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The exploitation of petrochemical hydrocarbons is compromising ecosystem and human
health and biotechnological research is increasingly focusing on sustainable materials
from plants and, to a lesser extent, microalgae. Fatty acid derivatives include, among
others, oxylipins, hydroxy fatty acids, diols, alkenones, and wax esters. They can
occur as storage lipids or cell wall components and possess, in some cases, striking
cosmeceutical, pharmaceutical, and nutraceutical properties. In addition, long chain
(>20) fatty acid derivatives mostly contain highly reduced methylenic carbons and
exhibit a combustion enthalpy higher than that of C14−20 fatty acids, being potentially
suitable as biofuel candidates. Finally, being the building blocks of cell wall components,
some fatty acid derivatives might also be used as starters for the industrial synthesis
of different polymers. Within this context, microalgae can be a promising source of
fatty acid derivatives and, in contrast with terrestrial plants, do not require arable
land neither clean water for their growth. Microalgal mass culturing for the extraction
and the exploitation of fatty acid derivatives, along with products that are relevant
in nutraceutics (e.g., polyunsaturated fatty acids), might contribute in increasing the
viability of microalgal biotechnologies. This review explores fatty acids derivatives
from microalgae with applications in the field of renewable energies, biomaterials
and pharmaceuticals. Nannochloropsis spp. (Eustigmatophyceae, Heterokontophyta)
are particularly interesting for biotechnological applications since they grow at faster
rates than many other species and possess hydroxy fatty acids and aliphatic cell
wall polymers.

Keywords: fatty acid derivatives, microalgal metabolites, secondary functional groups, biofuels, biopolymers

MICROALGAE AS A SOURCE OF SPECIALTY COMPOUNDS

Due to the dramatic environmental issues caused by the consumption of fossil fuels as well as other
materials of petrochemical origin, the use of biological resources for the production of sustainable
compounds as well as biofuels is receiving greater attention from the chemical industry. The
increasing demand of sustainable materials led the scientific community to address their studies in
the research of new molecules. Biotechnological research investigated terrestrial plants for several
decades highlighting a number of potential applications for the pharmaceutical, cosmeceutical, and
nutraceutical industries. For examples, extracts from plants such as Simmondsia chinensis (Pazyar
et al., 2013), Argania spinosa (Avsar et al., 2016), and Aloe vera (Hekmatpou et al., 2019) are
commonly used for skin protection and personal care products. A recent and exhaustive review
on cosmeceutical and pharmaceutical products from plants is provided by Dorni et al. (2017).

Frontiers in Microbiology | www.frontiersin.org 1 September 2021 | Volume 12 | Article 718933

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.718933
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.718933
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.718933&domain=pdf&date_stamp=2021-09-29
https://www.frontiersin.org/articles/10.3389/fmicb.2021.718933/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-718933 September 23, 2021 Time: 17:26 # 2

Blasio and Balzano Fatty Acid Derivatives in Microalgae

Although natural products have been mostly isolated from
plants, microalgal biodiversity represents an unexplored source of
specialty molecules with potential biotechnological applications.
A significant portion of marine diversity is unknown since
most marine microbes are unculturable (Rappé and Giovannoni,
2003) and genomes or transcriptomes have been sequenced
from a fraction of species only (Lewis et al., 2020). The
number of sequenced genomes in eukaryotes is far lower
compared to prokaryotes because the presence of both introns
and tandem repeats significantly complicates eukaryotic genome
sequencing (Richter et al., 2020); massive efforts have been
carried out to sequence microalgal genomes (Blaby-Haas and
Merchant, 2019) and transcriptomes (Keeling et al., 2014) from
microbial eukaryotes and a database of proteins predicted from
742 eukaryotic genomes or transcriptomes has been recently
published (Richter et al., 2020). Finally, a significant portion
of the genes and transcripts from sequenced genomes and
transcriptomes has not been investigated in great detail and their
function is yet unknown. The great abundance of unannotated
genes along with the scarcity of sequenced eukaryotic genomes
suggest a great level of novelty potentially occurring within
microalgal metabolites.

Microalgae appear to be more suitable than plants for mass
culturing and specialty product development for a number of
reasons. First, microalgae can achieve strikingly high growth
rates reaching very short (1–2 days) doubling times (Chisti,
2007; Rodolfi et al., 2009; Stoytcheva and Montero, 2012).
Conversely to crop plants that require cultivable lands and clean
water, microalgae can grow in a range of different environments
including brackish, marine or hypersaline waters as well as
wastewaters and thus do not compete with food crops for arable
land. Second, microalgae encompass a phylogenetic diversity
much broader than that of terrestrial plants (Baldauf, 2008),
potentially reflecting a greater diversity of metabolites, some
of which might reveal useful for biotechnological purposes.
It has been estimated that microalgae make up 200,000 to
several million species worldwide versus the 250,000 species of
higher plants (Norton et al., 1996; Mann and Vanormelingen,
2013). Microalgae produce a wide variety of fatty acid
derivatives, such as hydroxy fatty acids, oxylipins, alkenones
and diols, which can make an additional pool of molecules
with potential biotechnological applications. The biochemical
composition of microalgal biomass can be optimized (e.g.,
increase in lipids) according to the application requirement
using appropriate culturing manipulations. A wide range of
microalgal lipids are currently attracting some biotechnological
interest. Polyunsaturated fatty acids (PUFAs) from microalgae
have been widely investigated for nutraceutical applications
(Doughman et al., 2007; Sathasivam et al., 2019) as well as
sustainable alternatives to petroleum-based diesel (Nascimento
et al., 2013). In addition to microalgae, thraustochytrids are a
group of heterotrophic heterokonts that can also accumulate
great amounts of PUFAs and are also under investigation because
of their biotechnological potential (Fossier Marchan et al., 2018;
Hu et al., 2020).

Biofuel combustion has far less emissions of sulfur
compounds compared to petrochemical fuels (Khan et al.,
2018). Furthermore, the biomass to be used for biofuel

production has a great potential for fixing carbon dioxide from
the air or from flue gas emissions. Oil extraction yields from
microalgae can exceed by 5–6 fold that of terrestrial plants
(Rodolfi et al., 2009; Mata et al., 2010; Benedetti et al., 2018).
Finally, microalgae convert carbon dioxide in organic carbon
with a greater efficiency than terrestrial plants (Melis, 2009;
Zhu et al., 2010; Bhola et al., 2014). Microalgal species suitable
for industrial applications need to perform fast growth, high
lipid content, and minimum nutritional requests. Among all
species, the green algal genera Chlorella, Botryococcus, and
Scenedesmus, the diatom Phaeodactylum tricornutum, the
Haptophyta Isochrysis galbana and Eustigmatophyceae from the
genus Nannochloropsis can reach a high lipid content revealing
suitable for biofuel development (Rodolfi et al., 2009; Shuba and
Kifle, 2018). Nannochloropsis spp. have been long considered
one of the most suitable candidates for biofuel production
because of their fast growth and their high lipid content with
respect to other species (Rodolfi et al., 2009; Chen et al., 2012).
The content in triacylglycerols (TAGs) within selected strains
of Nannochloropsis oceanica and Nannochloropsis oculata can
indeed make up to 58% of total lipids (Ma et al., 2014). The
potential of microalgae for biofuel development has been
extensively discussed in a number of reviews (Chisti, 2007; Khan
et al., 2018; Shuba and Kifle, 2018) and is beyond the scope of the
present study. In this review we focus on the applications of fatty
acid derivatives for a number of applications including biofuels
and fuel additives.

MICROALGAL FATTY ACIDS

Fatty Acid Diversity
Fatty acids typically contain 14 to 24 carbon atoms and can
be saturated, monounsaturated (MUFAs), or PUFAs. The most
common saturated fatty acids in nature are the C16:0 (palmitic)
and C18:0 (stearic) fatty acids and, to a lesser extent, the
C12:0, C14:0, and C20:0 fatty acids. C14−20 saturated fatty acids
are the major components of both storage and membrane
lipids. Very long chain (>20) saturated fatty acids (VLCFAs)
are common in terrestrial plants and can be the building
blocks of plant waxes (Samuels et al., 2008). MUFAs are
instead mostly represented by C18:1ω9 (oleic acid) as well as
C16:1ω7, C18:1ω7, C20:1ω11, and C22:1ω9; they are particularly
abundant in avocados, olives, and nuts. PUFAs are abundant
in phospholipid fatty acids being thus essential components
of cell membranes. The most abundant PUFAs in plants are
the C18:2ω6 (linoleic acid), the C18:3ω3 (α-linolenic acid), and
the C18:3ω6 (γ-linolenic acid) that are mostly present in seeds
and nuts. In contrast, protists possess longer PUFAs, the most
common being the C20:5ω3 (eicosapentaenoic acid, EPA), the
C22:6ω3 (docosahexaenoic acid, DHA), and the and C20:4ω6
(arachidonic acid, ARA).

