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Abstract: In freshwater ecosystems, habitat heterogeneity supports high invertebrate density and
diversity, and it contributes to the introduction and settlement of non-native species. In the present
study, we identified the habitat preferences and trophic level of Brachydiplax chalybea flavovittata larvae,
which were distributed in four of the 17 wetlands we examined in the Yeongsan River basin, South
Korea. Larval density varied across four microhabitat types: open water area, and microhabitats
dominated by Myriophyllum aquaticum, Paspalum distichum, and Zizania latifolia. Microhabitats
dominated by M. aquaticum had the highest larval density, followed by those dominated by P. distichum.
The larvae were more prevalent in silt sediments than in plant debris or sand. Stable isotope analysis
showed that B. chalybea flavovittata is likely to consume, as a food source, other species of Odonata
larvae. We conclude that successful settlement of B. chalybea flavovittata can be attributed to their
habitat preferences. As temperature increases due to climate change, the likelihood of B. chalybea
flavovittata spreading throughout South Korea increases. We, therefore, recommend continued
monitoring of the spread and ecological impacts of B. chalybea flavovittata.

Keywords: atmospheric temperature; distribution and diffusion; habitat heterogeneity; macrophytes;
Odonata larvae; stable isotope analysis

1. Introduction

Invertebrate communities play an important role in the functioning of freshwater wetland
ecosystems. Aquatic invertebrates occupy an intermediate level in the freshwater food web, between
phyto- and zooplankton and fish, and they are crucial for regulating food web dynamics [1]. Because
spatiotemporal distribution patterns of invertebrates directly influence the population growth and
fecundity of other major components of wetland food webs, these organisms have a strong impact on
ecosystem health. Given their intermediate trophic position, the aquatic invertebrates require habitat
conditions that not only supply sufficient food resources, but also provide refuge from predators.
Empirical studies suggested that interactions such as competition and predation can induce shifts
in habitat preferences and spatial distribution within invertebrate communities [2]. For example,
areas populated by emergent macrophytes, such as Phragmites communis Trin. and Typha orientalis
Presl., are unable to support high densities of cladocerans and rotifers owing to the relatively simple
habitat structure they provide [3,4]. However, these macrophytic species are suitable habitats for
damselflies, which move by crawling along solid stems [5]. Such niche partitioning allows species to

Insects 2020, 11, 273; doi:10.3390/insects11050273 www.mdpi.com/journal/insects

http://www.mdpi.com/journal/insects
http://www.mdpi.com
https://orcid.org/0000-0003-3237-8334
https://orcid.org/0000-0002-4940-7499
https://orcid.org/0000-0003-2271-5691
http://www.mdpi.com/2075-4450/11/5/273?type=check_update&version=1
http://dx.doi.org/10.3390/insects11050273
http://www.mdpi.com/journal/insects


Insects 2020, 11, 273 2 of 18

coexist and fosters species diversity [6–9]. Therefore, the distribution patterns and habitat preferences
of invertebrates should be identified in order to elucidate determinants of community structure.

Habitat heterogeneity provides numerous niches by increasing the diversity of ways in which
organisms can exploit environmental resources [10]. Various microhabitats can support a wide
diversity of invertebrates depending on the differential fitness among species in a heterogeneous space.
The heterogeneity of microhabitats can be characterized not only by abiotic factors, such as water depth,
wave action, turbulence, water temperature, and bottom substrates, but also by biotic structures [11,12],
such as trees, woody debris, and composition and abundance of macrophytic communities [13,14].
Most wetland studies focused on the spatial distribution of invertebrates in heterogeneous habitat
structures created by aquatic macrophytes that alter microhabitat complexity, as well as physical
conditions, consequently affecting the abiotic and biotic characteristics of the ecosystem [15,16].
The leaves and stems of submerged macrophytes are more heterogeneous in structure than those of
other macrophytic forms (e.g., emergent, free-floating, and floating-leaved) and, therefore, they increase
the physical habitat complexity of their aquatic environment [17]. Field observations and experimental
investigations confirmed the occurrence of high invertebrate densities in the presence of submerged
macrophytes [18,19]. In addition, free-floating or floating-leaved macrophytes were also reported to
fulfil important structuring functions in wetland systems [20]. Freshwater wetland ecosystems provide
heterogeneous microhabitats with diverse structural complexity because of the mosaic of different
habitats [21]. Thus, wetlands are able to support the settlement and population growth of various
animal species.

In freshwater ecosystems, the geographical range extension and successful settlement of exotic
species occurs within a stable habitat environment. In general, the migration of exotic species is
explained by the effects of climate change, such as increased temperatures, or as an invasion through
national or regional exchanges; however, exotic species introduced into ecosystems with limited
ranges, such as wetlands, are closely related to habitat preferences. For example, Lepomis macrochirus
spread throughout South Korean freshwater ecosystems because they find food source and refuge
from predators in habitats with abundant macrophytes [22,23]. Another example is the African catfish
(Clarias gariepinus Burchell, 1822), a species introduced into Brazil, which reduced fish species diversity
by using native fishes as a food source [24]. The distribution and settlement of exotic species changes
the interactions between other organisms; it requires adaptation on the part of native species and creates
new ecological relationships. This can lead to the decline, extinction, or emigration of native species,
or it may induce migration to other habitats, which can compromise ecological health by reducing
biodiversity. Therefore, effective management and conservation of wetlands requires an understanding
of the habitat preferences of introduced species and their relationships with native species.

