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Abstract: Breast cancer (BC) is a highly heterogeneous disease. The treatment of BC is complicated
owing to intratumoral complexity. Tissue biopsy and immunohistochemistry are the current gold
standard techniques to guide breast cancer therapy; however, these techniques do not assess tumoral
molecular heterogeneity. Personalized medicine aims to overcome these biological and clinical com-
plexities. Advances in techniques and computational analyses have enabled increasingly sensitive,
specific, and accurate application of liquid biopsy. Such progress has ushered in a new era in precision
medicine, where the objective is personalized treatment of breast cancer, early screening, accurate
diagnosis and prognosis, relapse detection, longitudinal monitoring, and drug selection. Liquid
biopsy can be defined as the sampling of components of tumor cells that are released from a tumor
and/or metastatic deposits into the blood, urine, feces, saliva, and other biological substances. Such
components include circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or circulating
tumor RNA (ctRNA), platelets, and exosomes. This review aims to highlight the role of liquid biopsy
in breast cancer and precision medicine.

Keywords: liquid biopsy; precision medicine; breast cancer

1. Introduction

Breast cancer (BC) is the most prevalent cancer in women worldwide [1]. Cancer is
a complex and heterogeneous disease modulated by genetic, molecular, cellular, tissue-
specific, environmental, ethnicity-related, and socioeconomic factors. Because of its global
prevalence, many researchers have focused on gaining a better understanding of cancer
biology and developing innovative tools for the treatment and diagnosis of BC. Traditional
therapies include surgery, chemotherapy, radiotherapy, and immunotherapy [2]. However,
there are persistent challenges associated with current breast cancer therapies, such as
recurrence [3] and drug resistance [4], which may facilitate tumor metastasis [5,6] and
promote cancer progression [7]. An emerging cancer treatment regimen, namely, person-
alized medicine, is optimized based on a comprehensive understanding of a patient’s
individuality with respect to health status and disease stages. Precision medicine includes
the analysis of clinicopathological factors and “omics” analysis (genomics, transcriptomics,
metabolomics, and proteomics) [8,9].

Precision medicine aims to improve cancer diagnosis and treatment through molecular
information that aids in the identification of predictive markers that guide treatment deci-
sions, molecular subtype classification, monitoring of treatment response, and identification
of resistance and disease recurrence [10]. Liquid biopsy (LB) has the potential to address
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the need for personalized therapy through a non-invasive approach [11], and involves anal-
ysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating tumor
RNA (ctRNA), long non-coding RNAs (lncRNAs), messenger RNA (mRNA), microRNA
(miRNA), platelets, tumor-derived extracellular vesicles (microvesicles, exosomes), and
proteins, which are released into the urine, serum, saliva, and other biological samples from
the primary tumor and/or metastatic deposits (Figure 1) [12]. This is possible as tumor
biomarkers are specific and allow accurate distinction of healthy individuals and cancer
patients [13,14]. In addition, LB presents some advantages over tumor biopsy, for example,
it is easier to access, less painful, and allows the evaluation of tumor heterogeneity as
markers from all tumor sites are released into the blood [13,15].
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Circulating tumor cells (CTCs) are tumor cells that depart from solid tumor lesions
and remain in the bloodstream, and they contain a population of metastatic precursors that
are vital for the identification of disease progression [16]. Circulating tumor DNA (ctDNA),
another widely studied marker, is a subpopulation of circulating cell-free DNA (cfDNA)
in individuals with cancer [17]. While cfDNA refers to DNA released from cells in both
healthy and cancerous tissues, ctDNA is a small proportion of the total cfDNA.

Circulating cell-free RNA (cfRNA) molecules have been described, years after cfDNA,
in plasma from melanoma patients [18]. With the development of new technologies and
more sensitive methods, it has been possible to identify mRNA and miRNA molecules in
body fluids, which can be found in ribonucleoprotein complexes, platelets or CTCs, and
extracellular vesicles, such as exosomes [19]. cfRNAs that have been touted as one of the
hallmarks of cancer can provide information on the tumor gene expression profile, with
miRNAs reflecting epigenetic alterations, that have been touted as one of the hallmarks
of cancer [20]. One of the main advantages of using miRNAs from LB samples is that
they are more stable than mRNAs. Further, miRNAs are tissue specific and regulate
several important targets for tumor development and progression [21]. Platelets derived
from megakaryocytes can house cytoplasmic RNA secreted by the tumor or captured in
circulation through interaction with other cells; such RNA can be translated later into
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mRNAs, as well as lead to miRNA expression [22]. Similar to platelets, exosomes also
contain ctDNA, tumor mRNA, and miRNAs, which are important in the context of LB [23].

Liquid biopsy (LB) can have different applications in clinical practice, including early
diagnosis, detection of recurrence, prediction of treatment response (i.e., distinguishing
responders and non-responders), longitudinal monitoring during treatment, and drug
selection. In addition, it can be used to identify markers that enable patient stratification,
leading to personalized therapy. In this review, we highlight the main uses of LB in BC
patients. We further focus on circulating biomarkers in biological fluids that can be valuable
for cancer research and clinical practice.

