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TO THE EDITOR:

We note with great interest recent work by Awad et al. [1]. that has
identified specific RUNXT mutation-related gene expression signatures
in blast crisis (BC) chronic myeloid leukemia (CML) patient samples
harbouring RUNXT mutations. Recurrent mutations in the RUNX1
tumour suppressor gene are one of the most frequent events in BC
CML and are associated with disease progression, poor response and
adverse patient outcomes [2]. Mechanistically, RUNX1 mutations that
decrease transcriptional activity or exert a dominant negative effect
on wild type RUNX1 are thought to block differentiation leading to BC
or accelerated phase-like phenotypes in mice [3].

Consequently, new treatment options such as with CD19-CAR
T cells, mTOR, BCL2 and VEGFR targeted therapies identified by
the authors become important avenues for RUNXT mutant BC CML
patients. Therefore, it is imperative to accurately diagnose and
assess the suitability of BC CML patients for new therapeutic
approaches and identify additional molecular vulnerabilities that
can improve patient outcomes.

In light of this, we examined our own cohort of BC CML patients [4]
to identify cases with RUNXT mutations and assess some of their
molecular features compared to wild type RUNXT cases. We recently
performed a whole genome and transcriptome-wide study of BC CML
patients in bulk bone marrow mononuclear cells and CD34 -+
leukemic stem cell populations. We identified RUNXT aberrations in
one lymphoid blast crisis (LBC) and three myeloid blast crisis (MBC)
patients. Of these, two MBC cases and onelBC harbour point
mutations in the Runt homology domain that affect DNA binding
(Fig. 1A). The remaining MBC patient possesses the t(3;21) transloca-
tion resulting in the RUNXT-MECOM fusion known to exert a dominant
negative effect on normal RUNX1 transcriptional activity [5].

Here, we first confirm that the upregulated genes of the RUNX1T
mutation transcriptional signature (‘Awad’ signature) enrich signifi-
cantly (Fig. 1B, Supplementary Tables 1 and 2) in our RUNXT mutant
BC samples in gene set enrichment analysis (GSEA [6]). For
downregulated genes of the Awad signature, there were no
significant enrichments (Supplementary Tables 1 and 2), and we
did not make further use of these genes in this regard as their
expression were low or undetectable in our microarrays. Similar
results were obtained when we restricted the GSEA analysis to only
protein coding genes within the Awad signature (Supplementary
Table 3).

Notably, we also found that the upregulated Awad signature
was enriched in wild type RUNXT CD34 + LBC cases. Three wild
type RUNX1 CD34 + LBC samples showed consistent enrichment
for upregulated genes while a fourth sample that was bipheno-
typic did not show any enrichment (Fig. 1B). To confirm that the
Awad signature does indeed significantly co-detect wild type
RUNX1 CD34 + LBC samples and not just RUNXT mutant samples,
we compared CD34 + LBC against CD34 + MBC where none of the
samples carry any RUNXT mutations (Fig. 1C and Supplementary
Table 2). Indeed, wild type RUNXT CD34 + LBC samples were
enriched for the upregulated Awad signature genes compared to
wild type RUNXT CD34 + MBC samples.

Subsequently, we sought to develop more discriminating gene
expression signatures and reasoned that direct targets of RUNX1
and genes sets from other studies may be able to detect
differences between RUNXT mutant versus wild type patients
more specifically. We screened and identified 24 gene sets from
the CISTROME database [7] curated from RUNX1 ChiP-seq
experiments with a focus on human leukemic and hematopoietic
studies and 42 gene sets from MSigDB v7.3 [6] for RUNX1-
regulated gene expression with RUNX2 and RUNX3 gene sets as
negative controls (Supplementary Table 1). We found that some
gene sets were able to identify RUNX7-mutated BC samples
(Fig. 1D and Supplementary Table 2) without significantly
detecting wild type RUNXT CD34 + LBC samples (Fig. 1E and
Supplementary Table 2). To confirm this, we used these gene sets
to make a control comparison between wild type RUNXT CD34 +
LBC and the MBC equivalent, and found no significant concordant
enrichments, or there were depletions instead (Fig. 1D, F and
Supplementary Table 2).

While the Awad signature co-detects lymphoid genes in wild
type RUNXT LBC, it may still be able to detect RUNXT mutation-
related signatures that are distinct from LBC identity per se.
Indeed, GSEA analysis of 1 mutant RUNXT CD34 + LBC against 3
wild type RUNXT CD34 + LBCs showed the Awad and shortlisted
RUNX1 gene sets were significantly enriched (FDR < 0.25) in the
mutant RUNXT CD34 + LBC sample (except for MORF_RUNX1
which enriched in the correct direction but did not achieve
significance [Fig. 2A and Supplementary Table 4]). We conclude
that RUNXT mutation gene sets can be used to detect RUNXT
mutation-containing samples in both MBC and LBC, but only
when comparing within separate MBC and LBC datasets.

