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Abstract: Trichostatin A (TSA), an antifungal antibiotic derived from Streptomyces, inhibits
mammalian histone deacetylases, and especially, selectively inhibits class I and II histone deacetylase
(HDAC) families of enzymes. TSA reportedly elicits an antiproliferative response in multifarious
tumors. This study investigated the antitumor effects of TSA alone and in combination with paclitaxel
when applied to two high-grade urothelial carcinoma (UC) cell lines (BFTC-905 and BFTC-909).
Fluorescence-activated cell sorting, flow cytometry, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium assay were used to assess TSA’s cytotoxicity and effects on apoptosis induction. TSA
induced synergistic cytotoxicity, when combined with paclitaxel (combination index < 1), resulted in
concomitant suppression of paclitaxel-induced activation of phospho-extracellular signal-regulated
kinase (ERK) 1/2. A xenograft nude mouse model confirmed that TSA enhances the antitumor
effects of paclitaxel. These findings demonstrate that the administration of TSA in combination
with paclitaxel elicits a synergistic cytotoxic response. The results of this study indicate that
the chemoresistance of UC could be circumvented by combining HDAC inhibitors to target the
ERK pathway.
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1. Introduction

Paclitaxel was first derived in 1967 from the bark of trees of the genus, Taxus; its antitumor
activity has been proven by numerous pharmacological and clinical studies [1]. Bladder urothelial
carcinoma (UC) is the 4th most common form of cancer in men and the 11th most common
among women in the United States. Upper urinary tract UC (UTUC) accounts for 20–30% of
all UC cases in Taiwan [2]. Following radical surgery, 20–50% of cases still face recurrence and
metastases. Cisplatin-based chemotherapy is the primary treatment regime for bladder UC that has
progressed to the metastatic phase. Even after treatment with paclitaxel, cisplatin/gemcitabine, or
methotrexate/vinblastine doxorubicin/cisplatin, the overall response rate is only 50–60%, and the side
effects can negatively affect patients. Recent promising developments in immunotherapy, including
inhibitors of programmed cell death proteins, PD-1 and PD-L1, have proven effective in 15–29% of
patients with metastatic UC following recurrence after platinum-containing chemotherapy drugs, and
the side effects have been generally tolerable [3–5]. Nearly all cases of metastatic UC develop drug
resistance and eventually lead to death. Novel compounds are urgently required to enhance treatment
effectiveness in terms of overcoming drug resistance and reducing the side effects of chemotherapy.

Human cancers typically exhibit aberrant epigenetic modifications to the structure of chromatins
without alterations to the DNA sequence. The primary protein molecules of chromatins are histones,
which are subject to several types of posttranslational modifications that alter the interactions between
DNA and histones and exert subsequent effects on gene transcription, DNA repair, and DNA
replication [6,7]. Histone acetylation and deacetylation play critical roles in gene expression and
translational activation [8,9]. Gene transcription is associated with the induction of histone acetylation
by histone acetyl transferases; however, the enzymatic removal of the acetyl group from histones by
histone deacetylases (HDACs) is associated with gene silencing. Trichostatin A (TSA) was isolated
from the metabolites of strains of Streptomyces hygroscopicus [10]. It is active against trichophytons
and some fungi, and selectively inhibits enzymes of the class I and II HDAC families. TSA serves
as an inhibitor of the eukaryotic cell cycle and inducer of morphological reversion in transformed
cells. Aberrations in the transcription of key genes regulating vital cellular functions, such as cell-cycle
regulation, proliferation, and apoptosis, are linked to the altered expression of HDACs; therefore,
HDACs represent promising therapeutic targets for treating cancer. In contrast to conventional
chemotherapy drugs, HDAC inhibitors provide high selectivity; several such inhibitors have been
approved for the treatment of cutaneous T-cell lymphoma [11,12].

HDAC inhibitors appear suited to the treatment of bladder UC. In 76% of bladder tumors,
inactivating mutations have been identified in at least one chromatin regulatory gene [13]. Additionally,
an increase in the expression of HDACs was observed in high-grade UC [14]. Some HDAC inhibitors,
such as TSA and belinostat, have demonstrated antitumor effects on UC cell lines through induced
apoptosis and cell-cycle blockades [15–18]. Li et al. reported the synergistic effects of the HDAC inhibitor,
AR-42, and cisplatin against bladder cancer [19]. In 2011, Yoon et al. reported the synergistic effects
of TSA and resensitization to cisplatin treatment in human UC cells [20]. In a similar study, Yeh et al.
demonstrated the resensitization of gemcitabine-resistant UC cells through TSA treatment [21].

