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Abstract

In transient-state multiparametric MRI sequences such as Magnetic Resonance Spin

TomogrAphy in Time-domain (MR-STAT), MR fingerprinting, or hybrid-state imaging,

the flip angle pattern of the RF excitation varies over the sequence. This gives con-

siderable freedom to choose an optimal pattern of flip angles. For pragmatic reasons,

most optimization methodologies choose for a single-voxel approach (i.e., without

taking the spatial encoding scheme into account). Particularly in MR-STAT, the con-

text of spatial encoding is important. In the current study, we present a methodology,

called BLock Analysis of a K-space-domain Jacobian (BLAKJac), which is sufficiently

fast to optimize a sequence in the context of a predetermined phase-encoding pat-

tern. Based on MR-STAT acquisitions and reconstructions, we show that sequences

optimized using BLAKJac are more reliable in terms of actually achieved precision

than conventional single-voxel–optimized sequences. In addition, BLAKJac provides

analytical tools that give insights into the performance of the sequence in a very lim-

ited computation time. Our experiments are based on MR-STAT, but the theory is

equally valid for other transient-state multiparametric methods.

K E YWORD S
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1 | INTRODUCTION

Many MR techniques acquire qualitative images that are “weighted” by tissue properties like T1 or T2. Typically, these are steady-state acquisition

techniques, allowing for simple reconstruction paradigms. By combining multiple steady-state acquisitions, quantitative information regarding

several tissue properties can be extracted.1–11 However, these steady-state approaches require a multiplicity of scans or scan-segments, leading

to scan times that are too long for clinical practice. Transient-state sequences may overcome this downside.

Abbreviations used: BLAKJac, BLock Analysis of a K-space-domain Jacobian; CRLB, Cramér–Rao lower bound; MRF, magnetic resonance fingerprinting; MR-STAT, Magnetic Resonance Spin

TomogrAphy in Time-domain; RF, radio frequency.
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Examples of transient-state sequences are MR fingerprinting (MRF),12,13 Magnetic Resonance Spin TomogrAphy in Time-domain

(MR-STAT),14,15 or transient/hybrid-state imaging. Transient-state sequences have the promise of more efficiently deducing several tissue proper-

ties from one single scan. In order to achieve that, these techniques abandon the steady-state approach and introduce time-varying sequence

parameters (e.g., the radio-frequency [RF] flip angle). These techniques trade simplicity for efficiency, where “efficiency” is seen as obtaining more

information (low noise or artifacts, high resolution) per unit time – or, conversely, faster acquisition without the loss of accuracy or precision.

However, transient-state techniques come with a cost. Optimizing a typical MR-STAT or MRF sequence requires choosing hundreds or

thousands of different flip-angle values, while a steady-state sequence requires to optimize only one. The optimization of flip-angle trains is

addressed in.16–30 Most of this work, in particular refs,16–21,26,28,29 is limited to single-voxel optimization, in the sense that it does not take the

encoding pattern into account when optimizing the RF flip angle pattern.

When focusing on the inherent performance potential of a sequence, rather than on the deficiency of the reconstruction process, the

Cramér–Rao lower bound (CRLB) is the most appropriate tool. The CRLB has been used for single-voxel optimization.16,17,20,26 Similarly, Byanju

et al.27 focus exclusively on low spatial frequencies, bringing it close to single-voxel, while Leitão et al.28 assume full sampling at every instant, also

turning the optimization into a single-voxel approach. Other work22–24 analyzes the efficiency in the context of the encoding pattern and focuses

on the undersampling artefacts obtained by the specific reconstruction process; that work does not apply the CRLB. Also, Jordan et al.30 take

encoding into account but choose not to apply CRLB as a criterion. Up-to-date application of the CRLB in the context of a RF time-varying train

combined with gradient encoding has not been presented before.

In our approach, we take the spatial encoding-pattern into account – and we focus on the theoretical CRLB, which we study by means of the

Jacobian and its associated Fisher Information Matrix. This is a large matrix, of the order of n�n; in non-Cartesian sequences, n is the number of

samples in k-space; in Cartesian sequences, it is the number of different phase-encoding values (in our MR-STAT examples, n¼224Þ. A full

inversion of a matrix of that size incurs a prohibitive processing burden. In this paper, we present a solution that is both fast and useful.

As a solution, we propose a methodology that factorizes the Jacobian, a methodology called BLock Analysis of a K-space-domain Jacobian

(BLAKJac) (see Section 2). BLAKJac is fast relative to a full inversion because it achieves an n2 factor in performance increase in the analysis of

sequences. This allows for iterative sequence optimization in the context of encoding with a total computing time of the order of minutes. As one

useful feature of BLAKJac, we show, on a Cartesian-encoded sequence reconstructed by MR-STAT,31 that sequences optimized in the context of

spatial encoding (2D) reliably predict the precision of T1- or T2-maps, as opposed to single-voxel (0D) optimized sequences. As another useful

feature, BLAKJac allows for prospective analysis of spatial noise spectra in the obtainable tissue parameter maps. Given any sequence of

time-varying flip angles and gradient-encoding patterns, it can predict and visualize which spatial frequencies will be most affected by noise, as

shown in the simulations and experimental tests.

2 | THEORY

To evaluate the performance of a sequence, it is necessary to evaluate the inverse of the Fisher Information Matrix JHJ, where J is the Jacobian of

the associated signal model. In order to allow efficient inversion of the information matrix, we propose a factorization of the Jacobian based on

the following idea (see also Figure 1): we focus on the spatial frequency domain and consider thus the Fourier transforms of properly scaled

parameter maps (see Equation 2). These transformed maps are denoted as “auxiliary variables” with the symbol “f” in the sequel. Note that we do

not need to actually calculate f as an intermediate step: this notion only serves to explain the factorization of the Jacobian.

Thus, we consider the composite signal model Γ¼ h f uð Þð Þ for a given function h, where h ∘ f¼Γ. This leads to a splitting of the Jacobian into

two factors: JΓ=u ¼ JΓ=fJf=u, where each of these two factors leads to a computationally efficient inversion of the information matrix.

F IGURE 1 Proposed signal model decomposition and associated Jacobian factors. The arrows represent mappings, not processing steps. The
introduction of the auxiliary variables f allows to factorize the Jacobian into two factors, Jf=u and JΓ=f; both can be efficiently evaluated
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(Here, Γ is the signal model, see also Equation (A1) in Appendix A.1; u is the set of unknowns [e.g., the T1 and T2 values at all locations]; and h

and f are arbitrary functions. A symbol like Jf=u represents the Jacobian of f with respect to u, that is, the matrix ∂f uð Þ
∂u

h i
).