Odonates (Insecta: Odonata) are important components of the freshwater invertebrate community,
and they are essential for characterizing and assessing the land/water interface, as well as structural
habitat heterogeneity and hydrological features of aquatic systems. They are suitable for use as indicator
species, because their distribution, abundance, and diversity respond to environmental changes in
temperature, pollution, and habitat structure [25,26]. Because their growth rate varies with temperature
across latitude and altitude [27–29], the Korean Environment Ministry started to study climate change
by monitoring several Odonata species as climate-sensitive biological indicator species (CBIS) [30].
Currently, the CBIS list includes three species: Ceriagrion nipponicum Asahina, 1967, Ischnura senegalensis
Rambur, 1842, and Brachydiplax chalybea flavovittata Ris, 1911. For example, B. chalybea flavovittata is
gradually moving northward toward the Yeongsan River or the Geum River ever since its first entry
into Jeju Island was confirmed in 2010, and it is likely to spread widely, depending on changes in
temperature. Although the overall distribution of this species was reported [31], its habitat preferences
and interactions with other native species were not sufficiently studied. Furthermore, the presence of
larvae—which would confirm successful settlement—was only confirmed in the area of Jeju Island,
and not in the Yeongsan River basin.
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In the present study, we investigated the distribution patterns and habitat preferences of B. chalybea
flavovittata larvae in a riverine wetland located in the Yeongsan River basin, South Korea. The main
purpose of this study was to describe the habitat preferences of B. chalybea flavovittata larvae and
to evaluate their potential impact on native odonates in the Yeongsan River basin by describing
their habitat and trophic niche requirements. We hypothesize that their ability to coexist with native
species is a consequence of different niche requirements. To test this hypothesis, we investigated (i) the
influence of hydrological characteristics and environmental variables on odonate larval distribution,
(ii) the spatial distribution of B. chalybea flavovittata in different habitat types, and (iii) the trophic
position of B. chalybea flavovittata and native Odonata larvae using stable isotope analysis. Based on
our results, we discussed the settlement characteristics of B. chalybea flavovittata in South Korea and
suggested new management strategies related to the promotion of biodiversity in freshwater wetlands.

2. Materials and Methods

2.1. Study Area

South Korean freshwater ecosystems are temperate and have four distinct seasons. Mean annual
rainfall is ca. 1150 mm, and more than 60% of annual rainfall occurs from June to early September [32,33].
The riverine wetlands included in this study are located in southwestern South Korea, around the mid
and lower reaches of the Yeongsan River (Figure 1). Historically, there were numerous riverine wetlands
within this Yeongsan River basin; however, large wetland areas vanished as a result of reorganization
by the River Refurbishment Project in 2012. Agriculture is now the dominant land-use type in the
basin, and non-point source pollution continuously influences these wetland ecosystems [34].
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We investigated 17 riverine wetlands located in the Yeongsan River basin (Figure 1), which differ in
basic morphological and limnological features (Table 1). Total water area ranges from 4000 to 350,000 m2

in each wetland; some of these water bodies are nearly circular, whereas others are long or oval. While
the main water sources in most of these wetlands are streams, some rely on other water source types,
such as rainfall, groundwater, and drainageways. Those that are primarily fed by drainageways have
higher nutrient concentrations than those supplied by other types of water sources. Each wetland is
characterized by a shallow littoral zone and a deeper limnetic zone, resulting in a clear separation of
microhabitats. Macrophytes are abundant in and limited to the littoral zone. Study sites are highly
covered by aquatic macrophytes, including Phragmites australis, Paspalum distichum, Zizania latifolia,
Spirodela polyrhiza, Salvinia natans, Trapa japonica, Ceratophyllum demersum, and Hydrilla verticillata, in the
period from spring (May) to autumn (November).

Table 1. Morphometric and limnological description of 17 investigated riverine wetlands. Fluctuation
refers to the annual water level fluctuation (values > 1 m are regulated). Rainfall/ground,
Rainfall/groundwater.

No. Main Water Source Altitude (m) Area (m2) Fluctuation (m) Mean
Depth (m)

Maximum
Depth (m)

Mean Residence
Time (year)

1 Stream 11.6 26,400 2.8 3.1 3.8 0.22
2 Drainageway 6.6 7800 <1 2.8 3.1 0.32
3 Stream 16.4 13,700 2.5 2.7 2.9 0.31
4 Stream 18.2 20,400 <1 4.1 4.6 0.16
5 Rainfall/ground 27.4 17,600 <1 2.4 2.7 0.36
6 Rainfall/ground 23.2 6700 <1 0.8 1.1 0.21
7 Drainageway 14.5 31,600 <1 1.6 2.0 0.12
8 Stream 12.8 13,600 1.7 3.4 3.6 0.21
9 Stream 16.5 15,900 1.1 2.8 3.2 0.15