The extracellular signal-regulated kinase (ERK) signaling pathway is a common downstream
pathway of several growth factor receptor tyrosine kinases and is involved in the regulation of
cell growth proliferation, survival, and apoptosis [22]. The rapidly accelerated fibrosarcoma (RAF)
kinase/mitogen-activated protein kinase (MEK)/ERK pathway can govern drug resistance, apoptosis,
and sensitivity to chemotherapy and targeted therapy and was reported to be a therapeutic target
for cancer treatment [23]. RAF kinases are a family of serine threonine kinases that phosphorylate
and activate MEK1/2, which then phosphorylates and activates ERK1/2. When activated, ERK1/2
phosphorylates various downstream substrates involved in multiple cellular responses—including
cytoskeletal changes and gene transcription—in tumorigenesis [24]. In 2018, our team demonstrated
a synergistic cytotoxicity induced through the RAF/MEK/ERK pathway in combination with
TSA and three first-line chemotherapy drugs—cisplatin, gemcitabine, and doxorubicin—in UC
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cells based on clinical evidence [25]. The aforementioned studies suggest that HDAC inhibitors
improve the therapeutic efficacy of chemotherapeutic drugs by overcoming resistance. Nonetheless,
the mechanisms underlying the augmented cytotoxicity and resensitization of UC to drug treatment
have yet to be elucidated.

In this in vitro and in vivo study, we sought to determine whether the ability of the antifungal
antibiotic TSA to inhibit class I and class II HDAC enzyme families could enhance the efficacy of
paclitaxel for treating human bladder UC. We also sought to identify the mechanism underlying the
synergistic effects of paclitaxel chemotherapy when administered alongside TSA.

2. Results

2.1. TSA Enhances the Cytotoxicity of Paclitaxel and Reduces Viability in Human UC Cells

The effects of TSA alone and in combination with paclitaxel on the viability of UC cells were first
assessed through MTT assay. As shown in Figure 1A, exposure to TSA or paclitaxel alone for 24 or 48 h
reduced cell viability in a dose-dependent manner (0–1 µM) in BFTC-905 and BFTC-909 cells. Next,
we evaluated the cytotoxic effects on UC cells following exposure to TSA (0.5 µM) combined with
paclitaxel at various concentrations for 24 or 48 h. As shown in Figure 1B, TSA enhanced the cytotoxic
effects of the chemotherapy drug, paclitaxel, toward BFTC-905 and BFTC-909 cells.

