control group.

using inter- and intra-class correlation coefficients (ICCs). SDA
was used to identify which texture parameter(s) gave the best
classification, and this yielded linear classification functions.
LASSO regression was performed using the “glmnet” R package
and screen classification of optimal features in the control
and each SPS group. Receiver operating characteristic (ROC)
curves were used to evaluate the classification performance of
the radiomics signatures. The goodness-of-fit of the radiomics
signatures was evaluated via the Hosmer–Lemeshow test. A level
of P < 0.05 was considered to be statistically significant.

RESULTS

MWM and EPM Test Results
In the EPM tests, the SPS rats exhibited fewer entries into
both the open and closed arms, and they had shorter distance
traveled in both the open and closed arms than the control
rats (Figures 2A,B). Compared with the control rats, the SPS
rats showed lower residence times in the open arms and higher
residence times in the closed arms (Figure 2C). In the MWM
tests, the SPS rats showed a significant increase in ELTs compared
with the control rats from day 1 to day 5 (Figure 2F). The
spatial memory tests showed that the SPS rats spent a much
lower percentage of time and had a lower percentage of distance

TABLE 1 | Numbers of rats examined by MRI and the numbers of sampled ROIs.

Control SPS 1d SPS 4d SPS 7d SPS 14d

Numbers of rats 10 10 10 9 10

Numbers of ROIs 50 50 50 45 50

traveled in the target quadrant compared with control rats
(Figures 2D,E). These behavioral results indicated decreased
learning and spatial-memory performance, as well as increased
anxiety-like behavior, after SPS stimulation.

Texture-Feature Extraction and Analysis
The rats in the control and each of the SPS groups survived until
the end of observation period. The numbers of rats successfully
imaged on each MRI examination date and the numbers of
sampled ROIs are shown in Table 1. A total of 64,190 texture
features were extracted from 245 ROIs. Figure 3 reveals clusters
of rats in a specific group with similar radiomic expression
patterns based on the T2W images [cluster map visualized via
ClustVis (54)].

After the initial texture features were extracted, the inter- and
intra-observer agreements of feature-extraction reproducibility

Frontiers in Psychiatry | www.frontiersin.org 5 April 2022 | Volume 13 | Article 805851

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Zheng et al. MRTA Detect PTSD mPFC Microchanges

FIGURE 3 | Visualization of radiomics based on T2W images in mPFC. Cluster map of T2W-image radiomics in mPFC, with 245 ROIs (samples) from control and SPS

groups on the x axis and 262 radiomic features on the y axis. Each feature was normalized to zero mean and unit standard variance. The ROIs of a given cluster

(adjacent columns) shared similar radiomic features in correlation distance.

were evaluated by ICCs. The inter- and intra-observer ICC
values were calculated using each texture feature for agreement
between two radiologists (SZ and JC) and two performances
by one radiologist (SZ), respectively. The inter- and intra-
observer correlation coefficients ranged from 0.807 to 0.929
and 0.826 to 0.938, respectively, which demonstrates satisfactory
reproducibility of feature extraction.

SDA Results
Firstly, SDA yielded four canonical discriminant functions
corresponding to five groups. Each function is a linear
combination of the texture parameters that yielded the best
discrimination. For a given ROI, a classification score could
be calculated using the classification functions, and then
it could be classified into a specific group. We obtained
the correct classifications with the following features: X1

= Perc.10%, X2 = S(1,0)InvDfMom, X3 = S(0,1)DifEntrp,
X4 = S(1,−1)Entropy, X5 = S(2,0)InvDfMom, X6 =

S(2,0)SumAverg, X7 = S(3,0)AngScMom, X8 = S(3,3)Correlat,
X9 = S(3,3)DifVarnc, X10 = S(4,0)Contrast, X11 =

S(4,0)InvDfMom, X12 = S(4,0)DifVarnc, X13 = S(0,4)DifEntrp,
X14 = S(4,4)AngScMom, X15 = S(4,-4)SumEntrp, X16 =

S(5,0)Correlat, X17 = S(5,0)Entropy, X18 = S(0,5)InvDfMom,
X19 = S(5,5)AngScMom, X20 = S(5,5)SumEntrp, and X21

= Teta3. The eigenvalues of the four canonical discriminant
functions were 2.178, 1.538, 0.838, and 0.518; their contributions
(% of variance) were 42.9, 30.3, 16.5, and 10.2; theirWilks’lambda
values were 0.044, 1.141, 0.358, and 0.659 (χ2 = 719.38, 452.31,
237.13, and 96.49; P all < 0.05), respectively. To further
discriminate the control and each SPS group, the following five
Fisher linear discriminant functions were established:

Y1 = −2292.719+ 0.949X1 + 824.352X2 − 135.774X3

+ 509.869X4 + 92.995X5 + 19.055X6 + 12704.031X7

− 92.374X8 − 0.084X9 + 1.163X10 + 255.818X11

− 1.985X12 + 54.630X13 + 1433.680X14 + 32.173X15

+ 5.226X16 + 647.747X17 + 430.129X18 + 2611.453X19

+ 254.037X20 + 36.736X21,
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FIGURE 4 | Dimensionality reduction of features with LASSO regression between control and each SPS group. Each colored line represent coefficients of texture

features, which are plotted vs. ln(lambda) in the mPFC radiomics signatures between the control and each SPS group: (A) control vs. SPS 1d; (C) control vs. SPS 4d;

(E) control vs. SPS 7d; (G) control vs. SPS 14d. The binomial deviances are plotted vs. ln(lambda) in mPFC radiomics signatures between control and each SPS

group: (B) control vs. SPS 1d; (D) control vs. SPS 4d; (F) control vs. SPS 7d; (H) control vs. SPS 14d. Red points indicate average values of deviance for each

lambda; two dotted vertical lines correspond to lambda in minimum criteria and one standard error of minimum criteria.

Y2 = −2247.184+ 0.829X1 + 835.211X2 − 154.710X3

+ 473.339X4 + 67.728X5 + 19.338X6 + 12031.888X7

− 80.063X8 + 0.008X9 + 1.153X10 + 294.170X11

− 1.984X12 + 60.536X13 + 1858.346X14 + 23.455X15

+ 4.196X16 + 679.793X17 + 427.754X18 + 2427.192X19

+ 245.623X20 + 33.608X21,

Y3 = −2156.604+ 0.749X1 + 804.413X2 − 148.971X3

+ 476.936X4 + 80.657X5 + 19.308X6 + 11934.474X7

− 83.126X8 − 0.014X9 + 1.062X10 + 288.070X11

− 1.859X12 + 40.440X13 + 1677.316X14 + 32.639X15

− 3.429X16 + 650.782X17 + 395.441X18 + 2407.338X19

+ 248.701X20 + 35.821X21,

Y4 = −2224.278+ 0.583X1 + 781.072X2 − 126.008X3

+ 508.944X4 + 123.048X5 + 19.835X6 + 12571.383X7

− 88.450X8 − 0.096X9 + 1.141X10 + 270.227X11

− 1.872X12 + 46.123X13 + 1338.626X14 + 25.774X15

+ 10.086X16 + 639.100X17 + 404.116X18 + 2592.253X19

+ 245.984X20 + 24.784X21,

Y5 = −2186.556+ 0.716X1 + 769.323X2 − 134.100X3

+ 485.945X4 + 84.945X5 + 19.815X6 + 12270.521X7

− 82.620X8 − 0.089X9 + 1.122X10 + 281.944X11

− 1.861X12 + 73.707X13 + 1540.184X14 + 11.549X15

+ 2.981X16 + 638.312X17 + 417.143X18 + 2475.405X19

+ 234.816X20 + 31.604X21.

Secondly, the previous classification process was used as a basis
for prediction concerning the 245 ROIs from 49 rats in the
control and each SPS group that we wanted to classify. The
rates of correct classification were 92.0, 82.0, 84.0, 86.7, and
88.0% (non-cross validated), and 84.0, 70.0, 84.0, 80.0, and
84.0% (cross validated), respectively, in each group. The general
discrimination accuracies of the non-cross-validated and cross-
validated functions were 86.5 and 80.4%, respectively. These
results indicate that the SPS stimulation yielded a modification
of the structure parameters in the mPFC, and these textures
features can reflect the characteristics of each group and classify
the control or SPS rats.

LASSO Regression Results
LASSO regression model with 10-fold cross-validation was
employed to select predictive features among the preliminarily
extracted texture parameters (37). Figure 4 shows trace plots of
the texture feature coefficients fit by LASSO and determination
of the penalty term lambda. The optimized lambda values for
the left dotted vertical lines were selected to determine the
minimization criteria of binomial deviance. Lambda values of
0.020 [ln(lambda) = −3.912], 0.015 [ln(lambda) = −4.200],
0.025 [ln(lambda) = −3.689], and 0.031 [ln(lambda) = −3.474]
were selected for the mPFC radiomics signatures between the
control and each SPS group, respectively. After dimensionality
reduction, there were 21, 23, 14, and 17 optimal features
with non-zero coefficients remaining in the mPFC radiomics
signatures between the control and each SPS group (Table 2).
Among four SPS groups, Lambda values of 0.050 [ln(lambda)
= −2.996], 0.033 [ln(lambda) = −3.411], 0.013 [ln(lambda)
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TABLE 2 | Optimal mPFC features after dimensionality reduction between the control and each SPS group via LASSO regression.