This section is structured as follows: subsection 2.1 links the CRLB to the Fisher Information Matrix. Subsection 2.2 elaborates on the

truncated Taylor expansion of the forward model, which is essential to show that JΓ=f can be approximated as a block-diagonal; this property

delivers the speedup of the computations. Subsection 2.3 elaborates on the applications of this approach.

2.1 | CRLB for spatially dependent parameter maps

Transient-state multiparametric MRI sequences are often used to estimate tissue properties like T1, T2, or proton density.12–16,32 For

reconstruction techniques that are unbiased, there is a theoretical limit on the uncertainty to the resulting parameter maps, namely, the CRLB:

E u�buð Þ u�buð ÞH
h i

� I�1 uð Þ: ð1Þ

Here, “E½ �” means “expectation value”, u denotes the vector of unknowns, and bu is an unbiased estimator thereof. “H” denotes the Hermitian

conjugate and I is the Fisher Information Matrix.

To evaluate the Fisher Information Matrix, we assume that we have a perfect forward MR signal model Γ :ð Þ that exactly models spin dynam-

ics and sequence-design settings, leading to sampled data. We also assume that this data is only confounded by independent and identically

distributed (i.i.d.) thermal noise with variance σ2. In that case, I uð Þ reduces to 1
σ2 J

H
Γ=uJΓ=u. Here, the notation JΓ=u is the Jacobian matrix ∂Γ uð Þ

∂u:

h i
.

Note the similarity in formalism to, for example, the work by Zhao et al.17; the fundamental difference is that Zhao et al.17 consider the vector

of unknowns to consist of just Np elements, with Np the number of properties (e.g., three), thereby defining u¼ T1, T2, M0½ �T (withM0 representing

the proton density). In our work, u is a vector of NpNlocations elements, which thus represents the whole spatial distribution of each

parameter type.

In the sequel, the symbol r will denote a three-elements location vector (of which there are Nlocations [i.e., the number of voxels]); because we

assume that the set of locations spans a Cartesian grid, we apply a slight notational abuse and use r also as an index to u (i.e., the full vector u

consists of elements up,r ). Similarly, the k-space vector k¼ kx, ky , kzð Þ will also be used as an index having Nk distinct values. Here, we take

Nk ¼Nlocations.

For any flip-angle and gradient-encoding scheme, we can calculate JΓ=u, from which the expected noise statistics in the reconstructed

parameters can be calculated by the inversion of JHΓ=uJΓ=u. Yet, in practice, this inversion is problematic. This Fisher Information Matrix has size

NpNk�NpNk; the inversion of a full matrix of this size requires O N3
kN

3
p

� �
operations. A factorization of the Jacobian, elaborated below, allows for

a substantial speedup of the aforementioned inversion problem.

2.2 | Taylor expansion of the model Γ and factorization of the Jacobian

Appendix A elaborates on a Taylor expansion of the signal model Γ :ð Þ, which allows for a factorization of the Jacobian. That formalism is based on

a first-order Taylor approximation of the Bloch model, that is, on G k, ið Þ u1,r , …, u Np�1ð Þ,r
� �

≈ g k, ið Þ þ
PNp�1

p¼1
∂G k, ið Þ
∂up

ju¼uref � up,r �urefp

� �h i
, where G is the

Bloch signal model at timepoint k, ið Þ given the relaxation properties u1,r ,…,u Np�1ð Þ,r at any location r; a derivative like
∂G k, ið Þ
∂u1

ju¼uref can be seen as

“the level of T1-weighting” at time point k, ið Þ. The values, urefp , with p¼1,…,Np�1, are arbitrary reference values that are chosen to be constant

over the whole volume.

The aforementioned factorization separates the (weighted) Fourier-transform component from the Jacobian, the “remaining” factor being

close to a block-diagonal matrix. More precisely, we define auxiliary variables as

f0,k ¼ F u0ð Þk
f p≥1ð Þ,k ¼ F u0⨀

up
urefp

�1

 ! !
k

, ð2Þ

where “⨀” is the Hadamard product and F �ð Þ is shorthand for n-dimensional Fourier transform (i.e., F xð Þk ¼
P

rxre
i2πk�r ); as already mentioned,

the vector k¼ kx, ky , kzð Þ is also used as an index, similarly to vector r. While f0 represents the Fourier transform of the proton-density map, the

physical meaning of, for example, f1, can be seen as the Fourier transform of a weighted T1 map.

Using these auxiliary variables, we consider the signal model as Γ¼ h f uð Þð Þ (see Figure 1). We thereby split the Jacobian into two factors:

JΓ=u ¼ JΓ=fJf=u, where
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• The factor JΓ=f is approximated as a block-diagonal. This diagonal structure is shown in Figure 2.

• The factor Jf=u is a weighted Fourier transform matrix, with well-known noise properties, σ2p /
P

k JHΓ=f JΓ=f
� ��1
� �

k, pð Þ, k, pð Þ
; here, σp is the

Cramér–Rao lower limit to the standard deviation of the reconstructed noise in property p (e.g., the T1-map). The proportionality factor in

the formula above includes the choice of urefp , the noise level in the data (σ), as well as the proton density.

Note that JΓ=f is close to being a block-diagonal, while the original JΓ=u is not. This is a crucial aspect because it allows for the N2
k efficiency

factor when inverting the Fisher Information Matrix. The resulting performance gain is particularly beneficial if the inversion JHΓ=f JΓ=f
� ��1

needs to

be evaluated multiple times, for instance, during an iterative optimization process.

2.3 | Analysis and applications of BLAKJac

The proposed BLAKJac factorization allows for several useful applications, among which are noise spectrum analysis and sequence optimization.

2.3.1 | BLAKJac for noise spectrum analysis

BLAKJac can efficiently predict the noise spectrum in the reconstructed parameter maps u. Assuming an i.i.d. noise at the input, the noise covari-

ance matrix at the auxiliary variables f is approximated by σ2 JHΓ=fJΓ=f
� ��1

. By examining the resulting noise variance on a given property p and a

measurement sequence, we can extract an Nk�Nk submatrix, σ2 JHΓ=fJΓ=f
� ��1

� 	
pp

. Given the block-diagonality of JΓ=f, this submatrix is diagonal.

Consequently, BLAKJac provides the information on the noise variance as a function of spatial frequency, as will be shown in the numerical

and experimental tests (Figures 10 and 11, details will follow).

