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Abstract Improved whole brain angiographic and velocity-
sensitive MRI is pushing the boundaries of noninvasively ob-
tained cerebral vascular flow information. The complexity of
the information contained in such datasets calls for automated
algorithms and pipelines, thus reducing the need of manual
analyses by trained radiologists. The objective of this work
was to lay the foundation for such automated pipelining by
constructing and evaluating a probabilistic atlas describing the
shape and location of the major cerebral arteries. Specifically,
we investigated how the implementation of a non-linear nor-
malization into Montreal Neurological Institute (MNI) space
improved the alignment of individual arterial branches. In a
population-based cohort of 167 subjects, age 64–68 years, we
performed 4D flow MRI with whole brain volumetric cover-
age, yielding both angiographic and anatomical data. For each
subject, sixteen cerebral arteries were manually labeled to
construct the atlas. Angiographic data were normalized to
MNI space using both rigid-body and non-linear transforma-
tions obtained from anatomical images. The alignment of ar-
terial branches was significantly improved by the non-linear
normalization (p < 0.001). Validation of the atlas was based on
its applicability in automatic arterial labeling. A leave-one-out

validation scheme revealed a labeling accuracy of 96 %.
Arterial labeling was also performed in a separate clinical
sample (n = 10) with an accuracy of 92.5 %. In conclusion,
using non-linear spatial normalization we constructed an
artery-specific probabilistic atlas, useful for cerebral arterial
labeling.
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Abbreviations
AAIM Automatic atlas based Artery Identification Method
ICA Internal carotid artery
VA Vertebral artery
BA Basilar artery
PCA Posterior cerebral artery
MCA Middle cerebral artery
ACA Anterior cerebral artery
PCoA Posterior communicating artery
AI Angiographic image
AVR Arterial volume ratio
MNI Montreal Neurological Institute

Introduction

Cerebrovascular imaging is critical in diagnosing several
neurological disorders (Kronzon and Tunick 2006;
Mueller et al. 2005) as well as in research investigating
cerebrovascular physiology and pathophysiology (Amin-
Hanjani et al. 2015; Muller and Van Der Graaf 2012;
Rivera-Rivera et al. 2015; Zarrinkoob et al. 2015).
Several recent technological advancements, embodied in
4D flow MRI, allow for acquisition of data such as
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velocity, flow rate, turbulence patterns and pulsatility in
brain arteries (Frydrychowicz et al. 2011). Therefore,
post-processing methods that can transform these datasets
into meaningful standardised quantitative descriptions of
blood flow in the individual will soon be needed.

Probabilistic tissue maps are commonly used for tis-
sue segmentation in the whole brain (Ashburner and
Friston 2005) and in specific areas such as the cerebel-
lum (Diedrichsen et al. 2009; van Baarsen et al. 2016)
in both humans and animals (Love et al. 2016).
However, such methods have not been explored for la-
beling and segmentation of cerebral arterial branches.

An atlas describing the spatial distribution of individ-
ual arteries could enable a high degree of automation in
applications that require labeling of vascular segments.
Pioneering work has provided detailed descriptions on
individual segments (Nowinski et al. 2009a, b, 2013),
as well as probabilistic information on the morphology
of the cerebrovascular tree (Forkert et al. 2013; Mut
et al. 2014). Recently, we combined these two proper-
ties into a probabilistic artery-specific atlas and an au-
tomatic, atlas-based artery-identification method (AAIM)
(Dunås et al. 2016). The promising results from that
proof-of-concept study motivate the construction of an
atlas based on a large population-based sample, which
would give a more representative and improved spatial
coverage of the anatomic variation between individuals.

To validate such an arterial atlas in a meaningful
way, the purpose of the atlas must be considered.
Therefore, atlases developed for segmentation and label-
ing are generally evaluated for that specific task (Dunås
et al. 2016; Forkert et al. 2013; Passat et al. 2005).
Another important evaluation is based on describing
the underlying spatial alignment of the structures that
are included in the atlas.