Group Intercept Optimal Features (Coefficient)

Control vs. SPS 1d −26.323 S(1,0)SumAverg (−0.113); S(1,0)SumEntrp (0.678); S(0,1)SumEntrp (0.423); S(2,0)InvDfMom (4.703); S(0,2)Correlat (−2.241);

S(0,2)InvDfMom (−5.431); S(2,2)DifVarnc (−0.008); S(2,-2)Contrast (0.007); S(4,0)InvDfMom (−15.567); S(4,4)InvDfMom

(−2.478); S(4,-4)DifEntrp (3.256); S(5,0)Contrast (−0.003); S(5,0)Correlat (0.180); S(5,0)InvDfMom (1.569); S(5,0)SumAverg

(0.011); S(0,5)DifVarnc (0.030); S(5,5)SumAverg (0.039); S(5,5)SumEntrp (4.152); S(5,-5)SumVarnc (−0.002); 45dgr_RLNonUni

(0.123); GrNonZeros (9.046)

Control vs. SPS 4d −4.487e+01 S(1,0)SumAverg (−1.795e-01); S(0,1)Correlat (−1.470e+00); S(2,0)InvDfMom (2.181e+01); S(2,0)DifEntrp (2.942e+00);

S(0,2)InvDfMom (−4.939e+00); S(0,2)SumVarnc (−4.707e-04); S(2,2)SumOfSqs (−1.966e-02); S(2,2)DifVarnc (−1.453e-02);

S(2,-2)SumVarnc (−7.999e-03); S(3,0)InvDfMom (−6.434e+00); S(3,3)DifVarnc (−1.026e-02); S(4,0)InvDfMom (−1.061e+01);

S(4,4)InvDfMom (−2.443e+00); S(4,-4)DifEntrp (6.212e+00); S(5,0)Contrast (−6.959e-03); S(0,5)DifVarnc (1.060e-02);

S(5,5)SumEntrp (1.823e+00); Horzl_LngREmph (2.518e-02); Vertl_RLNonUni (1.930e-02); 45dgr_Fraction (4.565e+01);

135dr_ShrtREmp (−1.150e+01); GrMean (1.516e+00); GrNonZeros (1.511e+01)

Control vs. SPS 7d −48.294 MinNorm (0.104); Kurtosis (0.153); S(1,1)InvDfMom (−2.713); S(1,1)DifVarnc (0.085); S(1,-1)Contrast (−0.002); S(1,-1)InvDfMom

(14.507); S(3,-3)InvDfMom (0.354); S(4,0)InvDfMom (−2.992); S(5,0)InvDfMom(−4.858); S(5,0)SumAverg (0.201); S(0,5)DifVarnc

(0.003); S(5,5)DifVarnc (0.002); GrNonZeros (14.086); Teta3 (2.679)

Control vs. SPS 14d −2.511e+01 MinNorm (8.246e-02); S(2,0)InvDfMom (3.396e-02); S(2,0)SumAverg (−4.167e-02); S(0,2)InvDfMom (−5.022e+00);

S(2,2)SumVarnc (−4.633e-03); S(2,-2)SumAverg (−3.943e-03); S(3,-3)SumAverg (−4.006e-02); S(4,0)InvDfMom (−1.827e+01);

S(4,0)DifVarnc (−5.782e-03); S(5,0)Correlat (1.598e+00); S(5,0)SumAverg (1.341e-01); S(5,0)SumVarnc (1.653e-03);

S(5,0)DifVarnc (−7.598e-03); S(5,5)Contrast (−2.789e-04); S(5,5)DifVarnc (−2.237e-03); Horzl_LngREmph (1.750e+00);

45dgr_ShrtREmp (1.058e+01)

= −4.343], 0.014 [ln(lambda) = −4.269], 0.019 [ln(lambda)
= −3.963], and 0.022 [ln(lambda) = −3.817] were selected
(Figure 5). Six classification models containing 10, 18, 27, 21,
20, and 21 features were established after LASSO dimensionality
reduction between SPS 1d and SPS 4d, SPS 1d and SPS 7d, SPS 1d
and SPS 14d, SPS 4d and SPS 7d, SPS 4d and SPS 14d, SPS 7d and
SPS 14d, respectively (Table 3).