2. Breast Cancer Screening Using Liquid Biopsy

In the context of a BC diagnosis, mammography is the established gold standard
for screening in clinical practice [24]. However, in recent decades, several studies have
aimed to develop non-invasive methods for the early detection of BC [25]. Biomarkers
based on cfDNA, ctDNA, CTCs, miRNA, lncRNAs, platelets, mRNA, protein, and volatile
organic compounds (VOCs) have been previously described and can be derived from the
blood (plasma/serum), urine, and saliva. Here, we summarize evidence for the use of
non-invasive biomarkers using LB for the early detection of BC (Table 1).

Some studies have identified cfDNA as an early detection biomarker in BC based on
analyses of DNA damage and DNA methylation changes. Kamel et al. [26] obtained a DNA
integrity index using plasma where patients with confirmed malignancy had significantly
greater DNA damage than those with benign breast lesions and healthy controls, and there
was a correlation with TNM staging. In another study, Li et al. [27] were the first to assess
EGFR and PPM1E promoter methylation status, known to play an important role in cancer
progression and tumorigenesis, in plasma using next-generation bisulfite sequencing. In
line with what is known about promoter hypermethylation and cancer, they observed that
patients with BC had significantly higher methylation levels than healthy controls.

Circulating tumor DNA can be used as a potential biomarker in LB samples to iden-
tify specific mutations in BC. Cohen et al. used CancerSEEK, a pan-cancer blood test
designed to identify eight types of cancer including BC, to assess mutations in 16 ctDNA
genes (including TP53, NRAS, CTNNB1, PIK3CA, KPAS, APC, and PTEN). The authors
obtained a sensitivity of 33% and specificity of 99% for the plasma detection of BC [28].
Beaver et al. [29] evaluated PIK3CA mutations in the plasma of BC patients. PIK3CA is an
oncogene that mutates at high frequency and is present in approximately 30% of all BCs.
The authors demonstrated a sensitivity of 93.3% and a specificity of 100% for detecting
early-stage BC.

The detection of CTCs as non-invasive biomarkers for the early diagnosis of BC
has yielded promising results. Kruspe et al. [30] developed a rapid and highly sensitive
diagnostic method for the detection of CTCs based on nuclease-activated probe technol-
ogy, which allowed for the discrimination between BC patients and healthy controls by
plasma analysis.

MicroRNA molecular profile detection is an opportunity to identify minimally inva-
sive biomarkers for early BC diagnosis. Shimomura et al. [31] evaluated miRNA expression
profiles in the serum of BC patients and healthy women. A combination of five miRNAs
(miR-1246, miR-1307-3p, miR-4634, miR-6861-5p, and miR-6875-5p) helped to detect BC
(sensitivity of 97.3%, specificity of 82.9%, accuracy of 89.7%) and early-stage BC individuals
(98.0% sensitivity for carcinoma in situ). Erbes et al. [32] carried out the first study to
identify differential circulating miRNA profiles (miR-21, miR-125b, miR-451, and miR-155)
in the blood and urine of BC patients, allowing them to specifically discriminate between
patients with local BC and healthy women. In addition, this study reported the reliabil-
ity, reproducibility, and robustness of analyses involving urine samples. Furthermore,
Hirschfeld et al. [33] identified the differential expression of four ct-miRNAs (miR-424,
miR-423, miR-660, and let7-i) in the urine of BC patients, successfully distinguishing BC
patients from healthy controls.
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A case-control study identified a molecular signature of miRNAs as LB biomarkers for
each molecular subtype. This suggests that the LB approach using molecular biomarkers
can be used for routine BC screening [34].

Plasma exosome-derived lncRNAs are abundant in many types of cancer, including
BC, and thus, they are potential tumor biomarkers [35–37]. Zhong et al. [37] analyzed
serum exosomal lncRNA H19, an oncogene associated with cell proliferation, invasion, and
apoptosis, and a biomarker previously reported for monitoring BC progression [38]. The
authors observed that exosomal H19 expression was significantly upregulated in the serum
of patients with BC as compared twith that in patients without malignancy, indicating that
this biomarker was a promising diagnostic indicator and was superior to standard markers.

Tumor-educated platelets (TEPs) can be used as biomarkers for BC diagnosis using
blood samples. Best et al. [39] conducted a pan-cancer study involving six tumor types,
including BC. The primary tumor location was correctly identified with 71% accuracy, and
since each molecular subtype induced different stimuli that affected platelet profile, the
analyses, based on TEP profiles, successfully distinguished between BC patients who had
HER2-amplified, PIK3CA-mutant, or triple-negative phenotypes.

Messenger RNAs (mRNAs) and proteins are promising early BC biomarkers that can
be identified in biological samples, including saliva. Zhang et al. [40] established that
nine biomarkers, eight mRNAs (S100A8, GRIK1, GRM1, H6PD, IGF2BP1, CSTA, MDM4,
and TPT1), and a CA6 protein (carbonic anhydrase VI) were able to distinguish between
BC patients and healthy controls. A diagnostic accuracy of 92% (sensitivity of 83% and
specificity of 97%) was observed. Another study showed that the levels of CA125 (cancer
antigen 125) and sFas proteins were significantly increased in the saliva of BC patients, and
that they were able to successfully discriminate between groups (BC patients vs. healthy
controls). The combination of these biomarkers demonstrated a sensitivity of 67.5% and
specificity of 66.7%. CA125 and sFas are relevant tumor biomarkers, since CA125 is a
glycoprotein with antiadhesive properties, and sFas is a cell surface receptor, which inhibits
apoptosis and contributes to tumor progression [41].