As a further test of the utility of RUNXT mutational signatures to
detect RUNXT targets within leukemic transcriptomes, we next
examined a large cohort of 151 AML patients with RNA-Seq data
from TCGA [8] (Supplementary Table 5). When tested against
mutant and wild type RUNXT TCGA AML patients, both the Awad
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Fig. 1 Validation and refinement of RUNX7 mutational signatures in CML blast crisis patients. A Schema of RUNX1b gene isoform with
mutations found in 3 MBC and 1 LBC CML patients. Horizontal scale indicates amino acid (aa) residue positions. B GSEA heatmap in left panel
shows expression of genes upregulated in the Awad RUNXT mutational signature in RUNX7 mutant (Mut) compared to wild type patients in
red for upregulation and blue for downregulation. Right panel shows enrichment plot with normalised enrichment score (NES) and false
discovery rate (FDR). C GSEA heatmap in left panel and enrichment plot in right panel shows enrichment of the same gene set in wild type
RUNX1 CD34 + LBC patient gene expression data compared to the equivalent in MBC. D Table shows alternative gene sets that can
significantly distinguish mutant RUNXT blast crisis samples from wild type (WT) in the top half (FDR < 0.25). The same gene sets do not enrich
significantly for wild type RUNX7 CD34 + LBC samples compared to the equivalent in MBC or are depleted. Negative control RUNX2 and
RUNX3 gene sets also do not enrich significantly in RUNXT mutant compared to wild type samples in the bottom half. E GSEA heatmap in left
panel shows expression of the TONKS_TARGETS_OF_RUNX1_RUNX1T1_FUSION_HSC_DN gene set [11] with enrichment in RUNX7 mutant
(Mut) compared to wild type patients. Right panel shows enrichment plot with normalised enrichment score (NES) and false discovery rate
(FDR). F GSEA heatmap in left panel and enrichment plot in right panel shows depletion of the same gene set in wild type RUNXT CD34 + LBC
compared to the equivalent MBC gene expression data. Black bar indicates 3 CD34 + wild type RUNXT LBC samples while yellow and red
hatched bar denotes a biphenotypic wild type RUNXT sample with characteristics of both LBC and MBC.
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and shortlisted gene sets were also highly enriched in mutant patients with other Runt domain mutations (Fig. 2C and
RUNX1 AML samples (Fig. 2B and Supplementary Table 6). Supplementary Table 7). This observation supports the notion of
Interestingly, the RUNXT mutation gene sets were also able to functional differences between these 2 types of RUNXT mutations
distinguish AML cases with the RUNX71-RUNX1T1 fusion from as recently reported by Kellaway et al. [9].
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Fig. 2 Analysis of Awad and other RUNXT mutant signatures in CML LBC and in AML. A Table shows GSEA analysis of 1 mutant RUNX1
CD34 + LBC sample against three wild type RUNXT CD34 + LBC samples for the RUNXT gene sets indicated. NES scores are denoted in red for
upregulation and blue for downregulation. B GSEA heatmap shows expression of the upregulated Awad signature gene set in the left panel
and TONKS_TARGETS_OF_RUNX1_RUNX1T1_FUSION_HSC_DN gene set in the right panel. 21 RUNXT mutant (Mut) TCGA AML patient samples
were compared against 130 wild type cases in red for upregulation and blue for downregulation. C GSEA heatmaps show the same gene sets
with enrichments in 7 RUNXT-RUNX1T1 TCGA AML patients compared to 14 other patients with RUNXT mutations predominantly in the Runt
domain. D Bar chart shows pathway analysis of mutant RUNX1-regulated lymphoid genes aberrantly expressed in predominantly mutant
RUNX1 MBC patient samples. Conserved leading edge RUNXT mutant target genes were identified from the Awad cohort and predominantly
MBC CML patients in this study (Fig. 1B). 22 RUNXT mutation-regulated lymphoid genes were then shortlisted by overlapping with the leading
edge of the wild type RUNXT LBC versus wild type RUNXT MBC comparison (Fig. 1C) and subjected to Enrichr [12] analysis. The top 10 most

significant GO terms are inversely ranked by relative p-values.

Next, to understand the potential biological significance of mutant
RUNX1-regulated lymphoid genes that were aberrantly expressed in
mutant RUNXT MBC samples, we performed pathway analysis on 22
mutant RUNXT lymphoid targets identified from our analysis and
found that interferon gamma signalling was highly significant
(Fig. 2D). Thus, the lymphoid genes dysregulated by mutant RUNX1
in MBC may be involved in immune signalling and inflammation,
both of which are important hallmarks of BC transformation [4].

Finally, we confirmed that the gene signatures in our RUNXT
mutant samples are enriched specifically for RUNX1 gene sets as
neither RUNX2 nor RUNX3 datasets enrich significantly in RUNX1
mutant compared to wild type (Fig. 1D and Supplementary
Table 2). Therefore, in addition to the Awad signature, the RUNX1
gene sets we identified can be used for more targeted studies of
RUNXT mutant signatures in CML and AML samples. These
refinements may lead to better understanding of the molecular
underpinnings of BC CML cases at risk of progressing or becoming
resistant to TKI therapies, and also for mutated RUNXT AML cases
that have poor outcomes. Moreover, these patients may be
amenable to new treatments specific to the RUNXT mutational
context such as through the use of BET inhibitors or proteolysis
targeting chimeras (PROTACs) [10].
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