Plots of ROC curves were used to evaluate the performance of
the mPFC radiomics signatures for classifying PTSD rats among
control and SPS groups. The area under the ROC curve (AUC)
values were 0.944 [95% confidence interval (CI): 0.903–0.984],
0.950 (95% CI: 0.914–0.987), 0.959 (95% CI: 0.923–0.996), and
0.936 (95% CI: 0.891–0.980) between the control and the four
SPS groups, respectively. The AUC values were 0.927 [95% CI:
0.882–0.973], 0.943 [95% CI: 0.885–1.000], 0.967 [95% CI: 0.942–
0.996], 0.916 [95% CI: 0.864–0.968], 0.932 [95% CI: 0.889–0.976],
and 0.893 [95% CI: 0.822–0.965] between SPS 1d and SPS 4d, SPS
1d and SPS 7d, SPS 1d and SPS 14d, SPS 4d and SPS 7d, SPS 4d
and SPS 14d, SPS 7d and SPS 14d, respectively. The Hosmer–
Lemeshow test showed acceptable goodness-of-fit of the mPFC
radiomics signatures in all of the groups (P all > 0.05).

Cell Nuclear Changes in the mPFC
Morphological changes of the cellular nuclei in the mPFC
were detected using DAPI staining. Normal mPFC cellular
nuclei showed a relatively dim fluorescence with a little
prominent chromatin condensation as well as a diffuse and
uniform distribution. After SPS stimulation, numerous mPFC
cellular nuclei showed bright blue fluorescence with prominent
chromatin condensation and fragmentation, and there were
significant increases on days 4 and 7 after SPS stimulation, as
shown in Figure 6. The magnified images show normal cellular
nuclei (right part of Figure 6A, asterisk) and abnormal cellular
nuclei (right part of Figure 6A, triangle), respectively.

Immunofluorescence of NeuN and GFAP in
the mPFC
To evaluate the effects of SPS stimulation on the mPFC neurons
and astrocytes, we performed immunofluorescence against NeuN
(the specific neuronal marker) and GFAP (the specific astrocyte
marker), respectively. Compared with the control group, the
fluorescent intensity of GFAP-immunoreactivity (IR) expression
increased in the mPFC at 1 day, then decreased 4, 7, and 14
days after SPS stimulation (Figure 7). The fluorescent intensity
of NeuN-IR expression decreased from 1 to 14 days after SPS
stimulation in comparisonwith the control group (Figure 8). The
same change trends in the number of NeuN- and GFAP-positive
cells were also found in the mPFC of each group (Figure 9).

DISCUSSION

An appropriate animal model is necessary for performing
experimental research on PTSD, and this should possess
appropriate behavioral and neurobiological characteristics
(55). Among various animal models, rat PTSD induced by
SPS stimulation is a standard, reproducible and frequently used
PTSDmodel (48). The SPS process mimics the severe stimulation
by stressors in humans, and the behavioral endophenotypes
and neurobiological alterations [e.g., glucocorticoid receptor
hypersensitivity, hypothalamic–pituitary–adrenal (HPA)-axis
dysfunction, and abnormal behavior and cognitive performance]
in SPS rats correlate well with the clinical manifestations of
human PTSD. In previous PTSD animal experiments (concern
neurobiological, neuroimaging or neuropathological researches,
etc.) (56–59), we found that the period of experiments ranges
from hours to days, mostly focused on 1, 4, 7, and 14 days after
SPS stimulation. Based on the numerous PTSD pre-clinical
studies (18, 60–64), SPS 1d, SPS 4d, SPS 7d, and SPS 14d
were designed in this study. A time-dependent sensitization
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FIGURE 5 | Features dimensionality reduction with LASSO regression among four SPS groups. Each colored line represent coefficients of texture features, which plot

vs. ln(lambda) in mPFC radiomics signatures between each SPS groups: (A) SPS 1d vs. SPS 4d; (C) SPS 1d vs. SPS 7d; (E) SPS 1d vs. SPS 14d; (G) SPS 4d vs.

SPS 7d; (I) SPS 4d vs. SPS 14d; (K) SPS 7d vs. SPS 14d. The binomial deviances were plotted vs. ln(lambda) in mPFC radiomics signatures between each SPS

groups: (B) SPS 1d vs. SPS 4d; (D) SPS 1d vs. SPS 7d; (F) SPS 1d vs. SPS 14d; (H) SPS 4d vs. SPS 7d; (J) SPS 4d vs. SPS 14d; (L) SPS 7d vs. SPS 14d.