Volatile organic compounds (VOCs) have been identified as potential biomarkers in
BC screening and are detectable in biological samples, including urine. Kure et al. found
a combination of 2-butanone and 2-propanol, which are compounds produced during
mechanisms associated with tumorigenesis. Volatile organic compounds (VOCs) were
highly effective in detecting early-stage BC and they achieved a sensitivity of 93.3% and
specificity of 83.3% [42].

Table 1. Summary of potential non-invasive biomarkers using liquid biopsy for early detection of
breast cancer.

Study, Year Sample N Stage of
Disease Biomarker Sensitivity

(%)
Specificity

(%)
Accuracy

(%) Detection Method Ref.

Kamel et al., 2016 Plasma 95 I–IV cf-DNA 85.3 100 - RT-qPCR [26]

Li et al., 2016 Plasma 86 I–II cf-DNA 75.6–94.2 30.4–53.3 66–75
Microfluidic PCR and
Bisulfite Sequencing

Technology
[27]

Cohen et al., 2018 Plasma 54 I–III ct-DNA 33 99 73 Multiplex-PCR, NGS
and CancerSEEK [28]

Beaver et al., 2014 Plasma 29 I–III ct-DNA 93.3 100 96.7 ddPCR [29]

Kruspe et al., 2017 Plasma 29 IV CTCs - - - RT-qPCR [30]

Shimomura
et al., 2016 Serum 1206 I–IV miRNA 97.3 82.9 89.7 Microarray and

RT-qPCR [31]

Erbes et al., 2015 Serum and
urine 24 Early miRNA 83.3 87.5 88.7 RT-qPCR [32]

Hirschfeld
et al., 2020 Urine 69 Early miRNA 98.6 100 99.9 RT-qPCR [33]

Zhong et al., 2020 Serum 50 I–IV lncRNA 87 70.6 87 RT-qPCR [37]
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Table 1. Cont.

Study, Year Sample N Stage of
Disease Biomarker Sensitivity

(%)
Specificity

(%)
Accuracy

(%) Detection Method Ref.

Best et al., 2015 Blood 39 I–IV TEPs - - 71 mRNA sequencing [39]

Zhang et al., 2010 Saliva 40 I–IV mRNA and
proteins 83 97 92 Microarray, RT-qPCR,

and immunoblot [40]

López-Jornet
et al., 2021 Saliva 91 I–IV Proteins 67.5 66.7 - Biochemical analyses [41]

Kure et al., 2021 Urine 110 I–II VOCs 93.3 83.3 88.3 GCMS [42]

cfDNA, cell-free DNA; CTCs, circulating tumor cells; miRNA, microRNA; lncRNA, long non-coding RNAs; TEPs,
tumor-educated platelets; VOCs, volatile organic compounds; mRNA, messenger RNA; NGS, next-generation
sequencing; RT-qPCR, reverse transcription quantitative real-time PCR; GCMS, gas chromatography–mass
spectrometry; ddPCR, droplet digital polymerase chain reaction.

3. Use of Liquid Biopsy to Aid in Drug Selection

Drug resistance has become the biggest obstacle to the success of cancer therapies,
accounting for more than 90% of deaths in cancer patients receiving traditional chemother-
apy or new targeted drugs [43]. Resistance mechanisms include increased metabolism
of xenobiotics, increased drug efflux, growth factors, increased DNA repair capacity, and
genetic factors (genetic mutations, amplifications, and epigenetic alterations) [44]. LB can
be used to determine the most effective and accurate treatments and may be a promis-
ing non-invasive method; therefore, we summarize the main studies related to treatment
decisions based on LB analysis (Table 2).

With the developments in research, the prediction of treatment response to drug
treatment based on LB has become possible. For instance, Di Cosimo et al. [45] found that
increases in miR-148a-3p and miR-374a-5p in the blood were associated with a patholog-
ical complete response (pCR) after trastuzumab-based neoadjuvant therapy, indicating
that these miRNAs could be used as predictive biomarkers. Moreover, using Gene Ontol-
ogy (GO) and KEGG analyses, they found that these miRNAs were associated with cell
metabolism regulation and AMPK and MAPK signaling.

In another study, it was verified that miR-503 increased in the plasma of patients with
BC after neoadjuvant treatment, which occurred as a consequence of the upregulation of
exosomes released from endothelial cells after treatment with paclitaxel and epirubicin.
Interestingly, while upregulation of miR-503 was observed in patients who received neoad-
juvant chemotherapy, no changes were observed in patients treated with surgery alone [46].
This miRNA may contribute to the direct effects of taxane and anthracycline therapy and
could be used as a predictive biomarker.