The aim of this study was to create a stereotactic and
probabilistic cerebral arterial atlas by manually labeling
167 high-resolution 4D flow MRI angiographic scans.
This atlas was validated based on its applicability for
arterial labeling, and the impact of the normalization
process was investigated by comparing non-linear nor-
malization with rigid-body alignment.

Materials and Methods

In this study, 2360 cerebral arteries were manually labeled in
4D flow MRI from 167 healthy elderly subjects and used to
create the atlas. The workflow had five main steps: 1. Data
acquisition; 2. Spatial image normalization and preprocessing;
3. Atlas construction; 4. Comparison to rigid-body alignment;
and 5. Atlas validation.

1. Data Acquisition

Subjects from the Population

COBRA (Cognition, Brain and Aging) (Nevalainen et al.
2015) is a large, population-based, prospective MR imag-
ing study. In summary, subjects between 64 and 68 years
of age were randomly selected from the population regis-
try of Umeå, Sweden. Subjects with medical conditions or
medical or surgical interventions that could alter brain
function or cognitive performance such as history of brain
trauma or stroke, dementia, diabetes, functional impair-
ment or movement disorders (e.g., Parkinson’s disease),
epilepsy, intellectual disability, psychological disorders,
and ongoing malignancy treatment, were excluded, as
well as subjects with contraindications for MRI.

As a part of the COBRA study, we collected 4D flow MRI
data from 181 subjects (age 66.2 ± 1.2, M = 100, F = 81). Out
of these, thirteen subjects were excluded due to constraints
regarding data quality (e.g. motion artifacts) and one due to
a vascular malformation. This resulted in a sample of 167
subjects (age 65.8 ± 1.2, M = 97, F = 70) on which the atlas
was based.

Clinical Sample

For a pilot test on a clinical sample, ten patients with
transient ischemic attacks (n = 6) or lacunar infarcts
(n = 4) were included. This diagnosis was based on case
history, neurological and brain MRI examination. All pa-
tients were also investigated with CT angiography
(0.6 mm slices). CT did not reveal any stenosis or oc-
clusion of internal carotid, vertebral or basilar arteries, or
in the middle, anterior or posterior cerebral arteries.

MRI

The MRI data used in this study were collected on a 3 Tesla
scanner (Discovery MR 750; GE Healthcare, Milwaukee,
WI, USA) with a 32-channel head coil, using a balanced
5-point 4D flow MRI (Johnson and Markl 2010) covering
the intracranial cavity. The scan time for the 4D flow se-
quence was approximately nine minutes. Imaging parame-
ters were: velocity encoding, 110 cm/s; TR/TE, 6.5/2.7 ms;
flip angle, 8°; bandwidth, 166.67 kHz; radial projections,
1600; acquisition resolution, 300 × 300 × 300; imaging
volume, 220 × 220 × 220 mm; reconstruction matrix size,
320 × 320 × 320 (zero padded interpolation); and voxel
size 0.7 × 0.7 × 0.7 mm3. From the 4D flow MRI, a struc-
tural magnitude image (MT1w) and an angiographic image
(AI) were reconstructed (Dunås et al. 2016).
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2. Image Processing

Normalization

Tissue probability maps for white matter, grey matter and
cerebrospinal fluid were generated from the structural MT1w

using SPM8’s New Segment. From these tissue probability
maps, a study-specific brain template was generated using
SPM8’s DARTEL (Ashburner 2007). In that process, a
subject-specific transformation field that described the nonlin-
ear transformation from each subject to the study template was
also generated. With these transformation fields, the AI of
each subject was transformed to match the group template
and then normalized to stereotactic Montreal Neurological
Institute (MNI) space by aligning it with the MNI152-template
(Evans et al. 2012) using an affine transformation.

Vascular Segmentation and Skeleton Construction

The AI was smoothed with a low-pass box filter with a kernel
size of three voxels. To give complete vessel coverage without
including neighboring static tissue (Wåhlin et al. 2012), the
image was binarized by thresholding at 18 % of the maximum
intensity value.