(TDS) study has proposed that the undisturbed period is a
necessary condition to produce PTSD-like manifestations (65).
Moreover, SPS can lead to enhanced negative feedback of the
HPA axis at 7 days after SPS via TDS (66). Thus, behavioral
experiments are generally undertaken over a period of 7 days
after SPS stimulation. In the present study, the behavioral
results demonstrate impaired learning and spatial memory,
anxiety-like behaviors, and fear-related avoidance, showing that
SPS stimulation successfully induced PTSD in the rat model.

Texture analysis of MR images can reveal and quantify
the structural changes appearing at the cellular level, and
this provides invisible information regarding the tissues of
interest, even using conventional MRI (67). A large number of
neurodegenerative diseases such as AD, PD, and amyotrophic
lateral sclerosis may be too subtle to be detected by conventional
MRI examination. However, MRTA can capture the changes
occurring in the early stages of these diseases and could be useful
for early diagnosis (67, 68). It has also been reported that non-
invasiveMRTA can be used as a sensitive and efficient method for
detection of cerebral alterations in mice during chronic exposure
to glufosinate ammonium (69). To the best of our knowledge,
this is the first study to combine non-invasive T2W image
MRTA and immunofluorescence methods in the examination of

PTSD. We used a general radiomics approach to extract features
and establish radiomics models of mPFC that had undergone
microstructural changes that were not yet visible on conventional
T2W images.

In this study, the optimal features were almost all derived
from GLCM categories according to the SDA and the LASSO
regression calculationmethod. As a second-order texture, GLCM
takes into account the spatial relationships between pixels and
examines second-order statistical information within an image.
The subclasses of GLCM are as follows.

(1) Contrast, which represents the degree to which texture
intensity levels differ between voxels (local intensity
variations), which will favor contributions from P(i,j) away
from the diagonal.

(2) AngScMom, which reflects a similar form of physics
equations to those used to calculate the angular second
moment. AngScMom uses each P(i,j) as a weight (gray
distribution uniformity and texture thickness) for itself,
and high values of AngScMom occur when the window is
very orderly.

(3) InvDfMom, which corresponds to small contributions
from inhomogeneous areas (i 6= j). The value is
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TABLE 3 | Optimal mPFC features after dimensionality reduction among four SPS groups via LASSO regression.

Group Intercept Optimal Features (Coefficient)

SPS 1d vs. SPS 4d −1.177e+01 MinNorm (6.278e-02); S(2,0)SumOfSqs (9.153e-03); S(2,-2)SumOfSqs (1.334e-02); S(3,-3)Correlat (1.802e-01);

S(3,-3)SumVarnc (6.736e-04); S(4,-4)Contrast (−4.929e-04); S(5,0)SumOfSqs (−2.089e-03); S(5,0)InvDfMom (−5.440e+00);

S(5,0)DifVarnc (−2.695e-04); GrSkewness (5.052e-02)

SPS 1d vs. SPS 7d −9.741 S(1,0)DifEntrp (−0.121); S(1,1)SumVarnc (0.001); S(1,-1)Correlat (1.926); S(2,0)InvDfMom (−2.477); S(2,0)DifVarnc (−0.027);

S(2,2)Correlat (0.179); S(2,2)InvDfMom (12.293); S(0,3)InvDfMom (6.702); S(3,3)SumAverg (−0.049); S(0,4)InvDfMom (18.735);

S(5,0)Contrast (0.003); S(5,0)InvDfMom (−1.416); S(0,5)InvDfMom (3.210); S(0,5)DifVarnc (−0.004); S(5,-5)InvDfMom (1.655);

S(5,-5)SumAverg (0.038); Teta2 (−3.010); Teta4 (−4.267)

SPS 1d vs. SPS 14d 23.514 Skewness (−0.450); S(1,0)DifEntrp (−11.303); S(1,1)InvDfMom (−7.960); S(1,-1)InvDfMom (−7.592); S(2,0)SumAverg (−0.484);

S(0,2)DifVarnc (−0.083); S(2,2)InvDfMom (2.953); S(2,2)DifVarnc (0.013); S(0,3)SumOfSqs (−0.025); S(0,3)InvDfMom (22.303);

S(3,3)DifVarnc (0.013); S(4,0)DifVarnc (−0.001); S(0,4)DifVarnc (−0.029); S(4,4)Entropy (−2.369); S(5,0)SumVarnc (0.027);

S(5,0)Entropy (3.405); S(0,5)DifVarnc (−0.014); S(5,5)Contrast (−0.007); S(5,5)SumVarnc (0.003); S(5,5)SumEntrp (3.423);