2.3.2 | BLAKJac for sequence optimization

Because the Jacobian Jf=u is in essence a Fourier transform matrix, the noise variance in up can be obtained by a sum of the variances of its

k-space components. Symbolically,

σ2p /
X

k
JHΓ=f JΓ=f
� ��1
� �

k, pð Þ, k, pð Þ
, ð3Þ

F IGURE 2 Graphical representation of the absolute values of the elements of the Jacobian matrix in a Cartesian case (where kx is not
relevant, so k reduces to ky). (A) JΓ=u, (B) The matrix JΓ=f. Part (C) shows the same content as (B), but with the indices rearranged so that the
instance i and the property p are the inner indices, while k and l are the outer indices. Part (C) demonstrates that the 224 diagonal blocks, k¼ l,
are dominant. In the example, the blocks have a size of 5�3. The black color corresponds to 0
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with σp the expected standard deviation to the map of property p (e.g., the T1-map).

From the values of σp, we can calculate an overall figure of merit C as C¼ 1
Np

P
p

σp
urefp

or as C¼ max σp
urefp

� �
. Optimal sequences can be obtained

by minimizing C. This is elaborated in section 3.2.

Our approach also allows to map the performance of a sequence over a T1, T2ð Þ-landscape, thereby highlighting potentially suboptimal

encoding for specific values of T1, T2ð Þ (Figure 3).

3 | METHODS

3.1 | Details of the applied MR-STAT sequence

In all our experiments, we applied Cartesian MR-STAT measurements.15 An MR-STAT sequence, as shown in Figure 4C, consists of a repeated

acquisition (TR ¼10ms) of single lines through k-space; TR as well as the total gradient area between pulses is held constant (a.k.a. steady-state

free precession), while the flip angle is varied from pulse to pulse. Experiments were performed on a Philips Achieva 3T system with a 13-element

head coil (but precombined into a single virtual coil for our experiments, by taking the first principal component of the concatenated coil signals).

In all experiments, we measured a single slice with 4-mm thickness. The scan parameters were TE ¼5ms with a voxel size of 1mm�1mm,

Nky ¼Nkx ¼224, field of view = (224mm)2, and no parallel imaging. A sequence is always preceded by a single adiabatic inversion pulse.

3.2 | Sequence optimization

We used BLAKJac to calculate and minimize a figure of merit C given a time-varying sequence of 1120 flip angles. According to eqn. A2 in Sbrizzi

et al.,31 a choice of C¼ max
p � T1, T2f g

σp
urefp

� �
was applied.

As explained in the Theory section, σp is calculated by inverting the Fisher Information Matrix. The inversion requires O NkN
3
p

� �
operations. In

general, Nk is of the same order as Nlocations, which in our example was 2242; furthermore, we applied Np ¼3 (proton density, T1, and T2). If we

consider Cartesian sequences and we neglect the relaxation during a readout line, then all samples of that readout line share the same flip angle

history, thus they share the same JΓ=f. In that situation, the inversion of the Fisher Information Matrix requires only O Nphase�encodingsN
3
p

� �
opera-

tions, which in our example was of the order of 224 �33. Given the compact block-diagonal representation of BLAKJac, the processing time is

dominated by the evaluation of the Jacobian for all 1120 timepoints (i.e., by evaluating the entries
∂G k, ið Þ
∂up

ju¼uref

h i
, referring to Appendix A1). This

evaluation can be performed efficiently using a finite-difference method based on Extended Phase Graphs.33 In practice, the evaluation and

inversion of the Fisher Information Matrix required approximately 10ms on a single-core Intel Xeon CPU E5–1620 v3 running at 3.50 GHz.

F IGURE 3 A map of C¼ 1
Np

P
p � ρ, T1, T2f g

σp
urefp

� �
(logarithmic color scale) over a range of T1, T2ð Þ for the sequence called “2D-best” (see

section 3.2). The red crosses indicate the set of Tref
1 , Tref

2

� �
considered during the optimization. The orange dots roughly indicate a set of human

tissues (gray matter, white matter, muscle, liver, kidney, lung, CSF, fat) and the white dots the gel-filled vials of the Eurospin phantom. The figure
shows that the criterion depends on the actual T1, T2ð Þ and it shows that—in the relevant areas—this function is smoothly varying. CSF,
cerebrospinal fluid
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The performance metric C depends on the exact values of uref, that is, the chosen Tref
1 and Tref

2 values. This dependence is not very strong, as

shown by the smoothness of the figure of merit function in Figure 3. Nevertheless, there is a non-negligible variation of C over the clinically rele-

vant range of T1, T2ð Þ (see the orange dots). For that reason, we chose to evaluate the optimization criterion over a multiplicity of reference

points. In detail, we chose Ncombinations ¼7 different combinations of Tref
1 , Tref

2

� �
(see the red crosses in Figure 3); these are spanning the range of

relaxation values of frequently occurring human tissues. The combined criterion was taken as an average over the outcomes:

C Sð Þ¼ 1
Ncombinations

XNcombinations

i¼1

C S; Tref
1 , Tref

2

� �
i

� �
: ð4Þ

In principle, S refers to all the relevant sequence settings, but in the sequel we will only consider the time-varying RF flip angles as being

variable in time and consider all the other parameters as being constant. Consequently, approximately 70ms was needed to evaluate C Sð Þ given a

sequence S of 1120 time points.

Referring to Equation (3), and as motivated in the Discussion section, we slightly modify the estimation of σp by weighing the 10 lowest

spatial frequencies with a higher factor (3.0) than all other spatial frequencies.

Using the Nelder–Mead algorithm34 from the Optim.jl package of the Julia programming language,35 we minimized C Sð Þ over the RF flip

angles of S. There were no explicit constraints on the flip angles, but to account for RF power constraints, we slightly modified the criterion by

introducing a peak-power-correction factor, obtaining Coverall Sð Þ¼C Sð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa π�Max Sð Þ

π

� �r
, where Max Sð Þ is the highest flip angle value of the

sequence (in rad) and a has been chosen to be 0.57. In addition, we restricted the optimization to 20 equidistant values for the flip angle, and

derived the remaining 1100 values by cubic-spline interpolation, similar to the approach presented by Mickevicius et al.29 and particularly by

F IGURE 4 (A) Sequences generated in the context of phase-encoding and (B) Single-voxel–optimized sequences. Flip angle (in degrees) is
vertical, time is horizontal. For each approach, nine optimizations were done with different randomized starting patterns (see text). Frame colors
correspond to colors used in subsequent graphs; “best” and "worst" refer to the performance in a 2D setting. Part (C) is, enlarged, the first
sequence of (A), including a representation of the phase-encoding pattern. A sweep of 224 phase-encoding values is repeated five times, so the
acquisition time of the whole sequence is 224 �5ð Þ �10ms¼11:2s
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Scope Crafts et al.36 To reduce the sensitivity to local minima, we applied a multilevel approach: first optimizing on 10 equidistant points, using

the result as a basis for 15 points and the result thereof for a 20-point optimization. In each of these three steps, the number of Nelder–Mead

iteration steps was limited to 2000.