To separate the branches of the vascular tree a vascular
skeleton was extracted from the binary image using an auto-
matic method containing three steps: 1. The binary vessel tree
was gradually thinned until a one-voxel thick skeleton was
obtained (Palàgyi and Kuba 1998); 2. The vascular skeleton
was pruned to remove loops and branches shorter than eight
voxels; 3. The vascular skeleton was divided into branches
separated by junction-points, and each branch was assigned
an identification number (Chen and Molloi 2003). Figure 1
illustrates the segmentation and skeleton construction.

3. Atlas Construction

Included Arteries

The arteries included in the atlas were selected based on
their fundamental role in the cerebral arterial circulation.

The included arteries were: left and right internal carotid
artery (ICA); basilar artery (BA); left and right vertebral
artery (VA); left and right posterior cerebral artery
(PCA); left and right, proximal and distal middle cere-
bral artery (MCA); left, right and distal anterior cerebral
artery (ACA); and left and right posterior communicat-
ing artery (PCoA).

Manual Arterial Labeling

The arteries were manually labeled using an in-house
tool developed in Matlab (Mathworks, MA, USA). The
vessels of the brain were visualized as a rotatable 3D
volume. The arterial segments forming each artery were
selected, and the corresponding vascular skeleton
branches were labeled and saved. The border between
two arteries was primarily defined according to junction
points in the vascular skeleton. When no such junction
points were present (e.g. due to an absent branch) the
border was manually determined based on morphology
such as changes in diameter or direction (Osborn 1999).

To re-inflate the labeled arteries, the vascular skeleton
branches with the corresponding labels were dilated with
a kernel of size seven voxels, and the resulting volume
was multiplied with the binary vessel tree. The labeled
arteries were then visually inspected and approved by a
neurologist (LZ). When there was uncertainty regarding
which branches that should be included (primarily in
MCA), a consensus decision was made by LZ and TD
(5 and 3 years of experience in neurovascular anatomy).
An example of manually labeled arteries from one subject
is presented in Fig. 2.

A probability map was constructed for each artery by
adding together the binary volumes of the re-inflated
arteries for all subjects and dividing the value of each
voxel by the number of included arteries. This resulted
in a 3D volume with values between zero and one,
corresponding to the proportion of included arteries that
overlapped in each voxel. These 16 probability maps
together form the atlas, which was denoted Umeå
Brain Arteries (UBA167).

Fig. 1 Vascular segmentation
and skeleton construction, a) raw
angiographic image, b)
segmented vasculature, c)
vascular skeleton where different
branches have different colors
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4. Impact of Normalization

Rigid-Body Atlas

To determine the contribution from the DARTEL nor-
malization, the UBA167 was compared with an atlas
where the vascular trees were aligned using a rigid-
body transform. The obtained volumes were transformed
to native space and aligned to the MNI152-template
using a rigid-body transform in SPM8. This procedure
was required since the manual labeling of each subject
was performed after DARTEL normalization. Probability
maps for each artery were calculated in the same way
as for UBA167.

Since the arteries were extracted after DARTEL nor-
malization, the arterial volumes had to be transformed
back to native space before aligning them to the MNI-
template in order to create the rigid-body atlas. Due to
partial volume effects, the images had to be re-binarized
after the rigid-body alignment. This was done using a
threshold adapted for volume conservation of each prob-
ability map.

Atlas Characterization

The normalization procedure was evaluated by compar-
ing the UBA167 to the rigid-body atlas. Four measure-
ments were used to describe the spatial distribution of
arteries in terms of alignment between subjects and sep-
aration between arteries in the probability maps. For
each artery probability map, the measurements were: 1.
Concatenated volume calculated from the number of
non-zero voxels, i.e. voxels occupied by an artery in
any of the 167 subjects; 2. The arterial volume ratio
(AVR) obtained by dividing the concatenated volume
of the probability map by the average arterial volume
across the included subjects; 3. The dominating volume
of each probability map calculated as the percentage of
voxels where the artery in question had higher proba-
bility than any other overlapping artery; 4. The maxi-
mum value of each probability map.