2.2. TSA Potentiates the Apoptotic Effect of Paclitaxel on UC Cells

The apoptotic effects on BFTC-905 and BFTC-909 cells of TSA alone and in combination with
paclitaxel were evaluated through flow cytometry with annexin V and 7-AAD staining. After 24 h
of exposure, TSA (0.5 µM) alone induced apoptosis in BFTC-905 and BFTC-909 cells. As shown in
Figure 2A,B, TSA significantly potentiated the apoptotic effects of paclitaxel on UC cells. Additionally,
Western blotting revealed that TSA combined with the chemotherapeutic agent increased the levels of
cleaved caspase-3 and cleaved PARP compared with the chemotherapy drug alone (Figure 2C).
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Figure 1. MTT cell viability assay of BFTC-905 and BFTC-909 with trichostatin A (TSA), paclitaxel, or 
combination treatment. Cells were treated with the relevant drug for 24 h, and cell viability was 
analyzed at OD540 with untreated cells defined as 100% (n = 6). Cell viability is presented as mean ± 
SD. (A) The 50% inhibitory concentration (IC50) of TSA treatment at 24 and 48 h was >1 μM and = 27 
nM, respectively, for BFTC-905 and >1 μM and = 88 nM, respectively, for BFTC-909. By contrast, the 
IC50 of paclitaxel treatment were approximately 1 μM and 7.5 nM, respectively, for BFTC-905 and 
approximately 0.05 μM and 1.7 nM, respectively, for BFTC-909 at 24 and 48 h. (B) Cotreatment with 
paclitaxel and TSA resulted in a significant difference in cell viability compared with paclitaxel alone 
(one-way ANOVA). * p < 0.05  
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Figure 1. MTT cell viability assay of BFTC-905 and BFTC-909 with trichostatin A (TSA), paclitaxel,
or combination treatment. Cells were treated with the relevant drug for 24 h, and cell viability was
analyzed at OD540 with untreated cells defined as 100% (n = 6). Cell viability is presented as mean
± SD. (A) The 50% inhibitory concentration (IC50) of TSA treatment at 24 and 48 h was >1µM and
=27 nM, respectively, for BFTC-905 and >1µM and =88 nM, respectively, for BFTC-909. By contrast,
the IC50 of paclitaxel treatment were approximately 1 µM and 7.5 nM, respectively, for BFTC-905 and
approximately 0.05 µM and 1.7 nM, respectively, for BFTC-909 at 24 and 48 h. (B) Cotreatment with
paclitaxel and TSA resulted in a significant difference in cell viability compared with paclitaxel alone
(one-way ANOVA). * p < 0.05.
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Figure 2. Flow cytometry analysis and apoptosis signaling transduction with TSA, paclitaxel 
treatment. Cells were stained with annexin V and 7-AAD for the analysis of apoptosis through flow 
cytometry (n = 3), and apoptosis pathway analysis was conducted through Western blotting. Total 
apoptosis values are presented as mean ± SD. (A,B) Cotreatment of TSA and paclitaxel induced 
significant apoptosis in both UC cell lines compared with either treatment alone (one-way ANOVA). 
(C) Paclitaxel treatment plus TSA reduced pro-caspase-8 and enhanced both cleaved-form molecules 
in BFTC-905 and BFTC-909. * p < 0.05. 

2.3. Paclitaxel in Combination with TSA Synergistically Inhibits Viability in Human UC Cells  

We evaluated the synergistic effects of TSA in combination with paclitaxel at a concentration 
ratio of 10:1; the dose–effect plot and index–effect plot are illustrated in Figure 3. Experimental data 
related to the CI are listed in Table 1. The aforementioned combination consistently exhibited 
synergistic effects (CI < 1) in terms of reducing cell viability in BFTC-905 and BFTC-909 cells. 

 

Figure 2. Flow cytometry analysis and apoptosis signaling transduction with TSA, paclitaxel treatment.
Cells were stained with annexin V and 7-AAD for the analysis of apoptosis through flow cytometry
(n = 3), and apoptosis pathway analysis was conducted through Western blotting. Total apoptosis
values are presented as mean ± SD. (A,B) Cotreatment of TSA and paclitaxel induced significant
apoptosis in both UC cell lines compared with either treatment alone (one-way ANOVA). (C) Paclitaxel
treatment plus TSA reduced pro-caspase-8 and enhanced both cleaved-form molecules in BFTC-905
and BFTC-909. * p < 0.05.

2.3. Paclitaxel in Combination with TSA Synergistically Inhibits Viability in Human UC Cells

We evaluated the synergistic effects of TSA in combination with paclitaxel at a concentration ratio
of 10:1; the dose–effect plot and index–effect plot are illustrated in Figure 3. Experimental data related
to the CI are listed in Table 1. The aforementioned combination consistently exhibited synergistic
effects (CI < 1) in terms of reducing cell viability in BFTC-905 and BFTC-909 cells.
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Figure 3. Combination indexes (CIs). Synergistic effects were confirmed through cell viability assay
(n = 4), and the results were calculated in CalcuSyn. TSA and paclitaxel were at a 10:1 concentration
ratio. CIs are presented in the CI–effect plot (as log10CI ± SD). CI values <1, =1, and >1 were defined
as synergistic, additive, and antagonistic effects, respectively.

Table 1. CI. Combination consistently exhibited synergistic effects (CI < 1) in terms of reducing viability
in BFTC-905 and BFTC-909 cells.