The optimization process was followed by a selection process because the function Coverall Sð Þ has multiple local minima. By initiating the opti-

mization with nine slightly different initial states, different local optima Sopt,2D
i ¼ argmin

S
Coverall Sð Þ
� �

were obtained, with i¼1,…,9. The superscript

“2D” indicates that the optimization was performed in the context of phase encoding (see Figure 4C). The nine resulting shapes in Figure 4A seem

mutually very different, indicating that not all of them can be the true optimum. Because we are dealing with a nonconvex minimization problem,

the true optimum would require an exhaustive search, which would incur a prohibitive computational burden. But because the nine outcomes are

mutually very close, this increases the confidence that all of them are close to the true optimum.

In a similar fashion, we also optimized on S, assuming an absence of any encoding, resulting in sequences Sopt,0D
i . Note that this 0D optimiza-

tion approach is the most frequently adopted in the existing literature.16–21,26,29

To simplify the experimental validation, the best and the worst of each set was chosen based on the Coverall Sð Þ criterion. The flip angles of the

resulting four sequences are called “2D-best”, “2D-worst”, “0D-best”, and “0D-worst”, where “best” and “worst” always refer to the performance

in a 2D setting (i.e., including phase encoding) (Figure 4A,B).

3.3 | MR measurements

Our measurements were intended to validate and apply the BLAKJac framework. In particular, we investigated whether:

1. Experimentally obtained noise levels and spatial-frequency noise spectra correspond to those predicted by BLAKJac.

2. Sequences optimized taking into account the gradient-encoding scheme (2D-optimized) perform better than sequences optimized without

it (0D-optimized).

3. Analytical tools (noise spectrum diagrams) derived from the BLAKJac framework successfully predict the spatial quantitative and qualitative

behavior of a measured sequence. We performed MR-STAT measurements with the four sequences derived in subsection 3.2. To estimate

standard deviations of the reconstructed parameter values, each scan was repeated 10 times (with a 7-s pause between subsequent scans). The

measurements consisted of

• The “0D” measurements of a single vial (number 7) of the Eurospin phantom,37 located in the isocenter, vial axis parallel to the main field

direction, using a sagittal slice but with the phase-encoding gradient switched off. For each sequence type, the vial was scanned 10 times. Despite

the name “0D”, the frequency encoding was still active in the long axis of the vial; given the useful length of the liquid in the vial, 41 mm, we mea-

sured maps of the form up x;mð Þ, with x¼1,…41 and m¼1,…,10, and with p� T1, T2f g. We calculated the standard deviations and the means over

m and then we averaged these over x. Given that the estimate of a standard deviation from Nm measurements spreads as σffiffiffiffiffiffiffiffiffiffiffi
2Nm�2

p , we obtained

estimates of the standard deviations with a relative accuracy of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�10�2ð Þ�41

p
, which is approximately 4%.

• A 2D axial slice of a phantom setup housing 16 vials of the Eurospin phantom.

• A 2D axial slice of the brain of two healthy volunteers (with approved consent according to the guidelines of the ethics committee).

The quantitative T1 and T2 maps for each experimental setup were obtained applying the MR-STAT reconstruction.14,38,39

4 | RESULTS

4.1 | Optimized sequences

The result of the sequence optimization is shown in Figure 4. As explained in section 3.2, two sets of RF sequences were obtained, called Sopt,2D
i

and Sopt,0D
i , with i¼1,…,9. We observe that these must be local optima because the evaluated performance within a set is not identical. Within

the 2D-set Sopt,2D
i , the ratio between the highest and lowest calculated noise level is 10%, that is,

max
i

C Sopt,2D
ið Þð Þ

min
i

C Sopt,2D
ið Þð Þ ≈1:1. Similarly, for the 0D-set

Sopt,0D
i , when evaluated on 0D, the noise level varies by 18% (highest to lowest ratio=1.18). As opposed to this relatively small spread, when

evaluated in the relevant 2D scenario, the ratio
max

i
C2D Sopt,0D

ið Þð Þ
min

i
C2D Sopt,0D

ið Þð Þ becomes 3.5, that is, 250% difference.

4.2 | Single-voxel (“0-D”) measurements

The measured standard deviations for the 0-D phantom reconstructions are reported in Table 1.
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Within the expected precision, the measured ratios between the sequence performances were in accordance with those predicted by

BLAKJac: for a 0D-measurement (i.e., a measurement without phase encoding), the 0D-optimized results were marginally better than the 2D-

optimized results. Table 1 also shows that the difference between 0D-best and 0D-worst is marginal. This is not surprising because these

sequences were all optimized in a 0D-setting.

4.3 | Phantom 2D measurements

The 2D reconstruction results of the Eurospin phantom are shown in Figure 5. A high level of artefacts in the 0D-worst sequence is clearly visible.

The standard deviations are displayed in Figure 6. The 0D-worst sequence resulted in noise levels that are approximately twice as high as those

of the other sequences. This shows that there is a high performance spread among the 0D-optimized sequences, although they all performed

almost equally well in a 0D setting. That spread is negligible among the 2D-optimized sequences.

From Figure 7, it is apparent that the 0D-optimized sequences, 0D-worst in particular, show substantially higher quantitative errors than the

2D-optimized sequences. These quantitative errors are attributed to poor rendition at the low spatial frequencies, as will be further elaborated in

the Discussion section.

TABLE 1 Single-voxel (“0D”) measurement (Measured) results

T1 standard deviation (ms) T2 standard deviation (ms)

Measured mean (T1, T2) (ms)Measured BLAKJac Measured BLAKJac

2D-best 4.6 4.18 0.83 0.52 (643, 61)

2D-worst 4.4 4.61 0.96 0.57 (646, 66)

0D-best 4.2 4.09 0.79 0.49 (639, 61)

0D-worst 4.0 4.35 0.79 0.53 (640, 61)

Note: the measured standard deviation is compared with the BLAKJac estimate (the scaling factor was chosen to maximally match the measured T1

results). The obtained mean (T1, T2) values are reported in the last column. The main message is that the 0D-optimized sequences perform slightly better

when applied on 0D than 2D-optimized sequences do when applied on 0D. This can be seen by the deviations in the last two rows being slightly lower

compared with the “2D” rows.

Abbreviation: BLAKJac, BLock Analysis of a K-space-domain Jacobian.