10 Rainfall/ground 9.2 22,600 <1 1.2 1.8 0.43
11 Drainageway 11.8 25,600 <1 0.7 1.6 0.41
12 Stream 20.7 4000 3.4 2.3 3.1 0.31
13 Stream 17.6 27,600 2.8 1.1 1.6 0.22
14 Rainfall/ground 26.7 350,000 <1 0.8 1.4 0.42
15 Stream 24.3 137,957 1.7 1.8 2.2 0.18
16 Stream 30.5 109,000 2.5 1.6 2.1 0.11
17 Stream 24.7 137,957 1.4 2.3 2.7 0.37

2.2. Monitoring Strategy

We monitored the study sites from May to June, before the summer monsoons and typhoons,
in order to avoid flooding disturbance [35] and to obtain data under stable conditions. We established
3–5 sampling areas in the littoral zone at each site. At each sampling area, three quadrats (1 m × 1 m)
were used to measure environmental variables and Odonata density.

Water temperature, percentage saturation of dissolved oxygen (DO), pH, conductivity, turbidity,
chlorophyll a (Chl a), total nitrate (TN), and total phosphorus (TP) were measured in quadrats in each
wetland. We used a DO meter (model 58; YSI Inc., Yellow Springs, OH, USA) to determine water
temperature and DO; conductivity and pH were recorded using a conductivity meter (model 152;
Fisher Scientific, Hampton, NH, USA) and an Orion 250A pH meter (Orion Research Inc., Boston,
MA, USA), respectively. Water from a depth of 0.5 m to the surface was sampled using a 2-L column
sampler. In order to determine Chl a concentration, water samples were filtered through 0.45-µm
mixed cellulose ester membrane filters (A045A047A; Advantech Co. Ltd., Taipei, Taiwan). The filtered
membranes were placed in cold 90% acetone, in darkness, at 20 ◦C for 4 h. To improve extraction,
the cells were disintegrated for 2 min in an ultrasonic bath. To remove cell debris and filter particles,
the pigment extract was centrifuged at 5000 rpm for 5–10 min. The extinction coefficient was estimated
at 600 and 750 nm using a spectrophotometer (Japan Fantec Research Institute, Shizuoka, Japan),
with the sample placed in a 1-cm glass cuvette [36]. The concentration of Chl a was estimated using
the following formula:

Chl a = 11,403 × (A600 − A750) × Va × Vb
−1, (1)
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where Va is the extract volume (mL) and Vb is the sample volume (mL). We also determined TN and
TP spectrophotometrically, based on the method described in Wetzel and Likens [36].

In each quadrat, Odonata larvae collections were conducted for approximately 30 to 40 min using
a stainless-steel sampler (30 cm width, 600 µm mesh). Based on habitat characteristics of odonate
assemblages, we collected as many individuals as possible by sweeping over the sediment surface and
over the leaves and stems of aquatic macrophytes. The sampling protocol was the same for all wetlands,
and the three quadrats represented habitats characteristics within the littoral area. The collected odonate
assemblages and organic material, including plant debris, were preserved in 10% formaldehyde. In the
laboratory, each sample was washed through a 600-µm mesh sieve, and leaves, stems, and other debris
were removed. The resulting material was preserved in 80% ethanol. Individual insects were separated
and identified to species level according to Yoon [37], and Kawai and Tanida [38]. We established
a species list of Odonata larvae for each wetland, and we compared the density of B. chalybea flavovittata
larvae with that of other odonate species. After larval collection, aquatic macrophytes were collected
in order to estimate their dry weight. Only the submerged parts of the macrophytes were used for
the measurement of dry weight; the above-water stalks were removed from emergent macrophytes,
and the above-water organs, such as flowers, were removed from free-floating and floating-leaved
plants. The remaining plant masses were used to obtain the dry weight estimates (gram dry weight,
gdw). This sampling strategy was also applied to the floating-leaved species. The collected macrophyte
samples were dried at 60 ◦C for 48 h and weighed using an electronic microbalance (Mettler, AE 240,
Switzerland).

In order to better understand the spatial distribution of B. chalybea flavovittata larvae with respect
to different microhabitat characteristics, we conducted additional collections of these larvae in three
wetlands (sites 1, 5, and 14) where they were abundant. We identified four different microhabitat
types based on the heterogeneity of the macrophytic composition in each wetland: (1) open water
area (without macrophytes), (2) area covered by Myriophyllum aquaticum, (3) area covered by Paspalum
distichum, and (4) area covered by Zizania latifolia. Overall, we found very few aquatic free-floating or
floating-leaved macrophytes. Although site 2 supported a moderate density of B. chalybea flavovittata
larvae, it was excluded from additional investigations because of its relatively simple habitat structure
(mostly covered by P. distichum). At each site, 80 randomly selected sampling points were surveyed
from September to October. The quadrats (1 m × 1 m) were established at each sampling point for
monitoring. We assigned 20 sampling points for each type of microhabitat. Moreover, we investigated
the sediment types at 80 sampling points, and we compared the density of B. chalybea flavovittata larvae
for each sediment type. We found three different sediment types in each wetland: (1) silt, (2) plant
residue, and (3) sand. The “plant residue” means a sediment type in which the leaves or stems of
aquatic plants are not decomposed or less decomposed. At each sampling point, water depth was
measured with an echosounder (Simrad EK-500), and aquatic macrophyte biomass was collected, dried
in the lab at 60 ◦C for two days, and weighed.