BFTC-905 (24 h)
Paclitaxel (nM) Fraction Affected (Fa)

TSA:Paclitaxel = 10:1

TSA (nM) Combination Index (CI)

100 10 0.54 0.330
200 20 0.60 0.369
250 25 0.60 0.461
500 50 0.66 0.640

BFTC-909 (24 h)
Paclitaxel (nM) Fraction Affected (Fa)

TSA:Paclitaxel = 10:1

TSA (nM) Combination Index (CI)

50 5 0.24 0.798
100 10 0.35 0.552
400 40 0.56 0.460

1000 100 0.52 1.516

2.4. TSA Suppression of ERK Pathway Activation Following Paclitaxel Treatment in Human UC Cells

TSA and paclitaxel are two agents known to increase the levels of acetylated tubulin. We first
examined whether the treatment of advanced UC cells with TSA and paclitaxel would simultaneously
lead to a synergistic increase in acetylated tubulin and a consequent synergistic antitumor effect.
As shown in Figure 4, cotreatment does not further enhance the levels of acetylated tubulin in advanced
UC cells compared with TSA alone; this suggests that the increase of acetylated tubulin per se is not
the underlying mechanism of the observed synergism. The ERK pathway—the downstream signaling
pathway of growth factor receptor tyrosine kinases—is involved in the regulation of cell growth
proliferation, apoptosis, and survival. The ERK pathway was demonstrated to govern drug resistance,
apoptosis, and sensitivity to chemotherapy and targeted therapy; however, the role of the ERK pathway
in cases of TSA combined with chemotherapy drugs has yet to be elucidated. Therefore, we examined
the expression of downstream phospho-ERK1/2 following treatment with TSA alone, paclitaxel alone,
and their combination. When administered alone, paclitaxel activated the ERK pathway. Treatment
with 0.5 µM TSA in combination with paclitaxel suppressed the induction of phosopho-ERK1/2 by the
chemotherapy drug (Figure 4).
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Figure 4. Western blotting for the ERK pathway and acetylation. Cells were treated with 0.5 µM TSA
or 0.05 µM paclitaxel for 24 h, and cell lysates were collected for further Western blotting. An increase
of phosphor-ERK1/2 suggested a potential drug-resistant phenomenon in the paclitaxel-only group;
however, phosphor-ERK1/2 declined in the TSA alone and combined groups, suggesting a potential
antiresistance-like effect. To confirm acetylation under the TSA treatment, acetyl-alpha-tubulin served
as an acetylation marker. In both the TSA and combination groups, acetyl-alpha-tubulin increased
robustly, indicating the effect of the histone deacetylation inhibitor.

2.5. Paclitaxel-Induced Antitumor Effects Were Enhanced by TSA in a Xenograft Mouse Model

A xenograft mouse model was used for in vivo analysis of the antitumor effects of chemotherapy,
TSA alone, and a combination of both. The analysis involved injecting BFTC-905 and BFTC-909 cells
mixed with Matrigel subcutaneously into the flanks of homozygous nude mice. As described in
the Materials and Methods section, the mice were divided into four groups (n = 5 per group) and
subsequently treated with paclitaxel, TSA, or their combination intraperitoneally; mice treated with
normal saline were used as the control group. As shown in Figure 5, the combination of chemotherapy
and TSA exerted considerably stronger antitumor effects on the BFTC-905 and BFTC-909 xenografts
than did the chemotherapy drug or TSA alone. These results confirm our in vitro findings that
the antitumor effects of TSA on UC can be improved through administration in combination with
chemotherapy drugs.
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Figure 5. BFTC-905 and BFTC-909 xenograft in nude mice under TSA and paclitaxel cotreatment 
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were administered three times each week for a month, starting 2 weeks after xenograft (1 mg TSA/kg, 
2 mg paclitaxel/kg, intraperitoneally). (A) Tumors after 4 weeks of treatment, (B) tumor weight 
progression over 4 weeks of treatment, and (C) tumor volume progression over 4 weeks of treatment 
(n = 6 tumors, data are presented as mean ± SEM). Tumor volumes show significant differences 
between the control and combined groups at week 4 (one-way ANOVA). * p < 0.05. 
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inhibitor of HDAC6 as well as other HDACs—synergistically potentiates the antitumor effect of 
paclitaxel on advanced UC. Advanced UC undergoes more prominent apoptosis when treated 
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Figure 5. BFTC-905 and BFTC-909 xenograft in nude mice under TSA and paclitaxel cotreatment
revealed a significant inhibition of tumor volume growth. The lateral sides of the nude mice 6–8 weeks
old were xenografted with BFTC-905 or BFTC-909 cells (n = 5 mice per group). Drug treatments were
administered three times each week for a month, starting 2 weeks after xenograft (1 mg TSA/kg, 2 mg
paclitaxel/kg, intraperitoneally). (A) Tumors after 4 weeks of treatment, (B) tumor weight progression
over 4 weeks of treatment, and (C) tumor volume progression over 4 weeks of treatment (n = 6 tumors,
data are presented as mean ± SEM). Tumor volumes show significant differences between the control
and combined groups at week 4 (one-way ANOVA). * p < 0.05.