PUFAs, especially ω3-PUFAs, are strongly recommended
for human diet because they exert positive effects on health
reducing the risks of cardiovascular diseases (Briggs et al.,
2017), atherosclerosis (Dessì et al., 2013) as well as cancer and
inflammation diseases (Gu et al., 2015). Furthermore, ω6-PUFAs
such as γ-linolenic acid and ARA are also recommended, in
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small amounts, for human and animal diets since they can
be precursors of ω3-PUFAs (Meyer et al., 2003). Although
all organisms are able to biosynthesise PUFAs, the conversion
efficiency in humans and other animals is not sufficient to fulfill
the nutritional needs. PUFAs can be supplied, at a limited extent,
by vascular plants that are rich in linoleic and α-linolenic acids,
but produce very small amounts of EPA and DHA (Robert et al.,
2005). EPA and DHA are mostly produced by microalgae and
transferred to the upper levels of the food chain. At present,
the major commercial sources of PUFAs are fish oils, which
are mostly produced from wild-caught fishes, rising concerns
for the sustainability of fishing stocks and the depletion of
marine resources. Subsequently, great effort is being made to
find alternative strategies for PUFA production. The microalgal
content in EPA and DHA is far larger than that of plants. In
addition some species also contain substantial proportions of
typical plant PUFAs such as C16:4ω3 acid, α- and γ-linolenic

acids, and C18:4ω3 acid (Sathasivam et al., 2019) and are thus
attracting the attention of the biotechnological industry (Table 1).

Biosynthetic Pathways
Information on the biosynthetic pathways of protistan fatty acids,
especially PUFAs, is crucial to define strategies for increasing
their cellular abundance. Most knowledge of their pathways
derives from plants, although biosynthetic mechanisms have
been elucidated for thraustochytrids (Sun et al., 2019) and
microalgae such as Nannochloropsis spp. (Vieler et al., 2012),
P. tricornutum (Yang et al., 2013), I. galbana (Adarme-Vega et al.,
2012), and Chlamydomonas reinhardtii (Giroud et al., 1988).

De novo Fatty Acid Biosynthesis
De novo fatty acid biosynthesis starts with the condensation of
an acetyl-CoA molecule with the malonyl-acyl carrier protein
(ACP) by a ketoacyl synthase (KS), resulting in the formation of a

TABLE 1 | Major producers of polyunsaturated fatty acids (PUFAs).

Major producing genera Class Compound of interest References

Ankistrodesmus Chlorophyta Hexadecatetraenoic acid (C16 :4ω3) Sathasivam et al., 2019

Chlamydomonas Chlorophyta Hexadecatetraenoic acid (C16 :4ω3) Ramanan et al., 2013

Dunaliella Chlorophyta Hexadecatetraenoic acid (C16 :4ω3) Lee et al., 2014

Tetraselmis Chlorophyta Hexadecatetraenoic acid (C16 :4ω3) Shin et al., 2018

Botryococcus Chlorophyta Linoleic acid (C18 :2ω6) Pérez-Mora et al., 2016

Chlorella Chlorophyta Linoleic acid (C18 :2ω6) Kholif et al., 2017

Chlorococcum Chlorophyta Linoleic acid (C18 :2ω6) Bhagavathy et al., 2011

Tetraselmis Chlorophyta Linoleic acid (C18 :2ω6) Kim et al., 2016

Botryococcus Chlorophyta α-linolenic acid (C18 :3ω3) Pérez-Mora et al., 2016

Chlamydomonas Chlorophyta α-linolenic acid (C18 :3ω3) Ramanan et al., 2013

Chlorella Chlorophyta α-linolenic acid (C18 :3ω3) Kholif et al., 2017

Dunaliella Chlorophyta α-linolenic acid (C18 :3ω3) Chen et al., 2015

Micromonas Chlorophyta α-linolenic acid (C18 :3ω3) Petrie et al., 2010

Scenedesmus Chlorophyta α-linolenic acid (C18 :3ω3) Girard et al., 2014

Tetraselmis Chlorophyta α-linolenic acid (C18 :3ω3) Kim et al., 2016

Chlorococcum Chlorophyta γ-linolenic acid (C18 :3ω6) Bhagavathy et al., 2011

Dunaliella Chlorophyta γ-linolenic acid (C18 :3ω6) Chen et al., 2015

Micromonas Chlorophyta Stearidonic acid (C18 :4ω3) Petrie et al., 2010

Tetraselmis Chlorophyta Stearidonic acid (C18 :4ω3) Kim et al., 2016

Porphyridium Rhodophyta Arachidonic acid (C20 :4ω6) Su et al., 2016

Chlorella Chlorophyta Eicosapentaenoic acid (EPA, C20 :5ω3) Kholif et al., 2017

Dunaliella Chlorophyta Eicosapentaenoic acid (EPA, C20 :5ω3) Chen et al., 2015

Monodus Eustigmatophyceae Eicosapentaenoic acid (EPA, C20 :5ω3) Chauton et al., 2015

Nannochloropsis Eustigmatophyceae Eicosapentaenoic acid (EPA, C20 :5ω3) Pal et al., 2011

Nitzschia Diatom Eicosapentaenoic acid (EPA, C20 :5ω3) Mao et al., 2020

Odontella Diatom Eicosapentaenoic acid (EPA, C20 :5ω3) Guihéneuf et al., 2010

Pavlova Haptophyta Eicosapentaenoic acid (EPA, C20 :5ω3) Guihéneuf et al., 2010

Phaeodactylum Diatom Eicosapentaenoic acid (EPA, C20 :5ω3) Cui et al., 2021

Tetraselmis Chlorophyta Eicosapentaenoic acid (EPA, C20 :5ω3) Tsai et al., 2016

Crypthecodinium Dinoflagellate Docosahexaenoic acid (DHA, C22 :6ω3) Enzing et al., 2014

Isochrysis Haptophyta Docosahexaenoic acid (DHA, C22 :6ω3) Pei et al., 2017

Tisochrysis Haptophyta Docosahexaenoic acid (DHA, C22 :6ω3) Hu et al., 2019

Schizochytrium thraustochytrids1 Docosahexaenoic acid (DHA, C22 :6ω3) Hu et al., 2020

Pyramimonas Chlorophyta Docosahexaenoic acid (DHA, C22 :6ω3) Boelen et al., 2013

1Although commonly referred as microalgae, thraustochytrids do not contain chloroplasts and are obligate heterotrophic protists.
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β-ketoacyl intermediate with two additional carbons compared
to the initial acetyl molecule (Figure 1). Subsequently, the
3-keto group is fully reduced to an alkyl group after three
reactions, ultimately forming a fully saturated acyl intermediate:
a ketoacyl reductase (KR) reduces the initial 3-ketoacyl-ACP
intermediate to a 3-hydroxyacyl ACP, a hydroxyacyl dehydratase
(HD) then converts it to enoyl-ACP which is finally saturated
by an enoyl reductase (ER) (Busta and Jetter, 2018). Six to
seven full elongation cycles are necessary for the biosynthesis of
C16−18 fatty acids. In contrast with KR, HD and ER enzymes
that can accept substrates of different length, KS enzymes are
substrate-specific and three different isoforms are required for the
biosynthesis of C16−18 fatty acids: KS III (C2 to C4), KS I (C4 to
C16), and KSII (C16 to C18) (Millar and Kunst, 1997).

The main enzyme involved in de novo fatty acid biosynthesis
is the fatty acid synthase (FAS) that can be classified in two
types: mammals and yeasts possess the type I FAS which is
a large multidomain protein whereas type II FAS typically
occurs in prokaryotes and consists of four dissociable proteins
carrying different catalytic activities. Since chloroplasts evolved
from the endosymbiosis of a cyanobacterium by an ancestral
eukaryotic cell (Harwood et al., 2017; Heil et al., 2019), type
II FAS can also be found in plastid-bearing organisms such
as plants and algae. Specifically, fatty acid biosynthesis in
microalgae is performed by stromal type II FAS consisting in
four monofunctional enzymes, each carrying a specific catalytic

activity (Khozin-Goldberg, 2016). Nevertheless, putative type I
FAS has been identified in N. oceanica and Euglena gracilis
(Hoffmeister et al., 2005; Vieler et al., 2012).

Aerobic Polyunsaturated Fatty Acid Formation
After de novo biosynthesis, newly formed C16−18 fatty acids
can undergo different rounds of elongation and desaturation
leading to the formation of PUFAs. PUFAs are biosynthesized via
the aerobic biosynthetic pathway in most microalgae including
green algae, haptophytes, dinoflagellates, and diatoms (Jovanovic
et al., 2021). The aerobic biosynthetic pathway consists in
de novo fatty acid biosynthesis followed by different rounds
of chain elongations and desaturations. The C18 fatty acids
undergo two sequential desaturations rounds catalyzed by the
19 and 112 (or ω6) desaturases resulting in the formation of
the C18:2ω6 intermediates which can be converted in C18:3ω3
by a 115ω3 desaturase. The latter products undergo a series
of desaturations and elongations ultimately resulting in the
formation of the ω6 derivative ARA for the C18:2ω6 fatty acid,
and of the ω3 derivatives EPA and DHA for C18:3ω3 fatty
acid (Figure 1; Li-Beisson et al., 2019). In some species, EPA
production can be achieved by the 18 pathway that consists in
an initial elongation of the C18:3ω3 to form C20:3ω3 that is then
desaturated to C20:4ω3 by a 18 desaturase (Figure 1; Qi et al.,
2002; Guschina and Harwood, 2006).