S(5,5)DifVarnc (0.016); S(5,-5)SumOfSqs (0.004); S(5,-5)DifVarnc (0.002); Horzl_LngREmph (3.061); GrVariance (−0.156); Teta1

(2.438); Teta2 (−5.445)

SPS 4d vs. SPS 7d −26.622 MinNorm (0.132); Perc.01% (0.028); S(0,1)InvDfMom (0.524); S(1,-1)Correlat (0.525); S(1,-1)SumVarnc (0.008); S(1,-1)DifEntrp

(−0.297); S(0,2)InvDfMom (12.687); S(2,2)InvDfMom (2.753); S(0,3)InvDfMom (0.302); S(4,4)SumEntrp (−0.536); S(4,4)DifVarnc

(0.019); S(5,0)InvDfMom (−27.167); S(5,0)SumAverg (0.079); S(5,5)DifVarnc (0.001); S(5,-5)InvDfMom (2.816); Horzl_ShrtREmp

(−11.808); 45dgr_RLNonUni (−0.073); GrKurtosis (−0.236); GrNonZeros (5.767); Teta2 (−0.274); Teta3 (4.306)

SPS 4d vs. SPS 14d −7.730 MinNorm (0.142); Skewness (−1.296); S(2,0)DifEntrp (−1.964); S(2,2)InvDfMom (7.538); S(2,2)DifVarnc (0.007); S(2,-2)Correlat

(2.366); S(2,-2)SumAverg (−0.127); S(0,3)InvDfMom (1.492); S(3,3)DifVarnc (0.001); S(3,-3)SumAverg (−0.190); S(4,-4)Correlat

(0.416); S(4,-4)SumEntrp (1.088); S(5,0)InvDfMom (−1.220); S(5,0)Entropy (0.953); S(5,0)DifVarnc (−0.026); S(0,5)Contrast

(−0.005); S(0,5)Correlat (0.299); S(0,5)DifVarnc (−0.001); S(5,5)SumVarnc (0.002); Horzl_LngREmph (2.157)

SPS 7d vs. SPS 14d 2.020e+01 S(1,0)InvDfMom (1.655e+00); S(1,1)Contrast (−1.581e-03); S(1,-1)InvDfMom (−1.715e+01); S(2,0)SumOfSqs (−1.771e-02);

S(2,0)InvDfMom (2.394e+01); S(0,2)InvDfMom (−1.110e+01); S(2,2)SumOfSqs (−8.780e-03); S(3,0)DifVarnc (9.913e-03);

S(3,3)InvDfMom (−3.492e+00); S(0,4)InvDfMom (−8.386e+00); S(4,-4)Correlat (9.364e-03); S(4,-4)SumVarnc (9.205e-04);

S(5,0)Correlat (6.560e-01); S(5,0)InvDfMom (1.203e+01); S(5,0)SumVarnc (3.034e-03); S(0,5)DifVarnc (−4.283e-02);

S(5,5)Entropy (−1.489e+00); S(5,5)DifEntrp (−9.448e-01); Horzl_LngREmph (6.066e-01); Teta1 (1.758e-01); Teta3

(−2.076e+00)

FIGURE 6 | mPFC DAPI immunostaining. Representative photomicrographs of DAPI immunostaining are shown in (A–E) (magnification ×400, Bar = 20µm): (A)

control group; (B) SPS 1d; (C) SPS 4d; (D) SPS 7d; (E) SPS 14d. The normal and abnormal cellular nuclei are shown in the right part of panel (A). Quantitative

analysis of fluorescence intensity of cell nuclei in mPFC is shown in panel (F). *P < 0.05 vs. control group.
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FIGURE 7 | Immunofluorescence observations of GFAP in mPFC. Representative images of GFAP immunoreactivity (IR) and results analysis in mPFC (magnification

×400, Bar = 20µm): (A) control group; (B) SPS 1d; (C) SPS 4d; (D) SPS 7d; (E) SPS 14d. (F) Quantity analysis of GFAP-IR expression in mPFC in each group. *P <

0.05 vs. control group.

low for inhomogeneous images and relatively high for
homogeneous images.

(4) SumAverg and SumVarnc: SumAverg measures the
relationship between occurrences of pairs with lower
intensity values and occurrences of pairs with higher
intensity values. Quantifying brightness, SumVarnc
represents the global variation in the sum of the gray levels
of the voxel pair distribution.

(5) SumSqr, also called variance, gives a high weighting to
elements that differ from the average value.

(6) Correlation represents the degree of mutual dependency
between pixels.