F IGURE 5 Reconstructed maps (left T1, right T2) of the phantom setup with the Eurospin vials. It can be seen that the 2D-optimized results
have consistent image quality, while the 0D-optimized results do not – although the 0D-optimized sequences score mutually very similarly in a
0D-setting
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4.4 | In vivo 2D measurements

In vivo results for the four types of scan are shown in Figure 8. It is clear that the 0D-worst results are inferior to the others in several aspects.

This is also reflected in the measured standard deviations (Figure 9). In addition, the 0D-sequences clearly create biased maps (with substantial

differences between “best” and “worst”). This is compatible with Figure 8 (phantom bias) for T1 ≈1000 and T2 ≈70. Section 5 (Discussion)

elaborates on a likely reason for the 0D-sequences to show more bias.

Each scan was repeated 10 times, providing a pixel-wise estimate of the standard deviation with a relative precision of

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Nrepetitions�2

p
≈0:24. To further increase the accuracy of the estimate, we averaged the standard deviation (a) over an ROI of 20 x

20 pixels of presumed pure white matter, and (b) over the whole image.

4.5 | Noise spectra analysis

As explained in section 2.3.1, BLAKJac can predict the spatial spectra of the resulting noise. The predicted spectra for all nine sequences are plot-

ted in Figure 10. These have been obtained as an average over seven different combinations of Tref
1 , Tref

2

� �
, but the outcome does not strongly

F IGURE 6 Measured standard deviations (nonpatterned bars), averaged over all vials. The patterned bars represent the BLAKJac predictions
of the standard deviations for a seven-tissue mix (see section 3.2). The cross-hatched bars represent the predictions in the “2D” approach, that is,
analyzed in the context of phase encoding, while the bulleted bars represent predictions according to the single-voxel (“0D”) optimization
approach. It can be seen that the 0D-approach (bulleted bars) predicts very similar noise performance for all sequences (even indicating that “0D
worst” would be slightly better than the others); to the contrary, a 2D-analysis in BLAKJac (cross-hatched) is able to indicate that some
sequences perform significantly worse in the actual scenario (i.e., with spatial encoding). These predictions match substantially better with the
measured noise levels (solid bars). Consequently, the 2D-optimized sequences display consistent noise level, while the 0D-optimized sequences
do not. BLAKJac, BLock Analysis of a K-space-domain Jacobian

F IGURE 7 Correspondence between reconstructed mean values and gold standard for the Eurospin vials (bullets). Each bullet represents a
gel-filled vial. The dashed lines are the linear regression lines through the bullets. The full blue diagonal is the identity line. The 0D-worst
optimization is clearly inferior, particularly on T2, where the relation to the gold standard value is lost or even slightly inverted. Also here, the
message is that the 2D-optimized results are mutually consistent, while the 0D-optimized results are not
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depend on the selected Tref
1 , Tref

2

� �
. The resulting figure shows a much higher consistency among the nine spectra of the 2D-optimized sequences

than among the 0D-optimized. Most notably, the 0D-optimized sequences tend to have peaks on unexpected spectral locations; some of them,

particularly the one denoted as “worst” (in gray), happen to have their peak at the low spatial frequencies (jkyj≈0).

F IGURE 8 Reconstructed maps of two volunteers (one in rows 1 and 3, the other in rows 2 and 4). The columns represent the four applied
sequences. The color bars express the relaxation time in seconds. While the 2D-results are mutually similar, the 0D-results are not
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Data from the phantom and the volunteers allow to estimate noise spectra and thus validate the BLAKJac predictions. Because we have

10 realizations of T1- and T2-maps for each sequence, we can Fourier-transform these maps in both dimensions then take the standard deviations

over the realizations.

Figure 11 shows the BLAKJac-generated spectra (dashed lines) alongside the measured spectra for the phantom. Most spectral features from

the BLAKJac prediction are clearly recognizable in the measured noise spectra.

5 | DISCUSSION

We present a methodology, called BLAKJac, which can evaluate the precision performance of the combined time-varying RF train and gradient-

encoding scheme in only a few milliseconds, allowing for flip-angle optimizations in the context of spatial encoding.

To show the added value of the BLAKJac analysis, we compared RF-flip-angle sequences that, on one hand, have been single-voxel–

optimized (i.e., ignoring the spatial encoding, or “0D”), and, on the other hand, sequences that have been optimized in the context of phase

encoding (“2D”). We have shown that a set of 0D-optimized sequences, which all lead to mutually very similar noise levels when analyzed in a

0D-setting, do lead to very unpredictable performance in the relevant scenario, that is, when spatial encoding is active (2D). On the other hand,

the set of 2D-optimized sequences based on the BLAKJac criterion are mutually of very similar performance and, in general, outperform the 0D-

optimized sequences. This is shown in phantoms as well as in vivo measurements (Figures 6 and 9, respectively); the actually achieved noise level

F IGURE 9 Standard deviations in the maps of the two volunteers, averaged over a region of interest in the white matter (crosses) and
averaged over the whole image (bullets)

F IGURE 10 BLAKJac-calculated spectra for (A and C) T1 and (B and D) T2 of nine realizations of 2D-optimized sequences (A and B) and of
nine realizations of single-voxel–optimized sequences (C and D). The sequences are shown in Figure 4. The dispersion of the curves in (C) and
(D) shows that a single-voxel–optimized sequence has an unpredictable outcome when applied in a setup with phase encoding, while the
outcome is much more predictable when applying 2D-optimization (A and B). Evaluation was performed assuming a seven-tissues mix (see

section 3.2). BLAKJac, BLock Analysis of a K-space-domain Jacobian
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of the 0D-optimized sequences can be substantially higher than the noise level in 2D-optimized sequences. These findings are a natural

consequence of the BLAKJac analysis: if the time-varying flip angle is evaluated in conjunction with the underlying gradient-encoding scheme

(2D-optimization), the spatial noise spectra exhibit a much higher level of control (Figure 10A,B). The performance of 0D-optimized sequences

strongly depends on the initialization condition of the optimization process: sequences that are almost equally optimal in the single-voxel sense

(e.g., the 0D-best and 0D-worst sequence) lead to widely varying outcomes in actual phase-encoded measurements.

Another feature of BLAKJac is its ability to calculate expected noise levels and spatial noise spectra in tissue-parameter maps. We show that

spatial noise spectra reconstructed from measurements match the BLAKJac-predicted spectra (Figure 11). The noise spectra analysis is helpful to

gain insights into the 0D optimization process: the 0D-optimized sequences display a characteristically peaked noise spectrum (Figure 10C,D).