FIGURE 1 | Schematic diagram of the two major biosynthetic pathways leading to the formation of the eicosapentaenoic (EPA, C20 :5ω3) and docosahexaenoic
(DHA, C22 :6ω3) in protists. EPA and DHA in microalgae typically result from de novo fatty acid synthesis followed by the desaturase/elongase pathways; an
alternative pathway, in which double bonds result from incomplete elongation rather than desaturation, has been identified in a class of heterotrophic heterokonts
known as thraustochytrids: the polyketide synthase (PKS) pathway. ACCase, acetyl-CoA carboxylase; ACP, acyl carrier protein; MAT, malonyl-CoA ACP
transacylase; KS, β-ketoacyl-ACP synthase; KR, β-ketoacyl-ACP reductase; HD, β-hydroxyacyl-ACP dehydrase; ER, enoyl-ACP reductase; TE, acyl-ACP
thioesterases; Des, desaturase; Elo, elongase. Figure modified from Hu et al. (2020) and Sun et al. (2018).
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Anaerobic Polyunsaturated Fatty Acid Biosynthesis
and Polyketide Synthases
An alternative non-oxygen dependent pathway for PUFA
biosynthesis involves polyketide synthase (PKS) enzymes.
Anaerobic PUFA production has been reported in bacteria as well
as thraustochytrids (Figure 1; Metz et al., 2001; Meesapyodsuk
and Qiu, 2016; Sun et al., 2019; Hu et al., 2020). PKSs share
evolutionary similarities with FASs but they typically lack one or
more catalytic sites required for a complete fatty acid elongation,
leading to the formation of a longer acyl chain functionalized with
either a keto group, a double bond, or a secondary alcohol group
(Jenke-Kodama et al., 2005). In this case, PUFAs result from PKS
enzymes that can perform some of the steps required for fatty acid
elongation, without ER activity, thus forming longer products
with a double bond along the aliphatic chain (Figure 1). PKS
pathway for PUFAs involves fewer intermediates and consumes
less NADPH compared to the desaturase/elongase pathway; for
example, the formation of EPA and DHA from malonyl-CoA and
acetyl-CoA, through the FAS and desaturase/elongase pathways,
requires 21 and 26 NADPH units, respectively, whereas the
same biosynthetic processes occurring through the PKS pathways
consume 13 and 14 NADPH units, respectively (Sun et al., 2019).

Enhancing Polyunsaturated Fatty Acid
Content in Microalgae
Because of their beneficial effects on human health, the
nutraceutical and livestock industries are interested in producing
foods and animal feeds with enhanced ω3-PUFA content. In
this context, microalgae are considered a promising source of
these compounds since they are the major producers of both
EPA and DHA (Sukenik, 1991; Yongmanitchai and Ward,
1991; Henderson and Mackinlay, 1992; Meireles et al., 2003b;
Řezanka et al., 2010; Sayanova et al., 2011). Nevertheless,
commercialization of PUFAs from microalgae is still a great
challenge since several hurdles render their production
economically unsustainable and not competitive with fish
oil. The high operational costs are mainly due to the cultivation
and downstream processing (e.g., desalting, biomass harvesting).
During the last decades, intensive research has been conducted
to develop different scale processing strategies for microalgal
PUFA production. The starting point of the production
process is the selection of PUFA-rich microalgal species
(Table 1). In this context, the cultivation of Nannochloropsis
spp. (Eustigmatophyceae) is particularly interesting for this
purpose due to their high EPA content, that can account for
the 35% of the total lipid composition, and for DHA absence,
a feature that is particularly suitable for dietary purpose that
require the production of a single specific ω3-PUFA (Khozin-
Goldberg et al., 2011). High proportions of EPA are also present
in other Eustigmatophyceae (Vazhappilly and Chen, 1998),
diatoms such as Amphora sp. (Talebi et al., 2013), P. tricornutum
(Yongmanitchai and Ward, 1991) and Chaetoceros muelleri (Gao
et al., 2013), green algae like C. reinhardtii (James et al., 2011),
Chlorella minutissima (Vazhappilly and Chen, 1998), Dunaliella
salina (Bhosale et al., 2010), and Scenedesmus sp. (Talebi et al.,
2013) as well as Haptophyta such as I. galbana (Tzovenis et al.,

1997), Pavlova lutheri (Guihéneuf et al., 2009), and Tisochrysis
lutea (Hu et al., 2018). In contrast, heterotrophic species such as
the dinoflagellate Crypthecodinium cohnii (Mendes et al., 2009)
and thraustochytrids can accumulate greater proportions of
DHA compared to EPA (Table 1).

Interestingly, most protists can accumulate greater
proportions of lipids under environmental stress conditions.
For example, nitrogen deprivation revealed a successful strategy
to promote lipid accumulation in C. muelleri (Gao et al.,
2013), D. salina (Yuan et al., 2019), C. reinhardtii (James et al.,
2011), Nannochloropsis sp. (Pal et al., 2011), P. tricornutum
(Valenzuela et al., 2012). In addition, the EPA content was
found to increase in P. tricornutum after a temperature shock
(Jiang and Gao, 2004) and UV irradiation (Liang et al., 2006).
Culturing at salinities lower than seawater values can enhance
the PUFA content of marine microorganisms as found for the
heterotrophic dinoflagellate C. cohnii (Jiang and Chen, 1999) and
Nannochloropsis spp. (Hu and Gao, 2006; Pal et al., 2011). Short
exposure to UV-C radiation also revealed successful in increasing
the cellular concentration of EPA in Nannochloropsis sp., making
it reach 30% of total fatty acids (Sharma and Schenk, 2015).

In addition to culturing manipulations, several studies
proposed the application of chemical modulators as a sustainable
and cost-effective strategy to promote lipid accumulation in
protists. Chemical modulators can have a direct action on lipid
biosynthetic pathways enhancing the availability of precursors or
inhibiting the competing pathways, or can indirectly accelerate
lipid pathways by increasing cell permeability or modulating
oxidative stress (Sun et al., 2019). In particular, the decrease
in reactive oxygen species (ROS) through the addition of
antioxidants molecules was demonstrated to increase the DHA
content in different microalgal species. For example, DHA
accumulation likely driven by a decrease in ROS damage was
observed in C. cohnii and Schizochytrium sp. (thraustochytrids)
after that cultures were supplemented with sesamol and ascorbic
acid, respectively (Liu et al., 2015; Ren et al., 2017).

Although the optimization of physicochemical parameters
and the addition of chemical modulators can contribute to
enhance PUFA production, biotechnological research aims
at improving strains through genetic modifications or other
manipulations in order to develop new phenotypes with a
higher biotechnological potential (Ademakinwa et al., 2017).
At present, the main methodologies for strain improvement
include: (1) adaptive laboratory evolution (ALE), (2) random
mutagenesis, and (3) genetic engineering. ALE is based on the
natural selection of specific populations that acquire beneficial
mutations under the pressure of prolonged stress conditions
(light, pH, salinity). Such strategy is a powerful tool to yield
phenotypes with interesting features such as faster growth and
higher lipid content, even when genomes and metabolic pathways
are unknown (Arora et al., 2020). In the context of PUFA
production, ALE approach has been applied to different species
and revealed promising results. Sun et al. (2018) carried out
a two-factor ALE experiment based on prolonged cultivation
of Schizochytrium sp. under culture manipulations known to
increase PUFA content and to affect antioxidant production, such
as low temperature and high salinity (Jahnke and White, 2003).
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One of the end point strains exhibited higher DHA content
and lower levels of ROS species compared to parental strains
coupled to an increase of gene expression levels of antioxidant
enzymes and PKSs (Sun et al., 2018). A high-lipid producing
C. cohnii strain was obtained using a chemical modulator-based
ALE approach by Diao et al. (2019). Specifically, the addition of
sethoxydim, an inhibitor of acetyl-CoA carboxylase, resulted in
the accumulation of DHA as well as total lipids by about 90% and
50%, respectively (Diao et al., 2019).

Similarly to ALE approaches, random mutagenesis aims
at generating mutants with improved features through the
exposure of microalgal strains to chemical or physicals mutagens.
In Nannochloropsis sp., treatment with the mutagen ethyl
methanesulfonate promoted the formation of mutant strains with
a greater fatty acid content, although a strong decrease in EPA
fraction was also reported (Doan and Obbard, 2012). Conversely,
exposure to N-methyl-N-nitrosourea in N. oculata resulted in the
evolution of strains with a concomitant increase of the total fatty
acid and EPA fraction (Chaturvedi et al., 2004). A substantial
increase in EPA and DHA content (more than 30%) was obtained
after UV-light exposure in P. lutheri (Meireles et al., 2003a).
Similarly, the lipid productivity potential of Scenedesmus sp.
was improved through UV mutagenesis and H2O2 treatments
and an increase in lipid content by up to 55% was registered
in mutagenized Scenedesmus sp. compared to the native strain
(Sivaramakrishnan and Incharoensakdi, 2017).