(7) Entropy represents the degree of uncertainty (a measure
of randomness).

(8) DifVarnc reflects the texture period: high values indicate a
larger texture period.

(9) DifEntrp and SumEntrp relate to the amount of image
information. This measures the randomness of image
content and indicates the texture complexity (70).

Stepwise methods are frequently employed in educational and
psychological research, both to select useful subsets of variables
and to evaluate their order of importance (71). Here, the SDA
results showed that the correct classification rates were 92.0,
82.0, 84.0, 86.7, and 88.0% (non-cross-validated), and 84.0,
70.0, 84.0, 80.0, and 84.0% (cross-validated) in each group.

The general discrimination accuracy of the non-cross-validated
and cross-validated groups were 86.5 and 80.4%, respectively.
LASSO regression is a popular machine-learning algorithm, and
it is widely used as a high-dimensional data-analysis tool in
radiomics research. Because LASSO regression is designed to
avoid overfitting, it can analyze large sets of texture features with
relatively small sample sizes (53). After LASSO dimensionality
reduction, four classification models containing 21, 23, 14, and
17 features were established; these achieved AUC values of
0.944, 0.950, 0.959, and 0.936, respectively, for classifying PTSD
in the control and each SPS group. Among four SPS groups,
six classification models containing 10, 18, 27, 21, 20, and 21
features were established after LASSO dimensionality reduction,
respectively. These models achieved AUC values of 0.927, 0.943,
0.967, 0.916, 0.932, and 0.893 for classifying each SPS group.
The SDA and LASSO regression results demonstrate that optimal
texture features can reflect the mPFC characteristics of each
group and can effectively classify control and each SPS rats.

As mentioned above, the mPFC has a crucial role in
both PTSD and regulation of fear-memory expression, and
structural changes in and dysfunction of the mPFC are important
factors leading to memory disorder and fear memory in PTSD
patients (39). Our previous studies have shown that SPS
stimulation induces enhancement of apoptosis and dysregulation
of autophagic activity in mPFC neurons (44, 46). In this
study, the fluorescence of cell nuclei gradually increased as a
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FIGURE 8 | Immunofluorescence observation of NeuN in mPFC. Representative images of NeuN-IR and results analysis in mPFC (magnification ×400, Bar = 20µm):

(A) control group; (B) SPS 1d; (C) SPS 4d; (D) SPS 7d; (E) SPS 14d. (F) Quantity analysis of NeuN-IR expression in mPFC in each group. *P < 0.05 vs. control group.

FIGURE 9 | Number of NeuN- and GFAP-positive cells. (A) number of GFAP-positive cells in mPFC of control and SPS groups; (B) number of NeuN-positive cells in

mPFC of control and SPS groups. *P < 0.05 vs. control group.

consequence of the pycnotic changes in the mPFC after SPS
stimulation, and this was represented by declining presence of
cell bodies, cytoplasm concentration, and chromatin. The DAPI
fluorescence results demonstrated that SPS increased mPFC
neural death. It is generally known that astrocytes perform many
functions, including neurotransmitter uptake and inactivation,

neuronutrition and repair, and regulation of neuroplasticity (72–
74). Many clinical studies have shown that the expression of
GFAP is significantly reduced in the brains of patients with
generalized depression and depressive disorder (75, 76). Our
previous studies have reported that the loss of glial cells causes
abnormal hippocampal atrophy and dysfunction in PTSD rats
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(77, 78). However, it is not clear whether glial cells, neurons, or
both are involved in the changes of morphology and function
in the mPFC after SPS stimulation. The present study’s GFAP-
immunofluorescent staining results show that the fluorescence
intensity of GFAP-IR expression and number of GFAP-positive
cells increased in the mPFC at 1 day and then decreased at 4,
7, and 14 days after SPS stimulation. The number of NeuN-
positive cells and intensity of NeuN-IR in each SPS group
was significantly lower than that in the control group. These
findings indicate dysfunction of the mPFC following neuron
and astrocyte loss after SPS stimulation. Changes in astroglia–
neuron interactions could also be involved because astrocytes
are integral functional elements of the synapses, responding
to neuronal activity and regulating synaptic transmission and
plasticity (79, 80). The neurobiological evidence from brain
imaging and postmortem has demonstrated mPFC alterations
at the gross structural and cellular levels in PTSD, as well as
the functional consequences of these changes (81). A number
of MRI studies have reported that PTSD is characterized by
altered size of cortical and limbic brain regions. In PTSD
patients, reductions in tissue volume have been found in medial,
ventrolateral PFC and hippocampus, and these changes may be
attributed, in part, to a reduced number of neurons or glial cell
types (81). The findings of present study indicate mPFC neuron
and astrocyte loss after SPS stimulation, which is one of the most
important reasons in mPFC structural and cellular changes in
PTSD patients. Neural death and neuron and astrocyte loss are all
associated withmicrostructural changes in and dysfunction of the
mPFC after SPS stimulation, and these are also closely correlated
with changes in the texture parameters. MRTA can be used
as an efficient method for detection of mPFC microstructural
alterations in SPS rats, based on which we speculate that MRI
radiomics also could potentially serve as a novel neuroimaging
marker in PTSD diagnosis.