A low AVR equals a high spatial agreement between
subjects, and hence a high specificity for separating ar-
teries from background. The dominating volume de-
scribes how well the probability maps are separated,
which could be translated to the specificity for separat-
ing different arteries.

5. Atlas Validation

Leave-One-Out Validation

To evaluate the sensitivity of the UBA167, it had to be
applied to a new sample of subjects. This was done
using a leave-one-out approach where a target subject
was removed from the UBA167 and the modified atlas
based on the remaining 166 subjects was used to label
the arteries of the target subject, using the previously
described automatic identification method (AAIM)
(Dunås et al. 2016). This process was repeated for all
subjects in the cohort. The labeled images were approved
or disapproved according to the following criteria:

& ICA: 2 cm cervical segment
& VA: 1 cm straight segment in conjunction to the foramen

magnum
& BA: 1 cm segment anywhere in the artery
& PCA: 1 cm segment at P2–P3, i.e. distal to PCoA
& MCA: 1 cm segment in M1
& MCAdistal: 1 cm segment in the sylvian fissure
& ACA: 5 mm segment in A1, proximal to the anterior com-

municating artery
& ACAdistal: 1 cm segment distal to anterior communicating

artery
& PCoA: 5 mm segment anywhere in the artery

Fig. 2 An example of manually labeled arteries for one subject. For
ACAdistal, all main branches distal to the anterior communicating artery
were selected (1–3 branches of the pericallosal artery depending on
morphology, A2–A3 level). PCA was cropped at P3 level, distal to
pons, to get a uniform length (Osborn 1999). MCA was divided into a
proximal (MCA) and a distal (MCAdistal) part. The proximal part consists
of the M1 segment, pre- and post-bifurcation. The MCAdistal includes the
full visible length of MCA, or until it reaches the cortex (M2 and M3
segments). The border between the proximal and distal part was set at the
genu where the MCA takes a turn in the posterior direction (Osborn
1999). Only the branches that extend posteriorly (M2) and laterally
(M3) were included. For M1, branches forming/preceding the main M2
branches, or having the same direction as those doing so, were included.
The direction and continuity of the arteries were decided by visual
inspection. Since MCAdistal consists of several branches, the individual
variation at M3 level was too large for it to be useful to construct a
separate probability map. Note that in the vascular segmentation process,
gaps sometimes arise in low-flow arteries, here seen in the MCAdistal on
the left side of the figure
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Agreement between automatic and manual labeling was
described and divided into six categories:

& Correctly identified existing: The artery was present in the
manual reference and was localized.

& Correctly identified nonexisting: The artery was not pres-
ent in the manual reference and was marked as not found
by the AAIM.

& Mislabeled existing: The artery was present in the manual
reference but at least a part of the labeled volume was
inaccurate. A subjective decision in each case was used
to determine whether the degree of mislabeling was clin-
ically relevant.

& Mislabeled nonexisting: The artery was not present in the
manual reference but was marked as existing by the
AAIM.

& Not identified: The artery was not labeled, even though it
did exist in the manual reference.

& Too short: The identified segment belonged to the correct
artery but did not include the required segment.

Clinical Validation

For the UBA167 to be clinically relevant, it has to be applica-
ble to vascular diseases. As a proof-of-concept of this gener-
alizability, the UBA167 was applied to a clinical sample of ten
patients with transient ischemic attacks or lacunar infarcts.
The labeling was performed with the AAIM. Again, the la-
beled images were evaluated using the previously mentioned
criteria. In addition, results were compared to a reference ob-
tained from computed tomography (CT) angiograms.

Results

The arterial atlas, UBA167, is presented in Fig. 3, and the
specific contribution of applying non-linear image normaliza-
tion over rigid-body co-registration is seen in Fig. 4.