3. Discussion

Cisplatin-based systemic chemotherapy remains the first-line treatment for patients with
metastatic UC [26]. However, progression persists after cisplatin-based chemotherapy in 30–50%
of advanced UC cases. Second-line chemotherapy drugs for advanced and metastatic UC have been
developed, including taxanes and vinflunine [27–29]. Regarding the treatment of advanced UC,
combination chemotherapy regimens have proven more effective than singular agents [30]. The most
extensively studied second-line combination regimen is paclitaxel plus gemcitabine, which achieved
an overall response rate of 30–70% [31]. However, many patients experience disease progression even
after four to six cycles of second-line treatments.

To overcome the chemotherapy resistance of advanced or metastatic UC, the use of TSA as a
combination agent to influence gene expression and enhance the antitumor effect of gemcitabine on
advanced UC was explored [21]. Gemcitabine exhibits synergistic antitumor effects when combined
with TSA to treat advanced UC. Paclitaxel is a toxin that stabilizes microtubules throughout cell cycles,
thereby killing actively dividing cancer cells. Therefore, paclitaxel has been widely used in oncology,
including for UC treatment [27,28]. In this study, we examined whether TSA—a potent inhibitor of
HDAC6 as well as other HDACs—synergistically potentiates the antitumor effect of paclitaxel on
advanced UC. Advanced UC undergoes more prominent apoptosis when treated simultaneously with
paclitaxel and TSA than with either drug alone. In line with the in vitro culture results, the in vivo
xenograft model clearly supported the hypothesis that TSA works synergistically with paclitaxel.
Although the cooperative antitumor effect between TSA and paclitaxel was observed in papillary serous
endometrial cancer cells [32], whether the synergistic effect holds for other cancer types, especially those
that exhibit drug resistance, is unclear. Our study results indicate that the synergistic antitumor effect
is well preserved in high-grade UC cells despite their insensitivity to other chemotherapeutic agents.

Because acetylated tubulin increased after treatment with TSA or paclitaxel, synergistic
enrichment of acetylated tubulin is an attractive explanation for the observed synergistic killing
of advanced UC through the combination of TSA and paclitaxel. Although synergistic enrichment
of acetylated tubulin after treatment with TSA and paclitaxel has been noted in endometrial cancer
cells, it has not been observed in advanced UC cells. The mechanisms underlying the synergistic
antitumor effect of TSA and paclitaxel appear pleiotropic; patients with different cancer types may
benefit from the combination of TSA and paclitaxel for different reasons. TSA is such a strong HDAC
inhibitor that it also leads to histone hyperacetylation, and thus markedly reshapes the cancer cell
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transcriptome. TSA may resensitize chemoresistant cancer cells through microtubule-independent
pathways. The Raf/MEK/ERK signaling pathway is involved in the regulation of cell growth
proliferation, survival, and apoptosis [22]. This pathway is often up-regulated in cancer cells and
serves as a promising anti-cancer target. In this study, we discovered that TSA effectively remodeled
the aberrant ERK pathway found in advanced UC cells. After treatment with TSA and paclitaxel,
the advanced UC cells did not exhibit cytoprotective activation of the ERK in the same manner
as they had after treatment with paclitaxel alone. Consequently, advanced UC cells become more
susceptible to apoptosis in vitro and tumor regression in vivo. Notably, TSA-mediated suppression of
the ERK pathway also operated synergistically when combined with another cytotoxic agent, namely
gemcitabine, in another chemoresistant UC model. This suggests that TSA is a general chemosensitizer
that cooperates effectively with multiple chemotherapeutic agents. TSA-mediated suppression of
the ERK pathway is particularly appealing because this pathway serves as a signaling hub that
receives growth input from several tyrosine kinase receptors that are frequently aberrantly activated
or overexpressed in human cancers [33]. For example, mutations in the RAS genes that activate the
RAF/MEK/ERK pathway account for the greatest number of common mutations found in bladder
cancer. Up to 13% of all UC harbors mutations of HRAS, KRAS, or NRAS [34]. As a proof-of-principle
experiment, we demonstrated that TSA—an experimental HDAC inhibitor—is promising for the
treatment of advanced UC. This finding is ready to be applied in clinical studies on humans. To date,
several natural and synthetic HDAC inhibitors have been developed and are under investigation for
clinical use. For example, the Food and Drug Administration has approved vorinostat and romidepsin
with indications for refractory cutaneous T-cell lymphoma [35,36]. Some of these clinically approved
HDAC inhibitors likely share antitumor properties with TSA.