2.3. Stable Isotope Analysis

In order to compare the trophic levels of B. chalybea flavovittata and native Odonata species using
stable isotope analysis, we collected five species of Odonata larvae, including B. chalybea flavovittata,
at three wetlands (sites 1, 5, and 14) in which B. chalybea flavovittata larvae were abundant. The four other
selected Odonata species (Paracercion calamorum, Ischnura asiatica, Ceriagrion melanurum, and Sympetrum
eroticum) were the most dominant species in the spring survey. We captured as many individual
Odonata larvae as possible in order to fulfill the minimum dry weight requirement for stable isotope
analysis of at least 1.0 mg per sample.
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The larvae samples were rinsed with deionized distilled water to remove the acid. All samples
were freeze-dried and then ground with a mortar and pestle. All powdered samples were frozen
(−70 ◦C) until the analysis. Nitrogen isotope ratios were determined using continuous-flow isotope
mass spectrometry (CF-IRMS, model-ISOPRIME 100; Micromass Isoprime, GV Instruments Ltd.,
Manchester, UK). Prior to the analysis, the samples were placed in a sealed CF-IRMS overnight,
with a 99.999% He flow of a few mL/min. Instrument linearity (dependence of δ13C and δ15N on
signal amplitude at the collectors) was tested daily and confirmed to be <0.03%�/nA over the range
of 1–10 nA. We loaded 100 ± 10 µg silver-encapsulated cellulose samples (no carbon was added
to the samples inside the capsules), producing a signal of approximately 4–6 nA at the collectors,
in a 99-position zero-blank CF-IRMS, and converted to a mixture of carbon monoxide, carbon dioxide,
water, and hydrogen gases over glassy carbon chips in a quartz tube at 1080 ◦C, within a stream
of 99.999% carrier He flowing at 110 mL/min. The data were expressed as the relative per mil (%�)
difference between the sample and the conventional standards of Pee Dee Belemnite carbonate for
carbon and atmospheric N2 for nitrogen, according to the following equation:

δ X (%�) = [(Rsample/Rstandard) − 1] × 1000, (2)

where X is 15N and R is the 15N:14N ratio. A secondary standard of known relationship to the
international standard was used as a reference material. The standard deviations δ15N for 20 replicate
analyses of the peptone standard (δ15N = 7.0 %�, Merck) were ±0.2 (%�).

2.4. Data Analysis

We used non-metric multidimensional scaling (NMDS) to examine Odonata distribution patterns
according to environmental variations in 17 wetlands. The NMDS ordination plots were generated
based on Euclidean distance, and goodness of fit was assessed in terms of loss of stress. Each variation
was log-transformed after being assessed for normality with the Shapiro–Wilk test. The stress value
for the two-dimensional solution was 0.132, which is lower than the generally accepted maximum
stress value of <0.2 [39]. The significance of the fitted vectors was assessed using 3000 permutations,
with p < 0.05 considered significant. NMDS ordination was conducted with the R package “vegan”
(version 2.5-3 [40]).

We also used regression analysis to assess the influence of water depth and macrophyte biomass on
the density of B. chalybea flavovittata larvae in each wetland. We tested linear, exponential, inverse, power,
and logistic functions in order to determine the equation generating the best curve fit. The curve-fitting
regression equation that returned the highest determination coefficient was selected to explain the
observed relationships.

Furthermore, one-way ANOVA was used to examine the effects of microhabitat type and soil
type on the mean density of B. chalybea flavovittata larvae, and differences in mean N values among the
five odonate species. Tukey’s test was used for additional post hoc comparison analysis to determine
which differences were statistically significant.

All statistical analyses, including ANOVA, stepwise multiple regression, and species diversity
analysis, were conducted using SPSS ver. 20 (released 2011; IBM SPSS Statistics for Windows, Version
20.0. Armonk, NY: IBM Corp.). Differences and relationships were considered significant at p < 0.05.
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3. Results

3.1. Environmental Variables and Odonata Larvae Distribution

We found relatively little difference among the environmental variables of the study sites
(Table 2). Although some study sites had exceptionally high or low values, the coefficients of variation
(CV; standard deviation/mean × 100%) were lower than 100% in all study sites. The cover rate of
macrophytes and DO had the highest CV, but the variation was only ca. 31.2% and 30.4%, respectively.
The regression analysis between DO and cover rate of macrophytes indicated a positive relationship
between these parameters (r2 = 0.68, p < 0.05). The DO values decreased as the cover rate of macrophytes
increased. No statistical differences were found between other environmental variables.

Table 2. Environmental variables in 17 riverine wetlands. WT, water temperature; DO, dissolved oxygen;
Cond., conductivity; Chl a, chlorophyll a; TN, total nitrogen; TP, total phosphorus; MB, macrophyte
biomass; SD, standard deviation; CV, coefficient of variation (%).

No. WT
(◦C)

DO
(%) pH Cond.