In an experimental study by Meme (69), MRTA proved to
be an effective and sensitive approach for detection of cerebral
alterations inmice following exposure to glufosinate ammonium,
a herbicide. This study demonstrated that MRTA can detect
changes due to modification of GFAP expression, intracellular
glutamate metabolite content, and astrocyte swelling. In our
study, we speculate that the changes in texture parameters in
the mPFC maybe associated with not only modification of
GFAP expression but also with changes of nuclei and NeuN
expression after SPS stimulation. Interestingly, we found that the
optimal texture parameters were different between the control
and each SPS group after dimensionality reduction through
LASSO regression, despite the optimal parameters almost all
being derived from GLCM categories. The reason for this may
be that texture parameters are related not only to the cellular
number or ratio (neurons, glial cells, and nuclei) but also to
the distribution of cell composition—such as calcium, iron
deposition, and water—and molecular content and distribution,
in different pixels. All these factors may affect the spatial
information and the relevance of pixels, which leads to some
differences in optimal texture parameters between each SPS
group and the control group after dimensionality reduction.
MRTA revealed the comprehensive tissue modifications under

the action of various pathological factors in the rat mPFC in
response to SPS stimulation. Alterations of neurons, glial cells,
and nuclei in the mPFC play important roles in the MRTA
changes. Although the optimal texture parameters were different
in each subclass, the mPFC radiomics signatures based on these
texture parameters had good classification performance both for
the control group and the SPS groups.

In AD, PD, Huntington’s disease, as well as many other
neurological or psychiatric diseases, the diverse pathological
characteristics of these disease create a complexity where
different exact pathological mechanisms (such as one of the
pathological hallmarks of AD is the abnormal aggregation of
Aβ peptides, PD is characterized by nigrostriatal degeneration
and iron deposition in the neostriatum). MRTA/radiomics
pattern can capture the microstructural changes occurring in
the early stages of these diseases and could be useful for early
diagnosis. However, MRTA/radiomics pattern may not be a
specific indicator to a particular disease related pathology in
the strict sense. Overall, the present findings show that the
mPFC radiomics signatures based on T2W images achieved
good classification performance for PTSD rats and showed
the potential for non-invasive mPFC radiomic features to be
used as a neuroimaging marker for PTSD. Moreover, additional
issues need to be addressed in order to refine and further
validate the radiomics models; further PTSD clinical studies are
therefore warranted.

The present study had several limitations. First, changes in
the texture parameters in the mPFC were discussed with a
focus on changes in the nucleus, neurons, and astrocytes after
SPS stimulation. Other factors, such as the contents of various
substances in cells, cell micromorphology (e.g., the length and
number of dendrites and the volume of different cells), and
even molecular content or distribution, may also be related
to the observed changes in texture parameters. This deserves
further study. Second, Changes in the texture parameters based
on T2W images in the mPFC were analyzed in a PTSD rat
model. We should also further explore the texture parameters
in other brain regions and multisequence MRI images, and
this would establish a radiomics model for diagnosing PTSD
in clinical research. Third, SDA and LASSO regression were
preliminarily used to reduce the dimensions of texture features
and build classification functions or radiomics signatures in
the present study, respectively. With the rapid development
of artificial intelligence, various artificial neural network and
machine-learning algorithms can be further applied in PTSD
radiomics research.

CONCLUSION

The present study provides evidence that SPS induces nucleus
alterations and neuron and glial-cell loss in the mPFC, and these
have been shown to be important in microstructural changes
and dysfunction within the mPFC. All of these microstructural
changes might be characterized by changes in the textural
patterns in T2W images, and these can be captured using
a radiomics approach. The mPFC radiomics signatures based
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on T2W images in this study achieved good classification
performance for PTSD rats. Our primary results showed the
potential for non-invasivemPFC radiomic features to be used as a
novel neuroimaging marker for PTSD, and this could potentially
serve as a basis for clinical diagnosis of PTSD.
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