The availability of microalgal genomes sequenced in the
last two decades (Keeling et al., 2014; Richter et al., 2020)
paved the road to genetic engineering approaches. Within
this context, direct targeting of enzymes involved in PUFA
biosynthesis has emerged as a promising approach to enhance
the EPA and DHA content in microalgae. To date, most
studies focus on a limited number of microalgal species for
which the genome has been fully sequenced; these include
P. tricornutum, Thalassiosira pseudonana and N. oceanica. The
most common strategy to enhance the accumulation of ω3-
PUFAs in microalgae aims at overexpressing the enzymes
involved in the 16 pathway (Adarme-Vega et al., 2012). The
single overexpression of endogenous 15 and 16-desaturases in
P. tricornutum resulted in an increase in EPA content by 58%
(Peng et al., 2014) and 48% (Zhu et al., 2017), respectively, along
with a general increase of other PUFAs. An eightfold increase
in DHA content was achieved in P. tricornutum through the
simultaneous expression of a 15-elongase and a 16-desaturase
from Ostreococcus tauri (Hamilton et al., 2014). Overexpression
of desaturase enzymes to enhance EPA content is also promising
for N. oceanica. Specifically, both the overproduction of a 15

or 112 desaturases led to an 25% increase in EPA per mole of
total fatty acids (Poliner et al., 2018), while the overexpression
of a 16 desaturase resulted in a remarkable increase of EPA
reaching up to 62 mg/g of dry weight (Yang et al., 2019).
In addition to desaturase enzymes, fatty acid elongases have
also been targeted to increase PUFA content. For example, the
overexpression of three different fatty acids elongases caused
a significant increase (2.3–4.3-fold) of DHA content during
the exponential growth phase (Cook and Hildebrand, 2016)
in T. pseudonana.

State of Art of Polyunsaturated Fatty
Acid Production From Protists
Because of the fundamental role of ω3-PUFAs for the correct
development and functioning of the human body, the global
demand for foods and food supplements enriched with this
class of fatty acids has undergone an extraordinary increase.
The global market of ω3-PUFAs was worth USD 2.49 billion
in 2019 with an expected annual increase of 7.7% until 20271.
At present, fish oils account for 79% of EPA and DHA
market value while C20−22 PUFAs from microalgae cover only
18% of the market value (Voort et al., 2017). Fish oils from
sustainable fisheries are very unlikely to meet the exponentially
growing PUFA demand in the future, and the use of alternative
PUFA sources is required. Moreover, marine pollutants such as
heavy metals and hydrocarbons can accumulate in fishes as a
result of biomagnification causing negative effects on human
health. Even though oils containing ω3-PUFAs of microalgal
origin are less competitive nowadays in terms of costs, several
aspects render microalgae culturing for ω3-PUFA production
promising. Among all, food and food supplements produced
from microalgae are suitable for both the vegetarian and the
vegan markets. To date, most of the microalgae-derived dietary
supplements available on the market are obtained from whole
dried cells of Arthrospira spp. (formerly known as Spirulina
spp.) and Chlorella spp. and the producers are located mainly
in Asia and United States for Arthrospira spp., and in Asia
and Germany for Chlorella spp. (Enzing et al., 2014). Only in
recent years, producers have been focusing on single highly
valuable compounds such as DHA and EPA, that can be sold as
components of dietary supplements and food ingredients. DSM-
Martek Biosciences (United States) produces baby milk enriched
in DHA (>30%) from C. cohnii as well as food supplements
derived from Schizochytrium spp. with DHA >33 and 13.5%
of docosapentaenoic acid. Lonza Group (Switzerland) produces
oil capsules used as food supplement containing at least 43%
DHA among the total fatty acids while the Photonz Corp.
(New Zealand) has developed pharmaceutical grade EPA oil from
Nitzschia laevis (Calado et al., 2018).

FATTY ACID DERIVATIVES FROM
MICROALGAE, BIOSYNTHETIC
PATHWAYS AND BIOTECHNOLOGICAL
APPLICATIONS

In addition to being essential primary metabolites, fatty acids can
also enter different metabolic pathways forming a wide range of
secondary metabolites (Figure 2). Fatty acid derivatives possess
additional points of functionalization along the alkyl chain
mostly corresponding to hydroxy, keto, and epoxy functional
groups, and the carboxyl end group might also undergo
modifications (Millar et al., 2000).

Fatty acid derivatives have drawn great attention for a
number of biotechnological applications and can make up

1https://www.grandviewresearch.com/industry-analysis/omega-3-market
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FIGURE 2 | Chemical structure of different fatty acid derivatives of microalgal origin: (A) 15-OH-C20 :5ω3 (15-HEPE), an oxylipin from Nannochloropsis gaditana
resulting from EPA oxidation (de los Reyes et al., 2014); (B) C37 :3 methyl alkenones from Emiliania huxleyi (Volkman et al., 1980); (C) 13-OH-C30 :0 and (D) C32 :0

1,15 diol from Nannochloropsis spp., likely resulting from a PKS-catalyzed incomplete fatty acid elongation (Balzano et al., 2019).

sustainable alternatives to petroleum-based lipids (Table 2).
The presence, within algal biomass, of highly reduced fatty
acid derivatives can increase the overall combustion enthalpy
thus improving the biofuel potential. In addition, hydroxy fatty
acids can also improve the lubricant properties, and, along
with other fatty acid derivatives, can be valuable substrates
for several industrial applications (Mubofu, 2016) because of
their additional functionalization points conferring them higher
reactivity compared to non-functionalized fatty acids (Hou
et al., 1999; Millar et al., 2000; Napier, 2007). Aliphatic lipids
containing multiple functionalization points have, in general,
drawn great attention from the chemical industry since they can
be used as alternative substrates for the production of sustainable
biomaterials. Finally, a number of fatty acid derivatives are
biotechnologically interesting for their potential exploitation in
pharmaceutical and cosmeceutical field.

Oxylipins
The term oxylipins refers to a wide group of lipid metabolites
deriving from the oxygenation of PUFAs. Oxylipins act as
chemical signal mediators in a variety of ecological and
physiological processes. They exert detrimental effects on
copepod reproduction impairing the egg hatching success as
well as the embryo and larval development (Poulet et al., 1995;
Miralto et al., 1999; Fontana et al., 2007b). In addition to their
harmful role on grazers, oxylipins can also act as chemical
messengers of unfavorable conditions within phytoplankton

communities regulating diatom population density through the
activation of apoptosis-like processes (Ribalet et al., 2007).
Oxylipins are not detectable in intact cells but they are generally
released after cell damages typically caused by grazing activities
(Jüttner et al., 2001).

Oxylipins encompass a broad diversity and are classified in
two categories: short-chain polyunsaturated aldehydes (PUAs),
and non-volatile oxylipins. PUAs are present only in few
diatoms and four major compounds have been reported to
date: decadienal, octadienal, octatrienal, and heptadienal (Miralto
et al., 1999; d’Ippolito et al., 2005; Wichard et al., 2005). Non-
volatile oxylipins occur instead in most diatom species and
are defined as fatty acid derivatives with a molecular weight
higher than PUAs carrying hydroperoxy-, hydroxy-, keto-, oxo-,
and hydroxy-epoxy functionalities (Figure 2). Several ecological
functions have been hypothesized for non-volatile oxylipins but
their exact role is not fully clear. Chaetoceros didymus can release
a series of hydroxylated EPAs that inhibit the cell growth of
the lytic algicidal bacterium Kordia algicida allowing diatoms to
survive and to dominate the phytoplankton community in the
presence of algicidal bacteria (Meyer et al., 2018).

Oxylipins are formed after the oxidation of one or more
double bonds in PUFAs catalyzed by lipoxygenase enzymes
(de los Reyes et al., 2014; Nanjappa et al., 2014). Most PUAs
result from the oxidation of EPA; for example, decatrienal
and heptadienal are biosynthesized after the oxidation of the
EPA double bonds at the 11th and 14th positions, respectively
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TABLE 2 | Microalgal fatty acid derivatives of biotechnological interest.

Compound class Potential
biotechnological
applications

Compound Main Microalgal producers References

Alkenones Biofuels C37 :3 methyl alkenone Gephyrocapsa huxleyi, Gephyrocapsa
oceanica, Isochrysis sp.

Bakku, 2018

Sunscreens C37 :2 methyl alkenone Isochrysis sp. Huynh et al., 2019

Lipsticks C37 :2 methyl alkenone Isochrysis sp. Huynh et al., 2020

Phase-change
materials (PCMs)

C38 :2 ethyl alkenone Isochrysis sp. O’Neil et al., 2019

Jet fuel C38 :3 ethyl alkenone Isochrysis sp. O’Neil et al., 2015

Hydroxy fatty acids Lubricants 13-OH-C30 :0, 15-OH-C32 :0 Nannochloropsis sp. Mubofu, 20161

Tricleocarpa jejuensis Zha et al., 2020

Skin moisturizers Pediastrum duplex Yarkent et al., 2020

Chlamydomonas reinhardtii

Chlorella pyrenoidosa

Cyanidium caldarium

Long chain diols Biopolymer synthesis C30 diols Nannochloropsis sp. Balzano et al., 2019

C28−30 diols Proboscia sp. Volkman et al.,
2018

C28−32 diols Apedinella radians Zhang and
Volkman, 2017

Oxylipins Anti-inflammatory and
anticancer drugs

13-OH-C18:2, 13-OH-C18:3 Chlamydomonas debaryana Ávila-Román et al.,
2016

15-OH-C20:5 Nannochloropsis gaditana de los Reyes et al.,
2014

2E,4E-decadienal,
2E,4E/Z,7Z-decatrienal
2E,4E-heptadienal,
2E,4E-octadienal

Thalassiosira Rotula, Skeletonema
costatum, Pseudo-nitzschia
delicatissima

Miralto et al., 1999;
Cutignano et al.,
2011

1This study is related to castor oil that is a hydroxy fatty acid shorter than microalgal hydroxy fatty acids.