As revealed by the more confined probability maps, the
non-linear image normalization generated a higher degree of
arterial alignment than the rigid-body transformation.

Prevalence of Arteries

The number of arteries included in UBA167 and their average
volumes are presented in Table 1. In total 2360 arteries were
manually labeled. ICA, MCA and ACAdistal were present in
all subjects. BA and PCA were present in over 98 % of the
subjects. VA, ACA and MCAdistal were present in at least
90 % of subjects, while only 38 % (63/167) had a PCoA on
any side, and 28.7 % (48/167) had a fetal PCoA (missing P1).

Arterial Volume Ratio

The AVR of each probability map is presented in Table 1 and
reflects how well the normalization method works and to
which extent each artery permits such normalization. A per-
fect normalization would result in an AVR of 1.0, and higher
values indicate a less effective normalization. The AVR for the
probability maps in UBA167were significantly lower than for
the rigid-body atlas (p < 0.001, Wilcoxon signed-rank test).
When looking at the whole atlas, the AVR for the UBA167
was 13.7, and the corresponding value for the rigid-body atlas
was 29.3.

In general, the proximal arteries of the anterior circulation
(ICA, MCA, ACA and PCoA) had a low AVR (6.4 to 14.8)
compared with posterior (PCA, VA and BA, AVR 19.0 to
26.1) and distal arteries (MCAdistal and ACAdistal, AVR 18.2
to 42.8). The AVR was negatively correlated with the accura-
cy of the leave-one-out validation (p = 0.035, Spearman cor-
relation, rho = − 0.46, one-tailed probability).

Dominating Volume and Maximum Probability

The dominating volume of each probability map and the max-
imum probability value are also presented in Table 1. The
average dominating volume for UBA167 was 85.8 %, com-
pared with 74.9 % in the rigid-body atlas, and this difference
was statistically significant (p < 0.005, Wilcoxon signed-rank
test), indicating that the DARTEL normalization did indeed
improve the spatial alignment between subjects.

The maximum probability value is also a measurement of
spatial distribution. For UBA167, many arteries had voxels
where over 80 % of subjects overlapped, ICA even had
100 % overlap in some voxels. For the rigid-body atlas, no
more than 53% of the subjects overlapped in any single voxel.

Correctly Identifying Cerebral Arteries

The result from the leave-one-out validation can be found in
Table 2. The average labeling accuracy for the leave-one-out
validation was 96 %. Lower values were observed for VA,
PCoA and left MCAdistal. The specificity could not be calcu-
lated for all arteries because the number of true negatives was
zero for most arteries.

The average labeling accuracy in the clinical sample was
92.5 % (Table 3). In two patients, the identified right PCAwas
too short to fulfill the evaluation criteria. This was also the
case for the right VA in two patients. One ACAdistal and one
MCAdistal on each side were not identified. The existing
PCoAs were not identified in the clinical sample. In the CT-
angiography that serves as the reference in this evaluation,
PCoAwas found bilaterally in one subject and unilaterally in
three subjects.
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Discussion

The probabilistic atlas Umeå Brain Arteries (UBA167), which
contains 16 major brain arteries, was constructed based on
manually labeled 4D flow MRI angiography from 167 sub-
jects. This is the first project describing the Bartery-specific^
3D spatial distribution within the human brain. UBA167 can
be used to automatically label and segment the major cerebral
arteries for future automated blood flow quantification.
Similar to successful brain tissue atlases (Diedrichsen et al.
2009; Tzourio-Mazoyer et al. 2002; van Baarsen et al.
2016), UBA167 is provided in MNI space. We believe that
multiple additional neuroimaging applications can be devel-
oped around this atlas. For example, the atlas can be used to
extract geometrical measures such as size and tortuosity of
brain arteries. In addition, the atlas can be used to detect and
correct for signals in large arteries that can degrade the phys-
iological interpretation ofMRI data (e.g. arterial spin labeling,
functional MRI, diffusion imaging). For example, in function-
al MRI, removal of vascular contamination is of known
importance (Kiviniemi et al. 2003).