This can be particularly unfavorable if a peak emerges in the low spatial frequencies (around jkyj ¼0, or around jkj ¼0): these spatial frequencies

are not only affected by noise, but model errors—which will be discussed extensively below—also predominantly affect the low spatial frequen-

cies. As a consequence, model errors are multiplied by the BLAKJac-calculated factor JHΓ=f JΓ=f
� ��1

at low spatial frequencies; this factor happens

to be particularly high for the 0D-worst sequence (as in the gray curves of Figure 10C,D). This, in turn, causes a significant error in reconstructed

T1 and T2 values in 0D-optimized sequences. In contrast to 0D-optimized sequences, the spectra of 2D-optimized sequences do not display

peaks.

While Figures 6 and 9 show that the noise standard deviation is highest with the 0D-worst sequence, Figures 5, 7, and 8 also show substan-

tially increased quantitative errors for, in particular, the 0D-worst sequence. This is most clearly seen in the dashed gray line in the right half of

Figure 7, indicating that the reconstructed T2 of that sequence has a negative correlation with the true T2.

In essence, our approach focuses on precision. As in all inversion problems, accuracy will be affected by differences (i.e., “model errors”)
between the true underlying physics and the applied model. These model errors can have various causes, including erroneous knowledge of the

Bþ
1 field, erroneous slice profile, erroneously assuming a single-species model in each voxel,40 neglecting magnetization transfer,41 and neglecting

diffusion weighting induced by the sequence,42 etc. We do have some indications that the accuracy, for example, the extent to which diffusion

influences the T2 estimate, does depend on the sequence. This might explain the difference in bias in T2 between the 2D-worst, 2D-best, and

0D-best sequences, which, according to BLAKJac, result in very similar performance (i.e., very similar performance in terms of precision).

Although it is beyond the scope of this paper, it is certainly indicated to study the relation between sequence and accuracy (e.g., T2- depen-

dence on Bþ
1 or diffusion), and to subsequently minimize these dependences. These dependences are a factor in the inaccuracy (or bias). In

addition to these dependences, there is another factor influencing the bias that can be directly tackled by BLAKJac, namely, the value of

JHΓ=f JΓ=f
� ��1
� �

k, pð Þ, k, pð Þ
for low spatial frequencies (jkj �0Þ. As can be seen from the gray curves of Figure 10C,D, this value is particularly high

for the 0D-worst sequence. Empirically, for the 2D-optimization, we found it beneficial to penalize the matrices JHΓ=f JΓ=f
� ��1
� �

k, pð Þ, k, pð Þ
with a

weighting factor of 3.0 for k¼0, gradually decaying to 1.0 at jkj ¼20. This operation is irrelevant for the 0D-optimization: in the absence of

encoding, each sample is considered to be at k¼0.

F IGURE 11 Measured spectra (full lines) and the corresponding BLAKJac-predicted spectra (dashed lines). Left: in the brain of a volunteer
(section 4.4); right: in a measurement of a 5-L bottle filled with mineral oil (Spectrasyn). For the brain, the BLAKJac predictions are based on a mix
of seven human tissues (see 3.2); for the mineral-oil phantom, the (T1, T2) values of that liquid were assumed [(T1, T2) = (300 ms, 100 ms)].
BLAKJac, BLock Analysis of a K-space-domain Jacobian
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Particularly when optimizing a multiplicity of parameters—in our case, 20—optimization might lead to false minima. The nine resulting shapes

in Figure 4A seem mutually very different, indicating that not all of them can be the true optimum. Because we are dealing with a nonconvex

minimization problem, the true optimum would require an exhaustive search, which would incur a prohibitive computational burden. But because

the nine outcomes are mutually very close, this increases the confidence that all of them are close to the true optimum. Likewise, the optimization

outcomes of the 0D-sequences in Figure 4B are also mutually very similar—if evaluated in a 0D-context—but they differ substantially when evalu-

ated in a 2D-context. That variation is not caused by finding false optima, but is the result of optimizing in a 0D context and applying them to the

relevant scenario (i.e., 2D).

In principle, the BLAKJac methodology applies equally to non-Cartesian sequences, like those frequently used in MRF, which typically adopt

spiral or radial encoding strategies. Yet, BLAKJac does not necessarily apply to any type of MRF reconstruction. The basic MRF reconstruction

approach via a dictionary match of strongly undersampled images13 is characterized by an additional perturbation term, which consists of aliasing

artefacts. These kind of perturbations are not captured by BLAKJac, which studies the CRLB, as derived from purely stochastic (thermal) noise.

We hypothesize that BLAKJac should be applicable to MRF sequences reconstructed using advanced inverse problem techniques,43,44 which

better approach the ideal result expressed by the CRLB.

Although the BLAKJac methodology is applicable to a broad category of encoding patterns, in this work we focused on a Cartesian approach

using MR-STAT. We chose to not take coil sensitivity into account, and thus we do not elaborate on parallel imaging. Intuitively, if the RF-flip-

angle patterns are smooth with respect to the phase-encoding index (as in our MR-STAT examples), one can regard undersampling-pattern optimi-

zations27 as being independent of the optimizations of the flip-angle pattern and therefore they can be treated separately. Parallel imaging with

generalized encoding schemes (e.g., spiral and golden angle radial) can be included in principle, although the resulting formalism would substan-

tially increase in complexity, and this would go beyond the scope of this paper.

Further potential applications of BLAKJac include sequences of RF flip angles with optimized phase variation, optimization of 3D sequences,

and potential extension to other parameters such as B1+. Constraints such as maximum specific absorption rate can be easily incorporated into

BLAKJac. Also, BLAKJac may be applied to optimize the encoding pattern given a flip angle sequence, or to optimize encoding and flip angle

jointly. Finally, the clinical application of BLAKJac-optimized sequences will be the subject of future research.

6 | CONCLUSION

The proposed BLAKJac analysis is an efficient methodology for evaluating the precision performance of transient-state multiparametric MRI

sequences (like MR-STAT) in the context of applied gradient encoding. The noise levels and spectra predicted by BLAKJac correspond to those

measured in vivo and in phantoms. Because the calculations take only few milliseconds, BLAKJac can optimize sequences taking into account the

phase encoding. This is shown to have clear benefits in MR-STAT over single-voxel optimization. BLAKJac, which uses the 2D-encoding informa-

tion, is much better at predicting the actual noise level in images compared with a single-voxel approach.
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APPENDIX A

A.1 | TAYLOR EXPANSION OF THE MODEL Γ AND FACTORIZATION OF THE JACOBIAN

A.1.1 | Taylor expansion of the signal model Γ

Consider the signal function Γ at the time points at which the data samples, denoted as dk,i, are acquired. The corresponding data model is written

as Γk,i. A data sample is characterized by the encoding k – but not fully characterized by it, because several samples (possibly distant in time) may

be acquired with the same encoding. The additional index i (denoted as “instance” in the sequel) can be read as “the i-th time that a datapoint has

been taken at k-space coordinate k” (see the orange line in Figure 4C). We assume the number of instances to be equal for all sampled

coordinates k, so that i¼1,…,Ninstances for each k.