Our study had some limitations. First, only one bladder UC cell line and one UTUC cell line
were used to represent UC tumor behavior. Additionally, the xenograft mouse model may not have
fully represented the cancer microenvironment. Second, we did not evaluate for any alterations of
epigenetic modulation after TSA administration. Third, the cascade of the ERK pathway involves
regulatory proteins, which give rise to multiple facets of tumor chemoresistance processes.

In conclusion, TSA synergistically enhances the cytotoxic effects of paclitaxel. One prominent
mechanism is TSA-mediated suppression of the ERK pathway; this allows TSA to potentially cooperate
with various chemotherapy drugs. The findings of this study forecast new avenues to circumvent the
drug resistance observed in patients with advanced UC.

4. Material and Methods

4.1. Cell Culture

We used two human UC cell lines in this study. BFTC-905—a human urinary bladder UC
cell line—was derived from a 51-year-old Taiwanese woman with a grade III papillary UC of the
urinary bladder in 1990. BFTC-909 was derived from the sarcomatoid component of grade III UC
of the renal pelvis exhibiting a fibroblastic growth pattern [37]. Both cell lines were purchased
from the Food Industry Research and Development Institute, Hsinchu, Taiwan. The cell lines were
cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% (for BFTC-909) or 15%
(for BFTC-905) fetal bovine serum, 100 U/mL penicillin, and 100 µg/mL streptomycin (Invitrogen,
Carlsbad, CA, USA).

4.2. Reagents and Chemicals

TSA solution and a TSA compound were obtained from Sigma-Aldrich (St. Louis, MO, USA).
The chemotherapeutic agent—paclitaxel—used in this study was from taken from clinical medication
(Phyxol, Sinphar, Taiwan). All other chemicals were obtained from Sigma-Aldrich or Merck Millipore
(Billerica, MA, USA).
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4.3. Antibodies

For Western blotting, antibodies against caspase-8, cleaved caspase-3, cleaved poly (adenosine
diphosphate–ribose) polymerase (PARP), phospho-ERK1/2, and acetyl-alpha-tubulin were purchased
from Cell Signaling Technologies (Danvers, MA, USA). Antibodies against ERK1/2 and alpha-tubulin
were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA), and glyceraldehyde
3-phosphate dehydrogenase (GAPDH) antibodies were purchased from Genetex (Irvine, CA, USA).

4.4. Cell Viability Assay

This study used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT; Sigma-Aldrich) to
determine cell viability. Cells suspended in culture medium were seeded in 96-well microplates
(2000–4500 cells/well) and incubated at 37 ◦C for 24 or 48 h before drug treatment. After exposure to
drugs, the cells were incubated with 0.5 mg/mL MTT in complete medium at 37 ◦C for 4 h. Thereafter,
dimethyl sulfoxide (DMSO) was applied to dissolve the reduced MTT crystals, and a plate reader
(Thermo Scientific Multiskan GO, Thermo Scientific Pierce, Rockford, IL, USA) was used to measure
the absorbance by the solvents at 540 nm.