Achieving sufficient spatial inter-individual alignment of
brain arteries cannot be taken for granted, as demonstrated
by the fact that DARTEL normalization outperformed rigid-

body transformation. This finding is analogous to results ob-
tained for brain structural normalization (Klein et al. 2009). In
the current paper we hypothesized that normalization prior to
atlas labeling would provide a feasible pipeline for automated
labeling. Our results supported this hypothesis by showing
that all major arteries were labeled with high accuracy
(>95 %), indicating that the achieved inter-individual spatial
variability permitted efficient atlas construction.

UBA167 was constructed from a population-based sample
(Nevalainen et al. 2015), and can thus be expected to represent
a wide range of vascular morphology. This may have contrib-
uted to our finding of a high accuracy when using UBA167 on
the ten stroke patients. An atlas based on a more selected
sample (for instance only using subjects without hypertension,
hyperlipidemia and obesity) could have resulted in less gen-
eralizability as such cardiovascular risk factors may affect the
anatomy and tortuosity of cerebral vessels (Bullitt et al. 2009;
Hiroki et al. 2002).

The atlas is developed from data on individuals from a
limited age span. We still expect a high degree of generaliz-
ability of the atlas, assuming that future studies normalize data
according to the present study. However, future studies using
the atlas have to verify its functionality for that particular
sample.

Fig. 3 Visualization of the
probabilistic (a–c) and artery -
specific (d–f) properties of the
UBA167 shown in axial, coronal
and sagittal view. The probability
values (a–c) are visualized with a
heat map, min = 0, mid = 0.1 and
max = 1.0. In (d–f), each voxel is
labeled as the artery with the
highest probability

Fig. 4 Visual comparison of the
two atlases and the volumes of the
probability maps. A maximum
value projection of a) UBA167
and b) the rigid-body atlas. Each
probability map is presented in a
separate color
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The main innovation of the UBA167 is the combination of
the artery-specific probabilistic properties with the fully auto-
matic labeling of the major cerebral arteries. The UBA167 is
thus prepared for automatic blood flow quantification in 4D
flow MRI data. Pioneering work on characterization of the
cerebral arterial system has been based on small sample sizes
(Nowinski et al. 2009a, 2011, 2013) or has not included spe-
cific probabilities for individual arterial segments (Forkert
et al. 2013; Mut et al. 2014; Wright et al. 2013). Knowledge
of vascular morphology has also been used for semi-
automated segmentation and labeling (Bogunović et al.
2012; Ghanavati et al. 2014; Passat et al. 2006).

Our finding of a maximum probability value of 1.0 in the
bilateral ICAmeans that there exist one ormore voxels in each
ICAwhere all 167 subjects overlapped. These voxels provide
the compelling option to explore seeding points, combined
with region-growing segmentation schemes, since the proba-
bility that those voxels will be within the ICA for a new sub-
ject is very high (Passat et al. 2005). UBA167 as a whole can
also be used to specify the region of interest or provide spatial
information for arterial segmentation to reduce computational
time (Passat et al. 2006).

UBA167 enabled a high labeling accuracy (Tables 2 and
3). Although the input data for the labeling validation was
from 4D flow MRI, a comparable imaging technique can be

expected to produce equally accurate results when combined
with the AAIM.

We used a velocity encoding of 110 cm/s for the 4D flow
sequence. This value was selected to avoid aliasing in large
arteries. This option is not optimal to visualize and quantify
the slow-velocity blood flow of the posterior communicat-
ing cerebral arteries (Dunås et al. 2016). Indeed, this was
clearly evident when the CT angiogram images from the
patient group were reviewed. Here CT angiography detect-
ed additional PCoA arteries that were not visible on the
thresholded AI. This is not a strict limitation of UBA167
and labeling procedure per se, but rather a manifestation of
differences in the underlying measurement techniques.
However, with respect to the development of an automatic
flow assessment of 4D flow MRI data, the high labeling
accuracy for arteries that had detectable velocities was very
promising. Future developments could improve the label-
ing accuracy of VA segments by improving the labeling
criteria. The evaluation conditions for the labeling were
set to ensure that segments needed for future blood flow
quantification were correctly identified, therefore some
existing arteries could be marked as too short.