Circulating tumor DNA (ctDNA) is another important tool that can be used to monitor
the development and treatment of cancer. In a randomized phase III study (PALOMA-3), in
which the CDK4/6 inhibitors palbociclib and fulvestrant were tested in a group of women
(521 patients) with advanced BC (estrogen receptor-positive BC and HER2-negative BC),
there were changes in PIK3CA ctDNA levels in plasma samples after 15 days of treatment
with palbociclib and fulvestrant. This result indicates that early detection of ctDNA can
provide potent biomarkers for CDK4/6 inhibitors drugs [47].

One study analyzed samples from 38 patients with early-stage TNBC, who received
neoadjuvant treatment with a combination of cisplatin and rucaparib. The presence of
ctDNA in all patients who had recurrence demonstrated that next-generation ctDNA
sequencing may be a useful strategy for predicting recurrence after neoadjuvant treatment
in patients with TNBC [48].

Circulating tumor cells (CTCs) also stand out as important markers that can help to
identify chemoresistance, which is related to a lower prognosis in early BC. [49]. In a study
with a total of 444 BC patients (stages I–III) who received adjuvant chemotherapy, and had
a follow-up of 10 months with adjuvant chemotherapy regimens, the patients presenting
CK-19 (cytokeratin-19) mRNA-positive CTCs experienced reduced disease-free survival
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(DFS) and overall survival (OS) after treatment [50]. In addition, they analyzed the presence
of CTCs in patients with CB (stage I–III), independent of HER-2 status, and observed that
post trastuzumab administration, 75% of patients had no detectable CTCs for CK19 mRNA
as compared with the observation arm (17.9%). Another study analyzed the blood samples
of 437 patients with early breast cancer, before and after adjuvant chemotherapy, and
observed a greater reduction in CTCs positive for CK19 mRNA [51]. In contrast, a study
that aimed to assess whether trastuzumab decreased the detection rate of CTCs in women
with high-risk, HER-2 non-amplified, early BC analyzed 1318 HER-2-negative patients after
adjuvant treatment and screened for CTCs in the blood. From those, 7.2% presented as CTC
positive, and were divided into two groups: observation or trastuzumab administration.
However, they did not observe a decrease in CTCs after trastuzumab treatment [52].

Many studies have been conducted to evaluate new therapeutic methods using LB
to better detect miRNAs, ctDNA, and CTCs, as a tool for real-time monitoring of dis-
ease progression and treatment efficacy to improve personalized medicine and treatment
decision making.

Table 2. Summary of studies demonstrating the use of liquid biopsy to aid in drug selection.

Study, Year Sample Subtype Role Drug Biomarker Ref.

Cosimo el al., 2020 Blood HER2+ Predictive
biomarker Trastuzumab miRNA and

ct-miRNA [45]

Boyy et al., 2015 Plasma NA
Therapeutic

target/prognostic
indicator

Paclitaxel and epirubicin miRNA [46]

O’Leary B et al., 2018 Plasma ER+, HER2- Predictive
biomarker Palbociclib and fulvestrant ctDNA [47]

Chen Y et al., 2017 Plasma TN Predictive
biomarker Cisplatin and rucaparib ctDNA [48]

Ignatiadis et al., 2007 Blood
ER+, ER-, TN,
HER2+, and
ER+/HER2-

Predictive
biomarker

Fluorouracil, epirubicin,
cyclophosphamide,

docetaxel, methotrexate

CK-19
mRNA-positive

CTCs
[50]

Xenidis et al., 2009 Blood
ER+, ER-, TN,
HER2+, and
ER+/HER2-

Predictive
biomarker

Fluorouracil, epirubicin,
cyclophosphamide,

docetaxel, methotrexate

CK-19
mRNA-positive

CTCs
[51]

miRNAs, microRNAs; ct-miRNA, circulating tumor miRNA; ctDNA, circulating tumor DNA; CK-19 mRNA-
positive CTCs: cytokeratin-19 (CK-19) mRNA-positive circulating tumor cells; ER+, estrogen receptor positive;
ER-, estrogen receptor negative; TN, triplo-negative; HER2+, human epidermal growth factor receptor-2 positive;
HER2-, human epidermal growth factor receptor-2 negative; NA, not available.

4. Monitoring Residual Disease Using Liquid Biopsy Biomarkers during Treatment

Disease monitoring using LB has been increasingly investigated for various malig-
nancies, including BC [53,54]. LB can be used to stratify patients with variable risk of
recurrence during therapy [55], based on CTC analysis or factors derived from circulating
tumors, in particular, ctDNA or exosomes [56].

The evolution of highly sensitive LB-based assays has allowed us to detect and char-
acterize minimal residual disease (MRD), in order to identify the presence of tumor cells
that have disseminated from a primary tumor to distant organs in patients who do not
show clinical or radiological signs of metastasis, or residual tumor cells abandoned after
local therapy, eventually leading to local recurrence [56]. In this context, LB assays can be
used to monitor MRD, helping in the discovery of new drugs that can effectively eliminate
or control residual tumor cells in patients with high-risk disease recurrence after primary
therapy. The results of studies, published in the last 7 years, on patients with early or ad-
vanced BC have demonstrated that many biomarkers can be used to monitor the response
to treatment, including analyses involving ctDNA, CTC counts, circulating endothelial cells
(CEC), exosomal microRNA (exo-miRNA) expression, circulating IL-8, fecal metabolites,
and even analysis of platelet aggregation (Table 3). Similar correlations have been reported
for other tumor types, including colorectal cancer [57,58] and bladder cancer [59].