(µS/cm)
Turbidity

(NTU)
Chl a
(µg/L)

TN
(mg/L)

TP
(µg/L)

MB
(g)

1 21.3 58.3 8.1 235.3 10.6 16.3 1.3 13.4 12.3
2 20.9 21.3 7.6 312.4 6.4 8.2 1.8 16.3 32.2
3 19.2 46.3 7.4 289.3 12.3 10.6 1.1 11.3 16.2
4 20.5 22.3 7.8 321.6 8.3 6.3 1.1 14.2 28.3
5 20.8 32.6 7.2 314.2 10.3 13.4 0.7 15.7 21.2
6 21.4 28.3 8.3 226.2 11.3 10.3 1.3 12.8 26.3
7 20.3 23.2 8.0 284.3 15.2 12.4 1.5 16.7 31.2
8 19.7 36.2 7.9 273.2 5.8 8.2 1.4 14.2 23.5
9 21.6 27.2 8.1 257.3 7.3 10.3 1.2 16.2 28.1

10 20.1 23.1 8.4 305.1 10.2 13.4 1.0 11.3 25.3
11 22.3 31.1 7.3 274.3 9.2 10.3 1.5 17.2 16.3
12 21.2 36.2 7.8 246.7 8.4 10.8 1.4 12.4 13.8
13 21.8 41.8 8.0 338.2 10.3 13.7 1.0 11.3 8.3
14 21.2 25.1 7.6 374.2 12.9 12.4 1.3 15.2 26.2
15 22.1 37.1 7.9 312.2 12.4 15.7 0.7 14.8 18.2
16 19.4 31.2 7.2 285.3 12.5 16.3 0.9 12.7 22.8
17 20.3 26.7 8.2 241.0 10.2 12.3 1.6 14.3 26.4

Mean 20.8 32.2 7.8 287.7 10.2 11.8 1.2 14.1 22.2
SD 0.9 9.8 0.4 39.6 2.5 2.9 0.3 1.9 6.9
CV 4.4 30.4 4.8 13.8 24.3 24.2 24.9 13.8 31.2

A total of 15 Odonata species were identified from 17 wetlands. Ceriagrion melanurum was the most
dominant species in study sites (relative richness: 28.1%), followed by S. eroticum (14.1%), P. calamorum
(13.6%), and I. asiatica (12.2%). The relative richness of other Odonata species was less than 6%.
The density and species number of odonate larvae differed among study sites (Figure 2). With over
100 ind./m2, site 14 supported the highest density of odonate larvae, followed by densities of more
than 50 ind./m2 in sites 1, 2, 12, and 16. Furthermore, their density was abundant in wetlands with
“rainfall/groundwater” among main water source types (Figure 3). Although, statistical significance
was not verified, the wetlands with “stream” or “drainageway” supported relatively lower odonate
larvae density than wetlands with “rainfall/groundwater”. The results of the NMDS indicated that the
measured environmental variables did not influence the density of odonate larvae. Only four out of 17
wetlands were found to support B. chalybea flavovittata larvae (sites 1, 2, 5, and 14), and their densities
ranged from 5 to 12 ind./m2.
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3.2. Distribution of Brachydiplax chalybea flavovittata Larvae in Different Microhabitat Types

The density of B. chalybea flavovittata larvae clearly differed among microhabitat types (one-way
ANOVA, p < 0.05; Figure 4). We observed similar distribution patterns of B. chalybea flavovittata larvae
in three wetlands where they were abundant (sites 1, 5, and 14). In sites 1 and 14, the area covered by
M. aquaticum (Ma) supported the largest density of B. chalybea flavovittata larvae (site 1, 10.5± 2.1 ind./m2;
site 14, 9.5 ± 2.8 ind./m2), followed by the area covered by P. distichum (Pd; site 1, 2.0 ± 1.3 ind./m2; site
14, 4.6 ± 2.4 ind./m2). In the absence of Ma, the larvae were most concentrated in areas covered by
Pd (site 5, 11.7 ± 3.4 ind./m2; Figure 4b). The lowest larval density was observed in areas covered by
Z. latifolia (Zl), and no larvae were found in open water areas.
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Figure 4. Density of Brachydiplax chalybea flavovittata larvae according to microhabitat type: Ow, open water
area; Ma, area covered by Myriophyllum aquaticum; Pd, area covered by Paspalum distichum; Zl, area covered
by Zizania latifolia. (a) site 1, (b) site 5, and (c) site 14.

The density of B. chalybea flavovittata larvae also differed among the three sediment types (one-way
ANOVA, p < 0.05; Figure 5). These larvae were more abundant in silt (site 1, 7.2 ± 2.3 ind./m2; site 5,
10.3 ± 1.5 ind./m2; site 14, 8.3 ± 1.6 ind./m2) than in other substrate types. Plant residue and sand
substrates supported different densities of B. chalybea flavovittata larvae in different study sites. Site 1
supported a relatively high density of these larvae in sandy substrates (Figure 5a), whereas the larvae
were more abundant in plant residue substrates of sites 5 and 14. The differences in larval densities
were lower between plant residue and sand than those between these substrates and silt.
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Figure 5. Density of Brachydiplax chalybea flavovittata larvae in three sediment types. (a) site 1, (b) site 5,
and (c) site 14.