The UBA167 included the major cerebral arteries, therefore
it does not allow investigation of more distal arteries. Such distal
arteries could also be added, but the increasing inter-individual

Table 1 For each probability map, the number of included arteries and
their average volumes are presented, as well as the concatenated volume,

the ratio between concatenated volume and average arterial volume, the
percentage of the concatenated volume where no other probability map

had a higher value, and the maximum value of each probability map.

Artery Number of arteries
(Percent of subjects)

Average arterial
volume ± SD [cm3]

Concatenated
volume [cm3]

Arterial volume
ratio (AVR)

Dominating volume [%] Maximum
probability value

UBA RB UBA RB UBA RB UBA RB

Right ICA 167 (100) 3.0 ± 0.43 19.5 51.0 6.4 16.8 97.6 95.5 1.0 0.47

Left ICA 167 (100) 3.0 ± 0.52 19.8 45.8 6.7 15.5 97.1 95.2 1.0 0.53

BA 166 (99.4) 0.52 ± 0.18 9.9 18.7 19.0 35.7 72.5 73.1 0.79 0.25

Right VA 153 (91.6) 0.70 ± 0.43 18.3 36.4 26.1 52.0 95.4 95.2 0.51 0.12

Left VA 154 (92.2) 0.83 ± 0.41 19.2 39.7 23.2 48.0 91.8 93.5 0.68 0.15

Right PCA 166 (99.4) 0.29 ± 0.13 6.4 14.2 22.0 48.1 88.4 79.6 0.54 0.14

Left PCA 165 (98.8) 0.28 ± 0.14 6.2 13.0 21.9 46.1 89.6 82.7 0.58 0.15

Right MCA 167 (100) 0.46 ± 0.12 5.8 15.9 12.6 34.8 81.9 79.0 0.90 0.20

Left MCA 167 (100) 0.44 ± 0.13 6.5 16.3 14.8 37.1 81.6 78.2 0.89 0.18

Right ACA 157 (94.0) 0.24 ± 0.074 2.9 9.4 11.8 39.0 75.0 59.8 0.85 0.16

Left ACA 162 (97.0) 0.25 ± 0.078 2.5 9.2 10.0 36.4 64.4 50.9 0.83 0.18

ACAdistal 167 (100) 0.59 ± 0.27 10.7 21.5 18.2 36.6 95.9 93.8 0.66 0.22

Right PCoA 50 (29.9) 0.17 ± 0.060 2.4 4.5 13.9 26.1 69.0 38.8 0.88 0.24

Left PCoA 30 (17.9) 0.19 ± 0.065 1.7 3.5 9.1 18.8 77.4 42.8 0.90 0.23

Right MCAdistal 162 (97.0) 0.40 ± 0.25 14.8 24.4 36.8 61.0 97.7 96.9 0.31 0.15

Left MCAdistal 160 (95.8) 0.29 ± 0.20 12.5 18.3 42.8 62.8 97.9 97.4 0.29 0.11

UBA UBA167, RB rigid - body atlas, ICA Internal carotid artery, VAVertebral artery, BA Basilar artery, PCA Posterior cerebral artery, MCA Middle
cerebral artery, ACA Anterior cerebral artery, PCoA Posterior communicating artery
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Table 2 Labeling results from leave-one-out validation

Artery Correctly
identified
existing
(TP)

Correctly
identified
non-
existing
(TN)

Mislabeled
non-
existing
(FP)

Mislabeled
existing
(FN)

Not
identified
(FN)

Too
short
(FN)

Sensitivity
[%]

Specificity
[%]

Accuracy
[%]