4.5. Combination Index

The combined effects of the chemotherapeutic agents and TSA were determined using CalcuSyn
software (version 1.1.1, Biosoft, Cambridge, UK). The combined effect at combination ratios of 10:1
(TSA to paclitaxel) was evaluated through median-effect and combination index (CI) analysis as
described in previous studies [38,39]. The combined dose effects are described as the median, dose,
and CI effects in Figure 3. CI values less than, equal to, and greater than 1 were defined as synergistic,
additive, and antagonistic effects, respectively [38].

4.6. Western Blot Analysis

To determine protein expression, BFTC-905 and BFTC-909 cells were lysed with cell lysis
buffer (Cell Signaling Technologies) on ice after being washed with cold phosphate-buffered saline
(PBS). After centrifugation of cell lysates at 18,000× g for 10 min at 4 ◦C, the supernatants were
collected, and bicinchoninic acid protein assay (Thermo Scientific Pierce) was used to detect
the total protein concentration. Equal amounts of proteins, which were mixed with TOOLS
sample loading buffer (Biotools, Taipei, Taiwan), from each cell line were subjected to sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and then transferred onto polyvinylidene fluoride
membranes (Merck Millipore). After being blocked with 5% bovine serum albumin (BSA) in PBS,
the membranes were incubated with various primary antibodies in PBS at 4 ◦C overnight. After two
washes with Tris-buffered saline containing 0.05% Tween 20 (TBST), the membranes were incubated
with horseradish peroxidase-conjugated secondary antibodies (Genetex) at recommended dilution
ratios in PBS at room temperature for 2 h. The antibody-marked membranes were again washed
twice with TBST and visualized using enhanced chemiluminescence substrates (Merck Millipore) in
an ImageQuant LAS 4000 (GE Healthcare) system. Experiments were performed in triplicate.

4.7. Apoptosis Assay

The apoptosis assay was performed according to the manufacturer’s protocol using Muse Annexin
V and a Dead Cell Kit (Merck Millipore). Cell lines were preincubated with relative drugs or in
controlled conditions for 24 h and then trypsinized for centrifugation. Cells were centrifuged at 100× g
and washed once with PBS. After being washed, the cells were resuspended in 2–20% BSA solution and
subsequently incubated with an equal volume of Muse Annexin V and Dead Cell Reagent for 20 min
at room temperature to stain the apoptotic markers, annexin V and 7-AAD, that had translocated to
the outer membrane. The stained apoptotic cells were then examined and quantified through flow
cytometry using a Muse Cell Analyzer (Merck Millipore).
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4.8. In Vivo Xenograft

All animal care and experimental procedures were conducted in accordance with the protocols
approved by the Institutional Animal Care and Use Committee of the College of Public Health and
College of Medicine at National Taiwan University. Studies involving animals followed the ARRIVE
guidelines for reporting experiments concerning animals. In the present study, 40 animals were
used. BFTC-905 or BFTC-909 cells (5 × 105 to 1 × 106 cells) were suspended in 200 µL of serum-free
medium and mixed with an equivalent volume of Matrigel (BD Biosciences). Eight-week-old nude
mice (obtained from the Taiwan National Laboratory Animal Center, Taipei, Taiwan) were injected
subcutaneously with the mixtures into the dorsal flanks. After the tumors had grown to 100–150 mm3,
the mice were treated with paclitaxel alone, paclitaxel combined with TSA, or TSA alone; treatment
was performed in parallel with control group mice (n = 5 for each group). Paclitaxel (2 mg/kg, three
times weekly) or TSA (1 mg/kg, three times weekly) in normal saline was intraperitoneally injected
into the chemotherapy- and TSA-treated mice, respectively, for 4 weeks. Meanwhile, the combination
group received the same doses of the drug and TSA, which were administered at the same frequency
over the same duration. Mice receiving a mixture of DMSO and normal saline were designated as the
untreated control group.

The tumor sizes were measured by calipers every 4 days and calculated as volume = π/6[(A +
B)/2]3; A is the longest diameter of the tumor and is perpendicular to the tumor diameter, B. After
4 weeks of treatment, the tumors were abscised and photographed before being frozen in liquid
nitrogen and stored at −80 ◦C.

4.9. Statistical Analyses

Statistical analyses were performed using GraphPad Prism 7 software with all data presented as
mean ± standard deviation (SD) or standard error of the mean (SEM) and analyzed using one-way
ANOVA; p < 0.05 was considered statistically significant.
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