Regression analysis (Figure 6) showed a clear relationship between two environmental variables
(water depth and macrophyte biomass) and density of B. chalybea flavovittata larvae. A power function
generated the highest coefficient of determination between water depth and larval density. Density
decreased with increasing water depth in all three wetlands (sites 1, 5, and 14; Figure 6a–c), and did
not show any statistically significant correlation with macrophyte biomass (Figure 6d–f).
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Figure 6. The relationships between the density of Brachydiplax chalybea flavovittata larvae and water
depth at sites 1, 5, and 14 (a–c), and with macrophyte biomass at sites 1, 5, and 14 (d–f).

3.3. Stable Nitrogen Isotope Analysis of Odonata Larvae

The δ15N value differed significantly among the five sampled Odonata larvae species (one-way
ANOVA, p < 0.05; Figure 7b,c). The δ15N values of larvae collected at site 1 showed no statistical
differences, and they displayed a range similar range to that of the other sites (Figure 7a). The five
species were clearly divided into two subgroups (a group with four dominant species, and b group
with B. chalybea flavovittata) by the post hoc Tukey test. The δ15N value of B. chalybea flavovittata larvae
ranged from 10.3%� to 13.3%� and was relatively heavier than that of other four species. The δ15N value
of C. melanurum was the lightest (8.2%� to 12.7%�), whereas those of the other three dominant Odonata
species were similar. The δ15N value of the five investigated Odonata species showed a similar pattern
among the three sampled wetlands.
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Pc, Paracercion calamorum; Ia, Ischnura asiatica; Cm, Ceriagrion melanurum; Se, Sympetrum eroticum;
Bef, Brachydiplax chalybea flavovittata. The three graphs (a–c) represent different three study sites (from
the left, site 1, 5, and 14). Means labeled with a different letter indicate statistical subgroups defined by
the post hoc test (Tukey honestly significant difference (HSD), p = 0.05).
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4. Discussion

4.1. Influence of Environmental Variables on Odonata Larvae Distribution

Odonata communities were not strongly influenced by environmental variables or hydrological
characteristics in any of the investigated wetlands. Aquatic organisms, such as fish and zooplankton,
are known to be sensitive to chemical and physical factors such as dissolved oxygen, habitat structures,
and water temperature, flow, and depth [41–44]. In contrast, invertebrates, including Odonata larvae,
are less influenced by regional environmental characteristics, as they are relatively less mobile
than aquatic organisms and spend most time occupying substrates (e.g., leaves and stem of plant,
or sediment [45,46]). Moreover, while the high swimming ability of fish and the short life cycles of
zooplankton enable them to respond rapidly to changes in wetland environments [47,48], odonate
larvae, which are characterized by relatively slow movement and a long life cycle, have limited ability
to respond to environmental fluctuations. In addition, Odonata adults are relatively mobile, able to
disperse throughout multiple wetlands, and they are, therefore, capable of expanding the range of
their larval habitats relatively quickly. Because of this, odonate larvae can have a wide distribution
range throughout various lentic ecosystems, such as wetlands, reservoirs, and ponds. In the present
study, we observed a moderate density of Odonata larvae in most of the study sites.

Although the environmental variables had little influence on Odonata larvae, we suggested
that two factors contribute to population fluctuations. Firstly, Odonata larvae had relatively low
density in wetlands supplied by drainageways. These wetlands are exposed to pollutants from nearby
villages or farmland more frequently than wetlands that are primarily replenished by streams, rainfall,
or groundwater. The resulting high nutrient loads can lead to eutrophication, which is harmful to
invertebrate communities because of low DO levels and reduced productivity of important food
sources, such as phyto- and zooplankton [49,50]. Moreover, wetlands primarily fed by streams,
rainfall, or groundwater have a high abundance of littoral vegetation, whereas those fed primarily
by drainageways often have artificial shorelines that lack a littoral zone, and they are, therefore, not
suitable for the growth of aquatic macrophytes and, consequently, cannot support a high density
of odonate larvae. Although our results showed little relationship between the density of Odonata
larvae and the biomass of aquatic macrophytes, we observed that the larvae preferred areas that were
moderately covered by aquatic macrophytes than open water area not covered by aquatic macrophytes.

Secondly, Odonata larvae were abundant in stable wetlands with little water flow. Water flow acts
as a major source of disturbance for various aquatic organisms, including freshwater invertebrates, and it
strongly affect species diversity and population growth [51,52]. In particular, the summer-concentrated
rainfall of East Asian regions, including South Korea, negatively influences the autumn density of rotifers
and cladocerans [33,53]. Previous studies suggested that a high abundance of aquatic macrophytes
generally leads to habitat stabilization against physical disturbances, such as flow fluctuations and
large amounts of summer rainfall. Ecosystems rich in aquatic macrophytes can consequently support
a high density and diversity of invertebrates (e.g., rotifers [9,54]). In the present study, we observed
high densities of Odonata larvae in wetlands where aquatic macrophytes were abundant.