Right ICA 165 0 0 2 0 0 99 – 99
Left ICA 167 0 0 0 0 0 100 – 100
BA 163 0 1 2 1 0 98 0 98
Right VA 136 4 11 7 1 9 89 27 84
Left VA 145 8 5 6 0 4 95 57 92
Right PCA 165 1 0 0 0 1 99 100 99
Left PCA 163 2 0 0 0 2 99 100 99
Right MCA 167 0 0 0 0 0 100 – 100
Left MCA 167 0 0 0 0 0 100 – 100
Right ACA 154 9 1 0 3 0 98 9 98
Left ACA 160 5 0 0 2 0 99 100 99
ACAdistal 167 0 0 0 0 0 100 – 100
Right PCoA 43 112 5 0 7 0 86 96 93
Left PCoA 26 124 13 0 4 0 87 91 90
Right

MCAdistal

160 2 3 0 0 2 99 40 97

Left MCAdistal 142 3 4 0 5 13 89 43 86

True positive (TP), false positive (FP), true negative (TN), and false negative (FN) rates, as well as sensitivity and specificity for identifying each artery
with AAIM are also presented. Without any TN or FP, it is not possible to calculate specificity

ICA Internal carotid artery, VAVertebral artery, BA Basilar artery, PCA Posterior cerebral artery, MCA Middle cerebral artery, ACA Anterior cerebral
artery, PCoA Posterior communicating artery

Table 3 Labeling results for the clinical validation

Artery Correctly
identified
existing
(TP)

Correctly
identified
non-existing
(TN)

Not
identified
(FN)

Too
short
(FN)

Sensitivity
[%]

Specificity
[%]

Accuracy
[%]

Right ICA 10 0 0 0 100 – 100

Left ICA 10 0 0 0 100 – 100

BA 10 0 0 0 100 – 100

Right VA 8 0 0 2 80 – 80

Left VA 10 0 0 0 100 – 100

Right PCA 8 0 0 2 80 – 80

Left PCA 10 0 0 0 100 – 100

Right MCA 10 0 0 0 100 – 100

Left MCA 10 0 0 0 100 – 100

Right ACA 10 0 0 0 100 – 100

Left ACA 10 0 0 0 100 – 100

ACAdistal 9 0 1 0 90 – 90

Right PCoA 0 7 3 0 0 100 70

Left PCoA 0 8 2 0 0 100 80

Right
MCAdistal

9 0 1 0 90 – 90

Left MCAdistal 9 0 1 0 90 – 90

True positive (TP), false positive (FP), true negative (TN), and false negative (FN) rates, as well as sensitivity and specificity for identifying each artery
with AAIM are also presented. Without any TN or FP, it is not possible to calculate specificity

ICA Internal carotid artery, VAVertebral artery, BA Basilar artery, PCA Posterior cerebral artery, MCA Middle cerebral artery, ACA Anterior cerebral
artery, PCoA Posterior communicating artery

108 Neuroinform (2017) 15:101–110



variations in anatomy at that depth in the arterial tree would
potentially limit the usefulness of such expansions. This effect
can be seen in the MCAdistal in Fig. 3, appearing with lower
spatial alignment between subjects compared with more proxi-
mal arteries. Since the P1 and P2 segments were defined as the
same artery, and the anterior communicating artery was not
included, UBA167 cannot differentiate between some of the
typical morphological variants. The standard variations that
can be automatically identified are missing A1 or PCoA
(Krabbe-Hartkamp et al. 1998).

Conclusion

UBA167 is an artery-specific probabilistic atlas based on 16
manually-labeled major cerebral arteries from 167 subjects.
The UBA167 enables a high accuracy in automatic arterial
labeling in both population-based subjects and in ischemic
patients. Comparison to rigid-body alignment showed a large
improvement in spatial alignment for non-linear normaliza-
tion. Taken together, this study provides compelling first evi-
dence for the usefulness of a probabilistic stereotactic atlas of
the major cerebral arteries.
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