(Figure 3) and then converted in PUAs by the hydroperoxide
lyases (d’Ippolito et al., 2006). The insertion of the hydroperoxide
group in different positions by the LOX enzymes and the
subsequent downstream reactions contribute to the production
of a broad diversity of oxylipins (Lamari et al., 2013; Nanjappa
et al., 2014). The biosynthesis of oxylipins is triggered by
the release of PUFAs from membrane lipids. These free fatty
acids then undergo the addition of a hydroperoxide group
catalyzed by lipoxygenases enzymes (LOXs) in correspondence
of a double bond, resulting in the formation of fatty acid
hydroperoxide intermediates (Jüttner et al., 2001; Cutignano
et al., 2011).

At present, oxylipins are considered biomolecules with
potential therapeutic applications due to their anticancer, anti-
inflammatory, and antimicrobial properties. The first evidence on
the anticancer potential of oxylipins was documented by Miralto
et al. (1999). Specifically, diatom oxylipins, the 2E,4E-decadienal
and the 2E,4E/Z,7Z-decatrienal exhibit antiproliferative and
apoptotic activities in human colon adenocarcinoma cell lines
Caco-2 (Miralto et al., 1999). In addition to anticancer properties,
several studies reported evidence of the anti-inflammatory
beneficial effects of different oxylipins. A series of hydroxy
C16 and C18 PUFAs isolated from Chlamydomonas debaryana
and a C20 hydroxy acid from Nannochloropsis gaditana were
shown to inhibit the production of the potent pro-inflammatory

cytokine tumor necrosis factor α (TNF-α) which is released by
monocytes and macrophages during inflammatory processes (de
los Reyes et al., 2014). Similarly, oral administration of oxylipin-
rich biomass from C. debaryana exhibited anti-inflammatory
properties in an induced murine recurrent colitis model. It
was reported a decrease in pro-inflammatory cytokines TNF-α,
the interleukins (ILs) IL-1β, IL-6, and IL-17, a decrease in the
level of inducible nitric oxide synthase (iNOS), cyclooxygenase
2 (COX-2) and NF-κB, as well as an increase of the anti-
inflammatory transcription factor PPAR-γ (Ávila-Román et al.,
2016). Subsequently, Ávila-Román et al. (2018) proposed a
molecular mechanisms responsible for the anti-inflammatory
effects of the major oxylipins produced by C. debaryana
and by N. gaditana. First, the 13-OH-C18:3, and the 13-OH-
C18:2, from C. debaryana as well as the 15-OH-C20:5 from
N. gaditana enhance PPAR-γ nuclear translocation. In parallel,
they also lower the activation of the transcription factor NFκB,
thus resulting both in the inhibition of the transcription
inflammatory genes iNOS and COX-2, and in a decrease in the
production of the inflammatory molecules TNF-α, IL-1β, IL-6,
IL-8 (Ávila-Román et al., 2018).

Alkenones
Another group of fatty acid derivatives of microalgal origin
are the alkenones, that are polyunsaturated C36−40 ketones
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FIGURE 3 | Biosynthetic pathways for (A) decatrienal and heptadienal, two common oxylipins produced by diatoms and (B) three classes of lipids produced by
Nannochloropsis spp. and other Eustigmatophyceae: long chain hydroxy fatty acids (LCHFAs), long chain diols (LCDs), and long chain alkenols (LCAs). End
products are in bold whereas enzyme names, where known, are underlined and shown next to the arrows. LOX, lipoxygenase; HPL, hydroperoxide lyase; PKS,
polyketide synthase; FAE, fatty acid elongase; HAD, hydroxyacyl dehydratase. Figures redrawn from (A) Fontana et al. (2007a) and (B) Balzano et al. (2019).

possessing 2 to 4 trans double bounds and a methyl or ethyl
keto group in terminal position (Volkman et al., 1980; Marlowe
et al., 1984). To date, these unique lipids have been detected in
four genera of Haptophyta: Gephyrocapsa, Isochrysis, Tisochrysis,
and Chrysotila (Volkman et al., 1980; Marlowe et al., 1984).
Different environmental factors such as salinity, temperature, and
nutrient availability influence the composition and the degree
of unsaturation. C37 and C39 alkenones (Figure 2) with two
or three double bonds are the most abundant alkenones in
marine and lacustrine environments and are mainly produced by
Gephyrocapsa huxleyi (formerly known as Emiliania huxleyi) and
Gephyrocapsa oceanica (Volkman et al., 1980; Cranwell, 1985;
Conte et al., 1995; Sawada et al., 1996). The cellular concentration
of alkenones has been found to increase during the stationary
phase of algal growth (Epstein et al., 2001; Eltgroth et al.,
2005), under nitrogen deprivation (Bakku, 2018), and to decrease
under prolonged darkness (Epstein et al., 2001; Eltgroth et al.,
2005), suggesting that alkenones play a role as storage lipids. In
agreement with the hypothesis, several studies demonstrated that
alkenones are stored inside lipid bodies in T. lutea, I. galbana,
and G. huxleyi (Eltgroth et al., 2005; Shi et al., 2015). The ratios
among different alkenones in the sediment have been shown to
reflect ancient seawater temperatures (Müller and Fischer, 2004),
hence the dynamics of these lipids have been investigated by a
range of geochemical studies (Volkman et al., 2018).

Little is known about the biosynthesis of alkenones.
Since alkenone concentration was found to increase under
nitrogen-deprivation (Eltgroth et al., 2005; Tsuji et al., 2015;
Weiss et al., 2019), and their degree of unsaturation varies
at changing temperatures (Araie et al., 2018) analogously to

fatty acids, they have been suggested to be produced in the
chloroplasts and to be formed from fatty acids. Since alkenones
attract also biotechnological interest, current research is focusing
on delineating the biosynthetic pathways of such compounds
and to develop genetically engineered strains with increased
alkenone concentrations2. Alkenones were tested as sustainable
wax components alternative to commercially available waxes
for a series of cosmeceutical and personal care products. The
addition of alkenones to sunscreens has been shown to improve
protection from sunlight-associated UVs without increasing
the apparent viscosity of the sunscreen, thus exhibiting a
performance similar to that of commercially available waxes
(Huynh et al., 2019). In addition, alkenones were also evaluated
as structuring agents for lipsticks. Lipsticks with the highest
alkenone content (7%) exhibited the most desirable attributes
including ease of bending, high level of firmness, low pay-off in
terms of amount, high color intensity on skin and low friction
(Huynh et al., 2020).

Another potential application of alkenones relates to phase-
change materials (PCMs). PCMs are substances that are able
to absorb and release large quantities of energy while they
undergo a sharp temperature change. They are commonly
used for thermal insulation in commercial applications in
which stable temperature and/or energy storage conditions are
required; PCMs are typically manufactured using petroleum-
derived paraffin waxes. Alkenones possess thermal properties that
are relevant for the development of renewable PCMs (O’Neil
et al., 2019). O’Neil et al. (2019) evaluated the thermal properties

2http://plmet.biol.tsukuba.ac.jp/crest-en.html
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of alkenones isolated from Isochrysis sp. and found a greater
thermal stability and a similar latent heat of fusion compared to
commercial PCMs.

Alkenones are also considered as lipids suitable for biofuel
development. Although alkenones cannot be used directly for
biofuel production because of their high boiling points (>60◦C)
compared to TAGs, the possible advantages of alkenones
include the greater stability against photo oxidation due to
the embedded trans double bond geometry (Rontani et al.,
2006) and the absence of the glycerol backbone (O’Neil et al.,
2014, 2015, 2019). Several attempts have been made to convert
alkenones in potential substrates suitable for the production of
renewable liquid fuels, these include the pyrolysis or butenolysis,
methodologies that lead to the formation of short chain
hydrocarbons like n-alkanes and jet-fuels (Wu et al., 1999; Bakku,
2018; O’Neil et al., 2019).

Waxes
Waxes are attracting the interest of the biotechnological industry
because of their high resistance to mechanical damages and
chemical degradation. They have been mostly studied in the plant
cuticle, a lipid layer that coats aerial organs providing protection
from desiccation.