4.2. Microhabitat Preference of Brachydiplax chalybea flavovittata Larvae

We observed variable densities of B. chalybea flavovittata larvae across four different microhabitat
types, which indicated a clear habitat preference of the larvae. In general, Korean wetlands provide
a suitable environment for the growth of various aquatic macrophytes, which can create highly
heterogeneous habitats. Such habitat heterogeneity can induce stable settlement of exotic species,
such as B. chalybea flavovittata, because it can support various organisms with different microhabitat
preferences. The larvae of B. chalybea flavovittata had a greater preference for area covered by M. aquaticum
than for those covered by other aquatic macrophyte species. Myriophyllum aquaticum provides
a relatively more complex habitat structure than other macrophytes species because it is very densely
distributed in the water and, therefore, it provides a suitable habitat for diverse species of Odonata
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larvae, including those of B. chalybea flavovittata. The greater preference for the areas covered by
M. aquaticum could be driven by an indirect positive effect of the presence of more prey abundance
and diversity. Interestingly, B. chalybea flavovittata larvae were concentrated in the areas dense with
P. distichum in the absence of M. aquaticum, indicating that this is a viable alternative habitat for the
larvae. Similarly, Cazzanelli et al. [55] suggested that free-floating macrophytes are important as
they create microhabitats for invertebrates in water bodies, where submerged macrophytes are scarce.
Choi et al. [56] and Sakuma et al. [57] also reported that some cladoceran species migrate from plant
to plant according to the seasonal growth of aquatic macrophytes. This led us to consider that the
spatial distribution of B. chalybea flavovittata larvae could depend on habitat heterogeneity and structure
created by aquatic macrophytes in wetlands.

Although aquatic macrophytes provide habitat structure and are clearly influential on the density
of B. chalybea flavovittata larvae, it is also important to determine the substrate types that are preferentially
inhabited by B. chalybea flavovittata larvae. Unlike pelagic invertebrates, B. chalybea flavovittata larvae
typically inhabit the substrate surface or interstices. Therefore, the observed variations in density
depending on habitat characteristics associated with aquatic macrophytes are likely to be affected by
sediment characteristics in each microhabitat type. We found that the B. chalybea flavovittata larvae
were more abundant in silty substrates than in plant residue or sand substrates. Each of these sediment
types has different organic composition. In an aquatic environment, the process of decomposition
may be affected by many factors, including nutrients [58,59], temperature [60], pH [61], plant detritus
availability, chemical composition, C:N:P ratio, microbiota metabolic activity, biomass, and diversity.
The degree of decay of macrophytic leaves and stems can seasonally affect sediment composition in
different microhabitat types [62]. Macrophytes with soft, perishable stems and leaves can quickly decay
into soil components of relatively small size [63]. Accordingly, we found that areas with abundant
M. aquaticum had silt substrates. Conversely, P. distichum and Z. latifolia, which have hard stems,
generate large debris particles and coarse sediments because they decompose more slowly than plants
with softer stems [64]. This sediment type is not suitable for Odonata larvae because of its low dissolved
oxygen content and lack of food resources.

The high degree of preference of B. chalybea flavovittata larvae for a certain microhabitat type
(i.e., M. aquaticum) and sediment type (i.e., silt) can explain why they are usually observed inhabiting
shallow water depths. Myriophyllum aquaticum plants are mainly distributed in shallow waters and do
not grow readily on silt sediment [65]. Some studies reported that M. aquaticum growth is possible even
in areas with little water [66]. Furthermore, shallow water depth can alter competitive and trophic
dynamics. In wetlands with relatively high water levels, Odonata larvae are vulnerable to predation
by fish or competition with invertebrates that inhabit the euphotic and profundal zones. In particular,
previous studies reported that L. macrochirus is widely distributed in South Korea and vigorously feeds
on invertebrate prey, even in areas with a high abundance of aquatic macrophytes [23,67]. Wetlands
or shallow water may support high abundance and species diversity of invertebrates that would
otherwise be vulnerable to competition or predation.

Based on our findings, we concluded that the investigated Korean wetlands constituted a suitable
habitat for B. chalybea flavovittata larvae. These wetlands are constantly supplied with nutrients such
as nitrogen and phosphorus from surrounding agricultural land; this can potentially create various
microhabitats by promoting the growth and development of aquatic macrophytes. These characteristics
not only lead to a stable settlement of B. chalybea flavovittata, but also increase the likelihood that this
species could spread widely throughout South Korea.