Int. J. Mol. Sci. 2022, 23, 9952 7 of 22

Table 3. Studies demonstrating the biomarkers for monitoring response during treatment in breast
cancer using liquid biopsy.

Study, Year Sample N Stage of Disease Biomarker Detection Method Ref.

Garcia-Murillas
et al., 2015 Plasma 55 Early ctDNA ddPCR [60]

Kodahl el al., 2018 Serum 66 Advanced disease ctDNA ddPCR [61]

McDonald et al., 2019 Plasma 33 Early and locally
advanced disease ctDNA TARDIS [62]

Magbanua et al., 2021 Plasma 291 Early ctDNA WGS [63]

Olsson et al., 2015 Plasma 20 Early ctDNA WGS e ddPCR [64]

Darga et al., 2021 Blood and
platelet 124 Advanced disease CTC sand platelet PD-L1 CellSearch System® [65]

Pierga et al., 2017 Blood 137 Locally advanced
disease CTCs and CECs CellSearch System® [66]

Todorova et al., 2022 Plasma 20 Early and
advanced disease exo-miRNAs NGS [67]

Tiainen et al., 2019 Plasma 58 Advanced disease IL-8 ELISA [68]

Zidi et al., 2021 Stool 8 Early Fecal Metabolic NMR Spectroscopy [69]

ctDNA, circulating tumor DNA; CTCs, circulating tumor cells; CECs, circulating endothelial cells; exo-miRNAs,
exosomal microRNAs; WGS, whole-genome sequencing; ddPCR, droplet digital polymerase chain reaction;
TARDIS, targeted digital sequencing; NGS, next-generation sequencing; NMR, nuclear magnetic resonance.

4.1. Circulating ctDNA

Circulating tumor DNA (ctDNA) detection in biological fluids has been widely dis-
cussed over the years, and recent improvements in ctDNA sequencing and analysis tech-
nology have allowed for its use in MRD detection in many types of tumors, such as lung,
breast, colon, pancreatic, and bladder cancers. Overall, MRD could assist in the manage-
ment of patients with cancer at all stages, including monitoring response and resistance to
treatment. The concentration of detectable ctDNA is determined by the tumor type, tumor
burden, and other biological processes, such as therapy resistance. Among the technologies
currently used for ctDNA detection, in this review, we identified whole-genome sequencing
(WGS), which can identify somatic mutations, as well as copy number variations (CNVs),
and structural rearrangements [70], a technique based on droplet digital polymerase chain
reaction (ddPCR) and targeted digital sequencing (TARDIS).

Understanding the technology used and its ability to detect the desired target is
essential for assessing the clinical significance of ctDNA [70]. For this reason, many
researchers have focused on techniques that are fast, sensitive, and cost-effective, such as
ddPCR, which is among the most widely used techniques to date [64]. This method is based
on the distribution of ctDNA samples in from hundreds to millions of droplets of water-in-
oil emulsions [71]. The advantages of ddPCR include its excellent sensitivity for identifying
mutations and low cost for absolute quantification. However, this method can detect
only known variants and analyze only a limited number of variants. One of the studies
that detected ctDNA by using TARDIS could identify residual disease in patients with
early and locally advanced-stage BC with excellent accuracy after neoadjuvant treatment.
This detection method identified ctDNA in all patients, with 0.11% median variant allele
frequency (VAF) before therapy [62].

4.2. Platelets, CTC, and CEC

Studies have linked CTC and CEC counts to RD in patients undergoing treatment
for BC. Darga et al. analyzed blood from metastatic BC patients and healthy donors for
CTC and platelet PD-L1 with a phycoerythrin-labeled anti-human PD-L1 monoclonal
antibody, using the CellSearch® assay [65]. They identified PD-L1 expression in metastatic
BC patients on both CTC and platelets in an independent fashion. These data suggest
that CTC and platelet PD-L1 expression could play a role in predicting which patients
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should receive immune checkpoint inhibition, and also, as a pharmacodynamic biomarker
during treatment.

Pierga et al. evaluated CTC and CEC in 137 patients with locally advanced BC using
the CellSearch ® system [66]. The study found that at baseline, 55 patients had detectable
CTC (39%). After four cycles of chemotherapy, a dramatic drop in CTC to a rate of 9%
(p < 0.01) was observed, with a pCR rate of 40%. The mean follow-up duration was
43 months. CTC detection (≥1 CTC/7.5 mL) at baseline was associated with lower 3-year
DFS (39% vs. 70% for patients without CTC, p < 0.01, HR 2, 80) and shorter 3-year OS
(p < 0.01). However, the CEC level at baseline or variations during treatment responded to
treatment monitoring.