Plant cuticle contains a biopolymer, known as cutin, and
a mixture of different waxes. Cutin consists of monomers of
ω- and mid-chain hydroxy and epoxy C16 and C18 fatty acids
cross-linked by ester bonds (Nawrath, 2002). Cuticular waxes
are a complex mixture of very long chain fatty acid (C20-
C34) derivatives that can be either ubiquitous or taxa-specific.
Ubiquitous waxes consist in fully saturated very long chain
alcohols, aldehydes, and fatty acids (Jetter et al., 2007). Dimers
of fatty acids and wax alcohols linked through ester bonds have
also been found (Samuels et al., 2008). Taxa-specific waxes instead
consist of fully saturated linear aliphatic chains with 29 or 31
carbons that may contain two alcohol or keto groups. In taxa-
specific waxes, the presence of one or more functional groups
gives rise to a greater structural diversity (Jetter et al., 2007).
In addition to plants, wax esters have been observed also in
mammals (Cheng and Russell, 2004), birds (Hellenbrand et al.,
2011), and insects (Teerawanichpan et al., 2010; Jaspers et al.,
2014; Tupec et al., 2017).

Within microalgae, wax esters have been found in the
genus Euglena. Euglena spp. can convert, under anaerobic
conditions, the storage polysaccharide paramylon to wax esters
through a unique mechanism known as wax ester fermentation
(Teerawanichpan and Qiu, 2010; Inui et al., 2017). The
resulting wax esters consist of a series of fully saturated
C10−18 fatty acids and alcohols, the most dominants being
the C14:0 fatty acid (myristic acid) and C14:0 fatty alcohol
(myristyl alcohol), that account for 44% and 47% of the
fatty acid and alcohol moieties of the wax esters, respectively
(Inui et al., 1983). Wax esters have also been suggested to
occur in the cell walls of some green algae. Cell wall lipids
of Neochloris oleoabundans mostly consist in palmitic and
stearic acids as well as fatty acids with >20 carbons (Rashidi
and Trindade, 2018), that are typically considered as the
precursors in the elongation pathways of cutins and waxes
(de Leeuw et al., 2006).

The biosynthesis of wax esters has been extensively
investigated in plants (Kunst and Samuels, 2009) as well as
in the honey bee Apis mellifera (Blomquist et al., 1980), but
little is known on microalgae. Even-numbered fatty acyl-CoAs
possessing up to 38 carbons can be formed, serving as precursors
for wax biosynthesis (Busta and Jetter, 2017). Analogous to
de novo fatty acid biosynthesis, the FAE complex catalyzes the
formation of VLCFAs through four enzymatic reactions leading
to the addition of two carbon units to the growing acyl-CoA
chain. While carbon units are added as malonyl-ACP to the
elongating acyl chain in FAS-based pathways, FAE enzymes use
malonyl-CoA as carbon donor (Samuels et al., 2008).

For the biosynthesis of wax components, fatty acids can
undergo head group modifications through two different
processes: the decarbonylation and the acyl reduction
pathways (Kunst and Samuels, 2003; Samuels et al., 2008).
The decarbonylation pathway is a two-step process in which
fatty acid reduction leads to the formation of even-numbered
aldehydes that, in the second step, the carbonyl group is cleaved
generating odd-chain alkanes (Bernard et al., 2012). Alkanes can
be eventually hydroxylated to form odd-numbered secondary
alcohols and the hydroxy group can be further oxidized to form
ketones. The acyl reduction pathway consists in the reduction
of the carboxylic group to an alcohol group catalyzed by the
fatty acyl-CoA reductase (FAR) followed by the a reaction
between the resulting alcohols and a fatty acyl-CoA catalyzed
by a wax ester synthase (WS) to form alkyl esters (Li et al.,
2008). Similarly to multicellular organisms, the reduction of
fatty acids to alcohols by a FAR, followed by the reaction of
the fatty alkyl ester formation catalyzed by a WS, has been
documented in microalgae such as E. gracilis (Teerawanichpan
and Qiu, 2010) and P. tricornutum (Cui et al., 2018). Based on
similarities with the WS from P. tricornutum, genes coding for
WS enzymes have been also predicted in the genomes of other
heterokonts (Aureococcus anophagefferens, N. gaditana) as well
as green algae from the genera Micromonas, Ostreococcus, and
Bathycoccus (Cui et al., 2018) and the species N. oleoabundans
(Rashidi and Trindade, 2018) and Klebsormidium flaccidum
(Kondo et al., 2016). In contrast, the WS from E. gracilis differs
significantly from that of P. tricornutum exhibiting similarities
with bacterial WSs (Tomiyama et al., 2017). Current data suggest
that at least two independent pathways for WS biosynthesis
evolved in microalgae and wax esters are likely to be present in
several species.

Wax esters from Euglena are interesting for biofuel
production. In particular, the major constituents of Euglena
wax esters, the myristic acid and myristyl alcohol, are
particularly suitable as precursors for the synthesis of drop-
in jet fuel since they possess a lower freezing point/high cetane
number compared to C16−18 fatty acids (Klopfenstein, 1985;
Inui et al., 2017).

Long Chain Hydroxy Fatty Acids
(LCHFAs), Long Chain Diols (LCDs), and
Long Chain Alkenols (LCAs)
Different microalgal taxa, especially from the class
Eustigmatophyceae, possess C24−34 fatty acid derivatives that are
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functionalized at a mid-chain position. These compounds might
reveal suitable biofuel candidates as well as potential starters for
the industrial synthesis of polymers.

Occurrence in Microalgae
Eustigmatophyceae and, to a lesser extent, other heterokonts,
possess bifunctional C28−32 aliphatic lipids functionalized at the
end of the chain as well as at a mid-chain position (Volkman
et al., 1999a; Rampen et al., 2014a; Villanueva et al., 2014).
Gelin et al. (1997b) identified a series of C28−34 hydroxy fatty
acids with the hydroxy group in ω-18, and two dihydroxy fatty
acids, such as 15,16-(OH)2-C32 and 16,17-(OH)2-C33 in the
eustigmatophycean genus Nannochloropsis. The most abundant
long chain hydroxy fatty acids (LCHFAs) in Nannochloropsis
spp. are the 13-OH-C30:0 (Figure 2) and the 15-OH-C32:0 fatty
acids (Gelin et al., 1997b; Balzano et al., 2017). In addition,
Eustigmatophyceae produce two classes of compounds similar
to LCHFAs in terms of length and position of functionalization:
the long chain alkenols (LCAs) and the long chain diols (LCDs)
(Volkman et al., 1992, 1999a,b). The secondary functional group,
that is a hydroxy for LCHFAs and LCDs, and a double bond
for LCAs, occurs, in most cases, on the 13th or 15th position
for compounds with 30 carbons, and on the 15th position for
the C32 compounds. C32 diols are the most abundant LCDs in
Nannochloropsis spp. (Figure 2) whereas longer LCDs are present
at lower concentrations. Minor amounts of diols with an odd
number of carbons are also present in Nannochloropsis spp. and
are dominated by ω17 isomers (Volkman et al., 1992; Gelin et al.,
1997b; Mejanelle et al., 2003; Rampen et al., 2014a).

Long chain diols are also produced, along with structurally
similar hydroxy alkanoates, by diatoms from the genus
Proboscia. Sinninghe Damsté et al. (2003) found saturated and
monounsaturated C28 and C30 1,14-diols as well as 12-OH-
C27 and the 12-OH-C29 methyl alkanoates in the: Proboscia
indica and Proboscia alata. Diols and alkanoates were suggested
to have a common origin, deriving from the 12-OH-C26 and
the 12-OH-C28 fatty acids (Sinninghe Damsté et al., 2003;
Rampen et al., 2007). Although LCDs have not been detected
in other diatoms, as revealed by a screening on 120 strains
(Sinninghe Damste et al., 2004), few species from other classes of
heterokonts, such as Dictyochophyceae (Apedinella radians and
Florenciella parvula), Raphidophyceae (Heterosigma akashiwo
and Haramonas dimorpha), Chrysophyceae (Chrysosphaera
parvula), and Pelagophyceae (Sarcinochrysis marina) have been
found to contain LCDs (Rampen et al., 2011; Balzano et al.,
2018). This suggests that all the heterokonts might have evolved
the ability to biosynthesise LCDs and LCHFAs and that such
ability has been lost in most cases. In addition to heterokonts,
green and red algae have been occasionally shown to contain
hydroxy fatty acids. Specifically 3-hydroxy fatty acids were
found in Pediastrum duplex, C. reinhardtii, Chlorella pyrenoidosa,
and Cyanidium caldarium (Matsumoto and Nagashima, 1984;
Yarkent et al., 2020) and mid-chain functionalized mono- and
di-C22−26 hydroxy fatty acids were detected in the zygospores
of Chlamydomonas monoica (Blokker et al., 1999). The red
seaweed Tricleocarpa jejuensis contains mid-chain hydroxy C18:1
with algicidal properties (Zha et al., 2020) whereas ω-hydroxy

fatty acids have been found in Chlorella emersonii, Tetraedron
minimum, and Scenedesmus communis (Allard et al., 2002). ω-
and mid-chain C30−34 hydroxy fatty acids have been identified in
T. minimum, S. communis, and Pediastrum boryanum (Blokker
et al., 1998). The presence of mid-chain hydroxylated fatty acids
and diols in phylogenetically distant taxa such as heterokonts and
Archaeplastida, suggests that either the ability to biosynthesise
diols resulted from convergent evolution or many other taxa are
likely to be able to biosynthesise these compounds.