4.3. Impact of Brachydiplax chalybea flavovittata Settlement on Native Odonata Comunities

Stable nitrogen isotopes are frequently used to elucidate the interrelationships among freshwater
organisms, allowing identification of not only the various prey items consumed by predators, but also
the trophic levels of species [68]. Nitrogen isotope concentration in predators tends to be around 3–5%�,
whereas that in prey species averages 3.0%� ± 2.6%�, with a range of 0.5–9.2%�, [69]. Thus, the δ15N
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values of various organisms can indicate competition or prey–predator relationships. In the present
study, we roughly estimated the trophic position of each investigated odonate species based on δ15N
values. We found that the trophic position of B. chalybea flavovittata larvae was higher than that of other
Odonata species larvae, indicating that B. chalybea flavovittata larvae are secondary or third consumers,
consuming other animals. The composition of nitrogen isotopes in organic matter becomes heavier
during the process of recycling through the ecosystem, and it reflects the trophic level of the organisms
that consume them [70,71]. Empirical studies also suggested that Odonata larvae can utilize, as a food
source, other Odonata larva species, as well as zooplankton such as cladocerans and copepods [72,73].
From these points, we assume that the high trophic position of B. chalybea flavovittata was attributed
from consuming, as a food source, other Odonata species larvae. Interestingly, Pritchard [74] reported
that Zygoptera formed a large part of the food of all Odonata larvae in freshwater ecosystems. However,
we found that some wetlands where B. chalybea flavovittata larvae present were supported by the high
abundance of other Odonata species larvae. This may be because the B. chalybea flavovittata larvae are
in the early stages of settlement, or they may consume other food items excluding Odonata species
larvae. Therefore, further analysis is needed on the utilization of food sources for the B. chalybea
flavovittata larvae.

4.4. Geographical Extension and Settlement of Brachydiplax chalybea flavovittata Larvae in South Korea

The species Brachydiplax chalybea flavovittata, which was introduced into a wetland located in the
Yeongsan River basin of South Korea, appears to have successfully naturalized here. The first report
of B. chalybea flavovittata was in 2010 on Jeju Island; the species was later reported in the Yeongsan
River and the Geum River basins in the period from 2014 to 2016, after which it gradually moved
northward. However, it was not clear whether the Odonata in the Yeongsan River and Geum River
basins settled inland, because only the adults were found. Our finding of larvae in the Yeongsan River
basin indicates that this species settled in the inland area. It is known that B. chalybea flavovittata larvae
can usually be found in hot and humid locations in India, Indonesia, and Thailand [75]; however, we
found the larvae of this species in the period from May to November, within a temperature range that
is much wider than that that tolerated by adults.

The settlement of B. chalybea flavovittata larvae in the Yeongsan River basin is closely related to the
recent temperature rise in Korea [76]. This increase in average temperature induced the introduction
and settlement of various non-native plants and animals, while populations of native species gradually
declined or migrated. Lycorma delicatula White, 1845 and Vespa velutina nigrithorax Buysson, 1905, which
were recently designated as invasive animal species in South Korea, are good examples of settlement as
a consequence of climate change. Although these species were frequently introduced into South Korea
in the past, it was only recently confirmed that a stable settlement was established [77,78]. Moreover,
invasive plant species such as Landoltia punctata and P. distichum recently and rapidly began spreading
in South Korea [79,80]. The settlement of B. chalybea flavovittata in the Yeongsan River basin is, therefore,
an example of a continuous settlement pattern. As the average temperature of summer and winter is
on a steady rise, it is highly likely that B. chalybea flavovittata will spread very widely in South Korea.

The distribution characteristics of freshwater ecosystems, along with rising temperatures in South
Korea, also contribute to the diffusion of B. chalybea flavovittata. South Korean rainfall is mainly
concentrated in summer and is relatively low in other seasons; thus, large numbers of wetlands or
ponds were artificially created for continued use of water. The littoral area, with its shallow depth, can
support a diverse invertebrate community because it is suitable for the growth of aquatic macrophytes.
Moreover, the water flow in most sections of Korean rivers is restricted by small weirs; these areas
now support various aquatic macrophytes. Considering these environmental conditions and the
aforementioned habitat preferences of B. chalybea flavovittata larvae, we conclude that their diffusion in
South Korea will be relatively rapid, assuming conducive climatic conditions.

The geographical range extension and settlement of exotic species commonly leads to new
relationships and interactions between organisms within the freshwater food web. For example,



Insects 2020, 11, 273 14 of 18

L. macrochirus and Micropterus salmoides, which were introduced into South Korea in 1970, had a negative
impact on native fish species because of their vigorous feeding activity and competition [81]. Although
we did not find negative effects on the settlement of B. chalybea flavovittata larvae, the possibility cannot be
ruled out based on the results of nitrogen isotope analysis. The trophic position of B. chalybea flavovittata
larvae is such that this species does tend to interfere with native Odonata larvae, and ecological damage
and disturbances by this species are present. As their settlement is still in its early stages, continuous
monitoring of the extent of their spread and its ecological impact is needed.

5. Conclusions

We estimated that the successful settlement of Brachydiplax chalybea flavovittata in the Yeongsan
River basin is closely related to low competition and the presence of their suitable microhabitat. Among
the four microhabitat types associated with aquatic macrophytes, B. chalybea flavovittata preferred the
microhabitats dominated by Myriophyllum aquaticum, and, among the three investigated sediment
types, it preferred silt sediments. This species is likely to spread throughout South Korea because
its suitable microhabitat type is very common in South Korea. However, we assume that B. chalybea
flavovittata can consume other Odonata species larvae from stable isotope analysis. The relatively high
trophic position of B. chalybea flavovittata was attributed from consuming other Odonata species larvae
or utilizing food items with similar trophic position to Odonata larvae. We, therefore, recommend
continued monitoring of the spread and ecological impacts of B. chalybea flavovittata.
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