4.3. Exo-miRNAs, IL-8, and Fecal Metabolomics

Exosomal microRNAs (exo-miRNAs) have recently been investigated in cancer studies.
Aberrant miRNA expression has already been identified and characterized in a range of
biological samples, such as tissues, serum, plasma, CTCs, and exosomes, and their role in
the development of new biomarkers for BC has been explored [72]. Although, few studies
have focused on the detection of exo-miRNAs for monitoring the response to therapy in
BC [73], Todorova et al. recently investigated the ability of circulating exo-miRNAs to
predict pCR in BC patients treated with neoadjuvant chemotherapy (NAC), using next-
generation sequencing (NGS) technology [67]. The authors found that three miRNAs
predicted pCR in all analyzed samples (miR-30b, miR-328, and miR-423) before NAC.
In addition, they identified that exo-miRNAs could contribute to monitoring response
to neoadjuvant treatment. After the first dose of NAC, pCR was predicted by exo-miR-
141, whereas exo-miR-34a, exo-miR182, and exo-miR-183 predicted DR. However, these
miRNAs still need to be validated in a larger cohort. Therefore, further studies are needed
to assess the robustness and reproducibility of exo-miRNAs and to independently validate
exo-miRNA signatures.

Proinflammatory cytokines are also targets for biomarker research for BC, as their
effects on the tumor microenvironment may result in tumor proliferation, survival, and
chemoresistance in malignant diseases [74,75]. Tiainen et al. performed an exploratory
analysis of multiple plasma cytokines and circulating proteins and found that the most
evident predictor was interleukin-8 (IL-8), because the majority of patients (n = 35, 60%)
with lower levels of IL-8 throughout treatment had better OS. Thus, low levels of IL-8
during chemotherapy may help to identify patients with prolonged survival [68].

Metabolomics is a new, state-of-the-art method with demonstrated effectiveness in
numerous studies, providing information on biological systems complementary to that
provided by other “omics” approaches [76]. Metabolomics provides a powerful tool for the
discovery of clinically relevant biomarkers [69]. This approach also allows for the identifi-
cation of metabolites that relate to the modulation of responses to anticancer treatments,
which is called pharmacometabolomics [77]. Zidi et al. performed a pioneering study to
identify and characterize specific profiles of fecal metabolites in patients with BC after
chemotherapy, and established a non-invasive metabolomics approach to improve the mon-
itoring of patients with BC [69]. They demonstrated that chemotherapy modulated the fecal
metabolomic profile of patients with BC. Therefore, these data provide interesting insights
that can complement and improve clinical tools for monitoring BC, using a multitude of
samples, including stool samples.

5. Prediction of Treatment Response and Early Detection of Relapse

Several types of cells or molecules, such as CECs, CTCs, peripheral blood mononuclear
cells (PMBCs), circulating cancer stem-like cells (sCSCs), cfDNA, ctDNA, mRNA, miRNA,
and exosomes in blood samples, as well as metabolic markers in urine samples, can predict
treatment response and/or early detection of disease relapse in BC patients (Table 4).
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Table 4. Summary of potential non-invasive biomarkers using liquid biopsy for prediction of treatment response and early detection of relapse.

Study, Year Sample N Stage of Disease Biomarker Detection Method Ref.

Rodriguéz-Martínez et al., 2019 Blood 53 Not available CTCs/miRNA Immunocytochemistry/RT-qPCR [72]

Ma et al., 2020 Blood 41 Locally advanced disease CECs SE-iFISH [78]

Pierga et al., 2012 Blood 267 Metastatic disease CTCs CellSearch System® [79]

Yu et al., 2013 Blood 41 Metastatic disease CTCs Microfluidic HB chip/NGS [80]

Horimoto et al., 2018 Blood 22 IV CTCs Microfluidic chip [81]

Costa et al., 2020 Blood 54 Metastatic disease CTCs CellSearch System® [82]

Brisotto et al., 2020 Blood 31 Metastatic disease CTCs MBA/CellSearch System® [83]

Galardi et al., 2021 Blood 46 Not available CTCs CellSearch System®/ddPCR [84]

Jakabova et al., 2021 Blood 20 Early and locally advanced disease CTCs MetaCell/q-PCR [85]

Chen et al., 2020 Blood 64 I–IV CTCs RNA-ISH [86]

Zhou et al., 2020 Blood 89 I–IV CTCs Flow cytometry/immunofluorescence/RT-qPCR [87]

Papadaki et al., 2020 Blood 198 Early and metastatic disease CTCs/PBMC Ficoll–Hypaque density-gradient
centrifugation/Immunofluorescence [88]

Papadaki et al., 2022 Blood 199 Early and metastatic disease CTCs/PBMC Ficoll–Hypaque density-gradient
centrifugation/immunofluorescence [89]

Lee et al., 2019 Blood 48 IV CTCs/cCSCs Flow cytometry [90]

Aaltonen et al., 2017 Plasma 36 Metastatic disease CTCs/mRNA CellSearch System/Multiplex q-PCR [91]

Fernandez-Garcia et al., 2019 Plasma 194 Metastatic disease CTCs/cfDNA CellSearch System/RT-qPCR [92]

Bonechi et al., 2018 Plasma 32 Metastatic disease CTCs/ctDNA/TK1 CellSearch System/ddPCR [93]

Chen et al., 2020 Plasma 31 I–IV ctDNA NGS [94]

Raimondi et al., 2021 Plasma 106 Metastatic disease ctDNA ddPCR [95]

Chin et al., 2022 Plasma 33 Metastatic disease ctDNA NGS/ddPCR [96]

Gerratana et al., 2021 Plasma 107/48 IV ctDNA NGS/ddPCR [97]

Wang et al., 2021 Plasma 273 Not available ctDNA NGS [98]

Shivapurkar et al., 2017 Plasma 12 Metastatic disease miRNA RT-qPCR [99]
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Table 4. Cont.