The ability of other phytoplankters to biosynthesise these
compounds is also suggested by the widespread occurrence of
LCDs in sediments and suspended particulate matter of aquatic
environments (Sinninghe Damsté et al., 2003; Rampen et al.,
2007, Rampen et al., 2012, 2014b; Lattaud et al., 2017). In
particular, the major marine biological sources are still unclear;
while the most abundant LCD in the environment is the C30:0
1,15 diol, the two main diols produced by Nannochloropsis spp.,
C32:0 and C32:1 1,15 diols (Volkman et al., 1992; Rampen et al.,
2014a), are absent or present at low concentrations in marine
suspended particulate matter and marine sediment (Rampen
et al., 2007; de Bar et al., 2016; Lattaud et al., 2017). Furthermore,
the contribution of Eustigmatophyceae, Proboscia spp. as well as
other known LCD-producers to marine microbial communities
is negligible (de Vargas et al., 2015; Tragin et al., 2018) suggesting
that most LCDs in the marine environment result from debris
that derive, in turn, from other species of marine or freshwater
origin (Balzano et al., 2018). The scattered occurrence of LCDs
within heterokonts, along with their widespread presence in the
marine environment, suggest that one or more unknown LCD
producers are likely to account for a significant portion of the
marine microalgal biomass.

Biosynthesis of Long Chain Diols, Long Chain
Alkenols, and Long Chain Hydroxy Fatty Acids in
Nannochloropsis spp.
LCHFAs from Nannochloropsis spp. are unlikely to result from
in-chain hydroxylation since the secondary hydroxy groups
occur at a constant ω-18 distance from the methyl end (Gelin
et al., 1997b) and their cellular abundance has been found to
be significantly correlated with that of C14−18 fatty acids, in
laboratory cultures (Balzano et al., 2017). Furthermore, structural
similarities in carbon chain length and position of the functional
groups indicate a common biosynthetic pathway for LCHFAs and
LCDs in Nannochloropsis spp. (Gelin et al., 1997a).

The combination of stable isotope labeling with culturing
experiments followed by transcriptome analyses in N. oceanica
and N. gaditana highlighted that C18, and to a lesser extent the
C16 fatty acids, are likely to undergo an incomplete fatty acid
elongation cycle leading to the formation of a 3-OH C18−20
fatty acids (Balzano et al., 2019). This reaction is likely to be
catalyzed by a PKS enzyme that possesses both the KS and the
KR domains but lacks the HD and ER domains. Subsequently,
the resulting 3-OH-C18−20 fatty acids can undergo five or six full
elongation cycles, potentially catalyzed by the FAE enzymes, to
form the 13-OH-C30:0 and 15-OH-C32:0 fatty acids (Figure 3),
that are the two major LCHFAs in Nannochloropsis spp. (Balzano
et al., 2019). The carboxylic group of LCHFAs is then likely to be
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reduced to alcohol to form LCDs, whereas the formation of LCAs
would involve the dehydration of the intermediate hydroxy group
occurring either before or after the reduction of the terminal
carboxylic group (Balzano et al., 2019). Similarly to N. oceanica
and N. gaditana, PKS enzymes possessing only the KS and KR
domains are also present in P. alata, and might be involved in the
biosynthesis of diatomaceous LCDs (Balzano et al., 2019).

Long Chain Diols and Long Chain Alkenols as Cell
Wall Building Blocks
LCDs and LCAs are refractory to degradation and can persist in
the environment for long periods (Rodrigo-Gamiz et al., 2016).
In addition, both LCAs and LCDs are thought to be strongly
bound between each other and with other lipids forming the
algaenans, that are acid and base-resistant aliphatic polymers
present in Eustigmatophyceae (Gelin et al., 1996, 1999; Scholz
et al., 2014; Zhang and Volkman, 2017) as well as in some
green algae (Blokker et al., 1999; Allard et al., 2002; Kodner
et al., 2009). Algaenans are thought to share chemical similarities
with sporopollenin, a polymer making the outer layer of pollen.
Fourier transform infrared spectroscopy analysis on N. gaditana
cell walls revealed that LCDs and LCAs are mainly bound via
ether cross-links. Minor amount of C=O stretches were also
detected in algaenans and are likely to correspond to keto, ester
or carboxylic functional groups of long-chain keto-ols, LCHFAs,
and dihydroxy fatty acids (Scholz et al., 2014). Stepwise pyrolysis
of N. oculata biomass confirmed that algaenans are likely to
consist mostly in ether-bound LCDs (Zhang and Volkman, 2017).
Fatty acid derivatives from green algae are also thought to be the
building blocks of cell wall polymers. A structure similar to that of
Nannochloropsis algaenans, but with greater proportions of ester-
bound hydroxy fatty acids, has been suggested for the algaenans
of green algae such as C. monoica, T. minimum, S. communis, and
Pediastrum boryanum (Blokker et al., 1998, 1999). In contrast,
algaenans from Botryococcus braunii mostly consist of aliphatic
aldehydes and unsaturated hydrocarbons (Simpson et al., 2003).
The outer layer of Chlorella protothecoides cell wall was also found
to contain algaenans (He et al., 2016).

Since lipid extraction techniques mostly used to analyze
fatty acid derivatives usually cleave ester linkages but are
ineffective toward ether-bound lipids, the cellular abundance
of eustigmatophycean LCDs, that are thought to be mostly
ether-bound, are likely to be significantly higher than those
typically measured. The incubation of N. oculata biomass in
the dark, under aerobic conditions, resulted in a sharp increase
of LCDs after 100 days, confirming that LCDs can derive
from algaenan degradation (Reiche et al., 2018). The chemical
structure of algaenans still requires to be fully elucidated, but
their high stability against chemical and biological degradation
makes these compounds promising for the development of
sustainable materials.

Biotechnological Applications
Hydroxy fatty acids exhibit an interesting biotechnological
potential for several applications. At present, the only commercial
sources of hydroxy fatty acids are plant-derived castor and
lesquerella oils, that are rich in 12-OH-C18:1ω9 (ricinoleic acid,

RA) and 14-OH-C20:1ω9 (lesquerolic acid, LA), respectively.
Both castor and lesquerella oils have been investigated for their
biofuel potential (Berman et al., 2011; Knothe et al., 2012)
revealing as potential alternatives to petroleum-based fuels. Fatty
acid derivatives such as alkenones, LCHFAs, LCAs, and LCDs are
longer than C16−20 fatty acids and have a larger proportion of
methylene groups over the total number of carbons, resulting in
a greater combustion enthalpy (Balzano et al., 2019). In addition,
the functionalized carbons in LCAs and LCDs are more reduced
than the carboxylic groups of fatty acids, and thus contain more
energy. This suggests a great biofuel potential for microalgal
biomass enriched in both TAGs and fatty acid derivatives. In
particular, since Nannochloropsis spp. are already considered as
suitable biofuel candidates, enhancing their content in LCDs,
LCAs, and LCHFAs can lead to an increase in the combustion
enthalpy of the resulting biomass.

In addition, methyl esters of castor and lesquerella oils were
indeed found to be more efficient as lubricants compared to
methyl esters from commercially available vegetable (rapeseed
and soybean) oils, when added to reference fuels at low
concentrations (<1.0%) (Goodrum and Geller, 2005). In addition
to castor and lesquerella oil, recent studies evaluated the lubricant
properties of Orychophragmus violaceus seed oil, which is
rich in 7,18-(OH)2-C24:1ω9 (nebraskanic) and the 7,18-(OH)2-
C24:2ω3ω9 (wuhanic) acids. Experiments of friction reduction
and wear of sliding steel surfaces demonstrated a friction
decrease by 20%, lower wear and higher temperature stability
for O. violaceus oil over castor oil (Li et al., 2018). Similarly
to hydroxy fatty acids from plants, the presence of small
amounts of LCHFAs, within lipid-enriched Nannochloropsis
biomass is likely to improve the lubricity of the resulting
biofuel. The presence of small amounts of LCHFAs, potentially
increasing the combustion enthalpy and improving the lubricant
properties of the transesterified algal biomass, is likely to make
Nannochloropsis spp. one of the most suitable candidates for
biofuel development in the coming years.

Fatty acid derivatives with secondary functional groups might
also reveal as suitable starters for the industrial synthesis of
biopolymers, cosmetics, and additives in coatings and paintings.
Most research on sustainable materials from fatty acid derivatives
focuses on plant lipids and very little research has been carried
out on microalgae. Currently RA and LA are the compounds
mostly investigated by the biotechnological industry for this
purpose. They have been directly tested as fuel lubricants
(Goodrum and Geller, 2005) as well as starters for the synthesis
of different kinds of lubricants (Cermak et al., 2013). Estolides
are long chain esters deriving from hydroxy acids (Yoshida et al.,
1997; Cermak et al., 2013), and estolides of both RA and LA
possess striking properties as lubricants such as extremely low
pour point (−54◦C) and high flash point (>300◦C), revealing
advantageous alternatives to commercial oils (Cermak et al.,
2006; Salimon et al., 2011).