We model Γk,i as a sum of contributions from discrete voxels:

Γk,i ¼
X

r
u0,rG k, ið Þ u1,r , …, u Np�1ð Þ,r

� �
ei2πk�r: ðA1Þ

The proton-density (u0) is treated differently from all other properties up≥1 (e.g., T1, T2), because the proton-density enters the MR signal

model as a purely linear factor. The function G k, ið Þ denotes the “net transverse magnetization”. If multiplied by the proton density, G k, ið Þ gives the

local signal contribution. Note that G is closely related to Γ, but the latter also contains the spatial encoding, while the function G does not.

Therefore, G could be described as the Bloch model at timepoint k, ið Þ given the relaxation properties u1,r ,…,u Np�1ð Þ,r at any location r.

Note that, for simplicity of the discourse, the coil sensitivity has been left out of the model: a single—and perfectly uniform—coil element is

assumed here.

We assume that, for the purpose of a Cramér–Rao analysis, the function G k, ið Þ u1,r , …, u Np�1ð Þ,r
� �

can be accurately described by its first-order

Taylor component, because Appendix B shows that the second-order components are expected to be negligible. Using that assumption, we can

write

G k, ið Þ u1,r , …, u Np�1ð Þ,r
� �

≈ g k, ið Þ þ
XNp�1

p¼1

∂G k, ið Þ
∂up

ju¼uref � up,r �urefp

� �� 	
: ðA2Þ

For example,
∂G k, ið Þ
∂u1

ju¼uref can be seen as “the level of T1-weighting” at time point k, ið Þ. The values, urefp , with p¼1,…,Np�1, are arbitrary refer-

ence values that are chosen to be constant over the whole volume. For the validity of the subsequent approximations, urefp is set as the middle

point of the expected parameter's range. For instance, for T1 in brain imaging, we may choose uref1 � Tref
1 ¼900ms, which is approximately the

mean value of the combined gray/white matter at 1.5 T.45 In Equation (A2), the symbol g k, ið Þ refers to the value of G k, ið Þ for the reference values

urefp . In addition, the shorthand wp,k,i will be introduced as

wp≥1,k,i ¼ urefp � ∂G k, ið Þ
∂up

ju¼uref

w0,k,i ¼ g k, ið Þ
: ðA3Þ

With these notations, the relation between the unknowns u and the modeled response Γ can be approximated as

Γk,i ≈
X

r
u0,rgk,iþ

XNp�1

p¼1

wp,k,i �u0,r up,r
urefp

�1

 !" #( )
ei2πk�r , ðA4Þ
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which can be written as

Γk,i ≈ gk,i
X

r
u0,re

2πjk�r þ
XNp�1

p¼1

wp,k,i �
X
r
u0,r

up,r
urefp

�1

 !
ei2πk�r

" #
: ðA5Þ

A.1.1 | Factorization of the Jacobian

Using the definition of the auxiliary variables defined in Equation (2), we can write

Γk,i ≈w0,k,if0,kþ
XNp�1

p¼1

wp,k,i � fp,k ¼
XNp�1

p¼0

wp,k,i � fp,k: ðA6Þ

From Equation (A6), it is clear that ∂Γk,i

∂fp,l
≈0 if k≠ l; this tells that, if a system is linear, a sample with spatial encoding k will not be sensitive to

a different spatial frequency l of the maps u0⨀ up
urefp

�1
� �

. Consequently, from Equation (A6), it follows that the Jacobian matrix JΓ=f ¼ ∂Γk,i

∂fp,l

h i
has Nk

nonzero blocks of size Ninstances�Np and content wp,k,i (where k¼ l), and that all the other blocks (i.e., where k≠ l) are zero. The matrix JΓ=f is thus

block-diagonal, or j k, ið Þ, p, lð Þ ≈wp,k,i δk,l, with δ being a Kronecker operator. In other words, the elements of JΓ=f are substantially nonzero only if the

block-index of a row (i.e., pertaining to the encoding value of an element of Γ) equals the block-index of the column (i.e., pertaining to the spatial-

frequency element of f).

We point out that there is an exception to the above conclusion if the properties up,r can be considered to be real-valued, as it is the case for

the relaxation parameters T1 and T2: in this case, dependence emerges between fp,k and fp,�k , leading to a matrix that has both a diagonal and an

antidiagonal component. This is further elaborated in Appendix C.

APPENDIX B

B.1 | HIGHER-ORDER TERMS

In the hypothetical case where the signal model would be sufficiently described by a first-order Taylor expansion of the function G around uref, it

has been shown that the off-diagonal elements of JΓ=f are zero. This Appendix elaborates on these off-diagonal elements in the situation that G

also has substantial second-order Taylor components.

For the sake of brevity, we simplify the situation, assuming that we have just one unknown property u1,r next to the proton density u0,r . Any

additional second-order Taylor terms would follow an equivalent analysis, as well as Taylor terms associated with cross-products, for example,
∂2Gtime k, ið Þ
∂u1 ∂u2

ju¼uref � u1,r �uref1

� �
u2,r �uref2

� �
.

The off-diagonal elements of JΓ=f have the form ∂Γk,i

∂fp,l
with k≠ l, where k represents the encoding vector in k-space and l represents the spatial

frequency of the property map, which is also a vector in the same k-space.

Because f0 and f1 are heavily coupled, it only makes sense to jointly calculate the partial derivative to these (i.e., to calculate ∂Γk,i

∂f0,l

∂Γk,i

∂f1,l

h i
).