Study, Year Sample N Stage of Disease Biomarker Detection Method Ref.

Salvador-Coloma et al., 2020 Plasma 34 Early or locally advanced disease miRNA Microarray [100]

Griñán-Lisón et al., 2021 Blood 60 Not available miRNA q-PCR [101]

Su et al., 2021 Plasma 172 I–IV exLR NGS [102]

Chanteloup et al., 2020 Plasma/urine 20 Not available Exosomes/CTCs BLI/ELISA/NTA/CellSearch System [103]

Ferreira et al., 2016 Urine 71 Metastatic disease NTX ELISA [104]

Ferroni et al., 2017 Urine 115 I–III 11-dehydro-TXB2 Radioimmunoassay [105]

CECs, circulating endothelial cells; SE-iFISH, subtraction enrichment and immunostaining-fluorescence in situ hybridization; CTCs, circulating tumor cells; NGS, next-generation
sequencing; MBA, metabolic-based assay; ddPCR, droplet digital polymerase chain reaction; qPCR, quantitative polymerase chain reaction; RNA-ISH, RNA in situ hybridization;
RT-qPCR, reverse transcriptase quantitative real-time polymerase chain reaction; PBMC, peripheral blood mononuclear cell; cCSCs, circulating cancer stem-like cells; mRNA, messenger
RNA; miRNA, microRNA; cfDNA, cell-free DNA; ctDNA, circulating tumor DNA; TK1, thymidine kinase-1; exLR, extracellular vesicle long RNA; BLI, biolayer interferometry; ELISA,
enzyme-linked immunosorbent assay; NTA, nanoparticle tracking analysis; NTX, N-telopeptide of type I collagen; 11-dehydro-TXB2, 11-dehydrothromboxane B2.
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5.1. Circulating Cells as Biomarkers

Several cell types with the potential to provide information about a patient’s treatment
response, as well as their chance of recurrence, have already been identified. Among these
cells, CECs, CTCs, sCSCs, and PMBCs stand out. A recent study evaluated treatment
response by scoring CECs, in blood samples from patients with locally advanced BC, who
underwent NAC (epirubicin, cyclophosphamide, and docetaxel). The number of CECs
increased after the first cycle and decreased after eight cycles of NAC as compared with
the baseline pretreatment samples. The study also evaluated chromosomal alterations in
these CECs and found aneuploid CECs in all patients, and these numbers increased post
NAC. Therefore, a better understanding of aneuploid CECs and their relationship with
cancer may help elucidate the development of chemotherapy resistance and metastasis
processes [78].

Circulating tumor cells (CTCs) are the main circulating cells currently being studied
in the context of LB and BC. This review identified 16 studies that assessed the presence
of CTCs and their use as predictive biomarkers for treatment response or relapse. These
studies associated a high CTC count with shorter progression-free survival (PFS), DFS
and/or OS [79–84], resistance to different therapies [80,84,85], worse outcome [82,84,85],
disease relapse [82,85], and metastasis [86]. Some studies have also evaluated CTC counts
with different phenotypes, such as mesenchymal CTCs (mCTCs) and epithelial CTCs
(eCTCs). In these studies, a high count of mCTCs as compared with eCTCs, was associ-
ated with progressive disease [80,86] and metastatic development [86,87], indicating their
clinical importance in therapeutic resistance. Another study showed high expression of
chemoresistance-associated genes (MRP1, MRP2, MRP4, MRP5, MRP7, MDR1, and ERCC1)
in CTCs [85].

In addition, the expression of markers in CTCs has been evaluated and compared
with that in PMBCs to provide answers about metastatic disease. CTCs positive for CD47
and PD-L1 markers were detected in patients with de novo metastatic disease, but not
in those with early disease. In addition, CD47+ CTCs and PD-L1+ CTCs correlated with
disease progression and reduced PFS and OS [88]. Furthermore, TLR4+ and pSTAT3+ levels
were assessed. High rates of pSTAT3+ CTCs were detected in early-stage patients, and
high rates of TLR4+ CTCs were detected in metastatic patients, indicating shorter PFS.
In addition, both molecules are present during disease progression and are associated
with shorter OS. Among PMBCs, TLR4+ was associated with visceral metastases, and
TLR4+/pSTAT3− PBMCs had a high risk of death in metastatic patients [89]. This metabolic
classification of CTCs may help identify aggressive CTC subpopulations and provide new
targeted therapies.