Hydroxy fatty acids are also highly suitable for the chemical
modifications required during the industrial synthesis of
polyester and polyurethane. RA has been tested for the synthesis
of segmented polyurethanes, a class of copolymers consisting
of alternating hard segments, that provide rigidity and strength
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through cross-links, and soft segments that confer elasticity. Soft
segments are usually prepared from polyethers or polyesters
while hard segments consist in a diisocyanate and a chain
extender, typically a short diol (Petrovic et al., 1991, 2010;
Sharmin and Zafar, 2012). Soft components can be synthetized
from polycondensation of two RA molecules through ester link
between the terminal hydroxy groups, resulting in the formation
of the polyester diols (Xu et al., 2008; Miao et al., 2014).
Polyricinoleic acid is an estolide of RA of natural or synthetic
origin (Bodalo-Santoyo et al., 2005). Petrovic et al. (2010) tested
the biodegradability of a segmented polyurethane consisting in
soft segments of polyricinoleic acid at different concentrations
(40 to 70%), diphenyl methane diisocyanate and butane diol
hard segments. The study revealed that polyurethanes based
on polyricinoleic acid degrade faster than the corresponding
petrochemical polyurethanes and that the degradation rate
of such polyurethanes increases at increasing proportions of
polyricinoleic acid (Petrovic et al., 2010). Moreover, RA can react
also with different organic molecules to form other polymers with
biotechnological properties (Miao et al., 2014). For example, the
incorporation of RA into polylactic acid results in the formation
of a polymer with improved pliability, hydrophobicity and
softness (Slivniak and Domb, 2005). RA encounters applications
also in Biomedical Sciences. For example it has been used,
in combination with decanedioic acid (sebacic acid), to form
the poly(ricinoleic acid-co-sebacic acid), a polymer that can be
potentially used for drug delivery (Slivniak and Domb, 2005).

RA and LA can be thus used as precursors for a number
of synthetic processes. Within this context, LCHFAs from
microalgae are structurally similar to RA and LA, suggesting their
possible use as starters for the industrial synthesis of biomaterials.
The greater biomass productivity of microalgae compared to
terrestrial plants suggests that the industrial production of
LCHFAs might reveal advantageous. Although LCHFAs typically
account for a tiny proportion of microalgal lipids and their
aliphatic chain can be longer than those of RA and LA, potentially
differing in their chemical behavior, genetic manipulations of
the enzymes coding for LCHFAs might lead to the biosynthesis
of shorter products as well as enhanced LCHFA yield within
algal biomass. Because of its biotechnological potential, a full
understanding of the biosynthetic mechanisms of LCHFAs is
highly desirable.

State of Art of Microalgal Fatty Acid
Derivatives
Although fatty acid derivatives from microalgae encounter little
applications compared to aliphatic lipids from plants (e.g.,
RA, waxes) to date, the extraordinary diversity of microalgae
makes their metabolites at least as much promising as plant
products for the production of environmentally sustainable
fuels, biomaterials, as well as pharmaceutical, nutraceutical,
and cosmeceutical products. In contrast with saturated and
unsaturated fatty acids, microalgae typically exhibit a very poor
content in fatty acid derivatives. For example, the LCD content
in Nannochloropsis spp. can be up to two orders of magnitude
lower than that of EPA (Reiche et al., 2018) or monounsaturated

and saturated fatty acids (Balzano et al., 2017). The production of
substantial amounts of fatty acid derivatives in microalgae is thus
more time consuming and risks being economically unviable.
Culturing strategies aimed at increasing the microalgal content
in fatty acid derivatives (Table 3) can contribute yielding larger
proportions of specific products but might still reveal insufficient
for a viable exploitation.

To date, large scale production of microalgae is still limited
by several challenges that make massive culturing economically
unviable. First, only a tiny fraction of microalgae, within a culture,
are directly exposed to sunlight or artificial light, while they
generate a shading effect toward the other cells of the culture.
In addition, strong light exposure generates photooxidation,
this lowering carbon fixation rates. It has been shown that
photosynthetic efficiency is ≤1.2% in open raceway ponds and
lower in photobioreactors and other culturing systems, such
that most of the sunlight hitting the cultures is not used for
photosynthesis but rather lost as heat (Grobbelaar, 2012). In
addition, a more severe limitation to microalgal mass culturing
is associated with harvesting costs (Khan et al., 2018). Microalgae
can be collected from liquid cultures by filtration, flocculation,
or centrifugation and any of these three techniques implies
significant costs when applied to large scale cultures. In spite of
its great potential for mass culturing, the small size (3–4 µm)
and the presence of lipid droplet leading to a lower density,
make harvesting of Nannochloropsis spp. even more complicate
compared to other microalgae (Chua and Schenk, 2017). Finally,
compounds of interest are to be extracted from the microalgal
biomass and the extraction process might reveal expensive, time-
consuming, and require the use of toxic chemicals. The extraction
of fatty acids and fatty acid derivatives from Nannochloropsis
spp. is complicated by the presence of a rigid cell wall. The
presence of an inner cellulose layer and an outer algaenan
layer makes Nannochloropsis cells harder to lyse compared
to diatoms or green algae (Chen et al., 2016). Overall, in
spite of the promising features of microalgal mass culturing,
several issues are to be solved to make large scale cultivation
economically viable and environmentally safe. To date, with the
exception of very highly valuable compounds, for which even
the production of tiny amounts can reveal economically feasible,

TABLE 3 | Strategies that can potentially increase the content of fatty
acid derivatives in microalgal cultures.

Compound Species Culturing
manipulations

References

Alkenones Gephyrocapsa
huxleyi, Isochrysis
galbana

Nitrogen
deprivation

Epstein et al., 2001;
Eltgroth et al., 2005

Hydroxy fatty
acids

Nannochloropsis
oceanica

High light intensity Balzano et al., 2017

Diols Nannochloropsis
oceanica

Prolonged
darkness

Balzano et al., 2019

Oxylipins Mixed diatom
biofilm

Zooplankton
grazing

Jüttner et al., 2001

Waxes Euglena gracilis Anaerobic
conditions

Inui et al., 2017
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the use of microalgal products for biotechnological applications
requires that the cellular concentrations of such products are
further enhanced. Genetic manipulations aimed at modifying the
enzymatic machinery that drives specific pathways in order to
enhance the rate of biosynthesis, might contribute increasing the
cellular concentration of fatty acid derivatives.

CONCLUDING REMARKS

Increasing concerns on both environmental pollution and limited
availability of fossil fuels and raw materials contributed to
shift the attention of the biotechnological industry towards the
development of biofuels. Fatty acid derivatives such as alkenones,
LCHFAs, LCAs, and LCDs are longer than C14−20 fatty acids and
contain larger proportions of methylene groups over the total
number of carbons, resulting in a higher combustion enthalpy
(Balzano et al., 2019). In addition, the functionalized carbons in
LCAs, LCDs, and alkenones are more reduced, and thus contain
more energy, compared to the carboxylic groups of fatty acids.
This suggests a great biofuel potential for microalgal biomass
enriched in both TAGs and fatty acid derivatives. In addition,
fatty acid derivatives from microalgae can potentially encounter a
number of applications such as fuel additives and starters for the
industrial synthesis of different polymers.

Because of the relative easiness of culturing microalgae,
large scale culturing for the production of microalgal-derived
compounds can be a concrete alternative to traditional plants
products. The production of microalgal specialty compounds
such as fatty acid derivatives at industrial scale is limited
by the low proportions of such compounds over the total
microalgal biomass. Appropriate culturing manipulations may
yield microalgal biomass enriched in specialty compounds,
but large scale production might still reveal unviable. Genetic
engineering coupled with culturing manipulations can lead
to higher proportions of specialty compounds. Moreover,
massive culturing needs to focus on multiple products, and
the bulk biomass remaining after the extraction of specialty
compounds can also to be exploited for other purposes. For
example, the extraction of both fatty acid derivatives and PUFAs
from microalgal biomass, combined with the exploitation of

the unextracted residue for biofuel production might reveal
suitable for scale-up.

The use of microalgae for the production of biotechnologically
relevant compounds can also be coupled with their
bioremediation potential (Mata et al., 2010). Microalgae have
been successfully used for the removal of nutrients (Lei et al.,
2018; Bellucci et al., 2020) and heavy metals (Kumar et al., 2015)
from contaminated waters and such processes can be coupled
with the production of specialty compounds such as fatty acid
derivatives. In this context, several studies coupled contaminant
removal from polluted waters with biomass production for
biodiesel development. Chlorella kessleri and Chlorella vulgaris
cultivated in urban wastewaters exhibited an efficient removal of
nitrogen and phosphorus (>95%) and the resulting biomass was
found to be a suitable starter for the production of both biodiesel
and methane after transesterification, and anaerobic digestion,
respectively (Caporgno et al., 2015). Patidar et al. (2015)
investigated the biodiesel production and metal accumulation
in naturally floating microalgae collected from an eutrophic
lagoon during different seasons. Highest heavy metal removal
occurred in the pre-monsoon season and the obtained biodiesel
exhibited properties that met the European biodiesel standards.
Current studies based on combining pollutant removal with the
production of specialty compounds are thus promising for the
development of industrial processes economically viable and
environmentally sustainable.
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