Because this derivative is formed via all of the values u0,r and u1,r , we have

∂Γk,i

∂f0,l

∂Γk,i

∂f1,l

� 	
¼
X

r

∂Γk,i

∂u0,r

∂Γk,i

∂u1,r

� 	 ∂f0,l
∂u0,r

∂f0,l
∂u1,r

∂f1,l
∂u0,r

∂f1,l
∂u1,r

2
64

3
75
�10

BB@
1
CCA

Now expanding to the second-order term of G:

G k, ið Þ u1,rð Þ≈ g0, k, ið Þ þ
∂G k, ið Þ
∂u1,r

ju¼uref u1,r �uref1

� �þ ∂2G k, ið Þ
∂u21,r

ju¼uref u1,r �uref1

� �2
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Using the relation Γk,i ¼
P

ru0,rG k, ið Þ u1,r , …, u Np�1ð Þ,r
� �

ei2πkr , we can write Γk,i ≈Γk,i, 1ð Þ þ
P

r ei2πkru0,rq11,k,i
u1,r�uref1
u1,ref

� �2� �
, where Γk,i, 1ð Þ is the first-

order Taylor expansion and q11,k,i is shorthand for u21,ref
∂2G k, ið Þ
∂u21,r

ju¼uref , in analogy to wp,k,i (but with a “q” for “quadratic”, referring to second order).

We wish to calculate
∂Γk,i

∂f0,l

∂Γk,i

∂f1,l

� 	
, for which we need ∂Γk,i

∂u0,r
and ∂Γk,i

∂u1,r
. It has already been established that the first-order terms thereof are zero

if k≠ l. For the second-order terms of ∂Γk,i

∂u0,r
and ∂Γk,i

∂u1,r
, we calculate

∂
P

r ei2πk�ru0,rq11,k,i
u1,r�uref1
u1,ref

� �2� �
∂u0,r

∂
P

r e2πjk�ru0,rq11,k,i
u1,r�uref1
u1,ref

� �2� �
∂u1,r

2
6666664

3
7777775

T

¼
q11,k,ie

2πjk�r u1,r�uref
1

uref
1

� �2

2

uref1

q11,k,ie
2πjk�ru0,r

u1,r �uref1

uref1

 !
2
6664

3
7775
T

In addition, we need

∂f0,l
∂u0,r

∂f0,l
∂u1,r

∂f1,l
∂u0,r

∂f1,l
∂u1,r

2
64

3
75:

Using the definitions of f0,l ¼
P

re
i2πl�ru0,r and f1,l ¼

P
re

i2πl�ru0,r
u1,r�uref1

u1,r

� �
, we get ∂f0,l

∂u0,r
¼ ei2πl�r , ∂f0,l

∂u1,r
¼0, ∂f1,l

∂u0,r
¼ ei2πl�r u1,r

uref1
, and ∂f1,l

∂u1,r
¼ ei2πl�r u0,r

uref1
.

(Note the common factor ei2πl�r in the above.)

Together,

∂Γk,i

∂f0,l
∂Γk,i

∂f1,l

2
664

3
775
T

j2nd order ¼
X

r

q11,k,ie
i2πk�r u1,r�uref

1
uref
1

� �2

2

uref1

q11,k,ie
i2πk�ru0,r

u1,r �uref1

uref1

 !
2
6664

3
7775
T

∂f0,l
∂u0,r

∂f0,l
∂u1,r

∂f1,l
∂u0,r

∂f1,l
∂u1,r

2
664

3
775
�1

0
BBBB@

1
CCCCA

¼
X

r

q11,k,ie
i2πk�r u1,r�uref

1
uref
1

� �2

2

uref1

q11,k,ie
i2πk�ru0,r

u1,r �uref1

uref1

 !
2
6664

3
7775
T

∂f0,l
∂u0,r

∂f0,l
∂u1,r

∂f1,l
∂u0,r

∂f1,l
∂u1,r

2
664

3
775
�1

0
BBBB@

1
CCCCA

¼
X

r
ei2π k�lð Þ�rq11,k,i

u1,r�uref
1

uref
1

� �2

�2
u1,r �uref1

uref1

 !

2
u1,r �uref1

uref1

 !
2
66664

3
77775

T
0
BBBBB@

1
CCCCCA

Taking the second element, ∂Γk,i

∂f1,l
, as an example, we get for its second-order Taylor term:

2q11,k,i
X

r
ei2π k�lð Þ�r u1,r �uref1

uref1

 ! !
,

which is the Fourier transform of the spatial pattern
u1,r�uref1

uref1

� �
, evaluated at k-space position k� l. Given the knowledge that such a spatial pattern

exhibits strong correlation among neighboring voxels (like in, e.g., T1-weighted MR images), the influence of that higher-order k-space term can

be expected to quickly decrease when considering off-diagonal components in the JΓ=f matrix (i.e., with increasing values of jk� lj).

APPENDIX C.

C.1 | THE CASE OF REAL-VALUED PROPERTIES AND CORRESPONDING SYMMETRY IN K-SPACE

In MRI, the data dk,i (modeled by Γk,i) are assumed to be complex. The unknowns u are obtained by a large-scale nonlinear inversion of the set of

equations

Γk,i ¼
X

r
u0,rG k, ið Þ u1,r , …, u Np�1ð Þ,r

� �
ei2πk�r:

An unconstrained solution of this inversion problem would lead to complex values of the unknowns up,r . Yet, many properties (e.g., the

relaxation time T1) are known to be real quantities.

Without loss of generality, we here consider all unknowns to be real. This has an impact on the structure of the Jacobian JΓ=f ¼ ∂Γk,i

∂fp,l

h i
, because

we now have a constraint on f. Given the relation between u and f, as specified in Equation (2), the assumption of a real-valued u implies that
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fp,k ¼ f	p,�k . This reduces the number of (complex) unknowns (e.g., by considering only positive values of k for the unknowns). Consequently, the

number of columns in the Jacobian reduces to roughly NpNk=2 (see sequel). The data, however, may still be available for all positive and negative

values of k.

This symmetry implies a slight modification of the forward model of Equation (A6), which is reformulated as

Γk,i ≈

PNp�1

p¼0

wp,k,i �fp,k ky ≥0PNp�1

p¼0

wp,k,i�f	p,�k ky <0

8><
>: :

(Here, the symmetry plane has been taken perpendicular to ky; in principle, any other plane through k¼0 could be taken). We make use of an

auxiliary variable

Γ0
k,i ¼ Γk,i ky ≥0

Γ0
k, iþNinstancesð Þ ¼ Γ	

k,i ky <0

and we rearrange the vector Γ0 such that positive and negative ky-indices are adjacent.

With this reformulation, and assuming a symmetric range of sampled encodings k, the matrix JΓ0=f consists of n¼ ceil Nkþ1ð Þ=2ð Þ nonzero

blocks of size 2Ninstances�Np blocks having content wp,k,i

w	
p,�k,i

� 	
(except for the outmost k-values and for k¼0).

The Fisher Information Matrix thereby has n nonzero blocks of size Np�Np.

This modification leads to better estimates of the noise (results not shown) compared with a block-diagonal Jacobian JΓ=f where the k-space

symmetry is ignored.
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