In the context of cells as biomarkers, cCSCs have been shown to correlate with CTCs.
A low cCSC count is related to superior tumor response, PFS, and OS, all of which are
potential prognostic factors [90]. In addition to cells, the expression of mRNA and miRNAs
in CTCs has been studied. TP53 expression was assessed in CTCs positive for EpCAM,
KRT19, and MUC1 markers during cancer treatment, and its expression was associated with
stage IV disease at the initial diagnosis. KRT19+ CTCs were associated with shorter PFS,
OS, and early progression. These results show an evolutionary change in CTC gene expres-
sion that could be involved in treatment predictive genes during tumor progression [91].
Another study evaluated a panel of five miRNAs (miR-21-5p, miR-222-3p, miR-221-3p,
miR-155-5p, and miR-105-5p) based on their relationship with cell proliferation and cancer
progression. The evaluation was performed at the time of diagnosis and after four cycles of
doxorubicin/cyclophosphamide in patients with local and metastatic disease; miR-21 was
associated with larger tumors at diagnosis, miR-222 was associated with the proliferation
marker Ki-67, and miR-221 was found at lower levels after treatment in patients with
lymph node metastasis. Moreover, these miRNAs were associated with CTC counts, where
miR-21, miR-222, and miR-155 levels were positively correlated with CTCs. In addition,
higher levels of miR-21 and miR-155 after treatment were associated with a high number of
CTCs before treatment [72].
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The association between circulating DNA molecules and CTCs has been assessed in
two studies. The first study correlated CTC count with cfDNA and conventional BC markers
(CA15-3 and alkaline phosphatase [AP]). The results showed a strong correlation between
high CTC counts, cfDNA, CA15-3, and AP, with worse outcomes in metastatic patients.
Additionally, high CTC and AP levels are predictors of progressive disease. Circulating
cell-free DNA (cfDNA) is a treatment response predictor that identifies responding and non-
responding patient groups [92]. The second study evaluated CTCs and ctDNA mutations
(ESR1 and PIK3CA) and correlated their expression with TK1 (thymidine kinase-1) activity
at the beginning of endocrine therapy, after four weeks of treatment, and at the time of
progressive disease. High CTC counts and TK1 levels were found at baseline and were
related to lower PFS, and may be useful as a prognostic marker and for monitoring early
response to endocrine therapy [93].

5.2. Nucleic Acids as Biomarkers

Along with cells, isolated nucleic acids have also been studied for their potential
role as cancer biomarkers. Several studies have evaluated circulating DNA as a predictor
of treatment response, disease progression [94], shorter PFS [95,96], and worse patient
outcomes [97,98]. In addition, four studies evaluated mutations and/or gene expression in
ctDNA. Trastuzumab-resistant processes were assessed in patients who progressed, and
mutations in TP53, SETD2, CDK12, EGFR, and NF1 were detected in most patients. Other
somatic mutations were found in patients with stable disease (RNF43, NTRK1, NF1, ERBB2,
and PAK3) and were present at high frequencies in patients with disease progression. In
addition, the ERBB2 expression level was lower in patients who benefited from trastuzumab
than in those who developed resistance [94].

Another study evaluated the number of detected alterations and mutant allele fre-
quencies in ctDNAs. The mutant allele frequency decreased, and the number of detected
alterations increased in progressive cases. In addition, TP53, PIK3CA, ERBB2, MET, EGFR,
and ESR1 were the most represented genes [97]. KRAS mutations in ctDNA were associated
with treatment resistance to palbociclib and fulvestrant. Most patients were negative for
mutKRAS ctDNA at baseline, and some patients turned positive after the start of treat-
ment. After a follow-up in eighteen months, all mutKRAS ctDNA patients showed disease
progression. In addition, the median PFS was better in patients with wild-type KRAS
ctDNA [95]. Mutations in ERBB2, ESR1, PIK3CA, MYC, and cyclin D1 variants were also
detected in patients who underwent palbociclib treatment during disease progression [96].

It is possible to assess treatment response or predict who will not benefit from specific
cancer treatments using miRNA expression [67,99–101]. The genes miR21-5p, miR-100-5p,
miR-125b-5p, miR-126-3p, miR-375, and miR-424-5p are miRNAs related to BC and the
pathways targeted by the drug, dovitinib. The expression of these genes was evaluated
in response to dovitinib and aromatase inhibitors. In patients with tumor resistance to
dovitinib, miR-125b, miR-126, miR-375, miR-424, and miR-100 were downregulated post
treatment as compared with patients with stable disease or sensitive tumors [99].

Some studies have evaluated responses to NAC. One study evaluated non-responsive
patients with lower expression levels of miR-185, miR-4283, miR-5008, and miR-3613 and
higher expression levels of miR-1302, miR-4715, and miR-3144 [100]. In addition, one
study evaluated miRNA expression related to radioresistance, stemness, DNA repair, and
metastasis, where miR-21, miR-10b, miR-221, miR-210, and miR-142 expression levels
increased after radiotherapy (RT). When comparing expression during and after RT, they
found decreased expression levels of miR-21, mir-15b, and miR-182 and an increased
expression level of miR-221 [101].

Moreover, RNA molecules have been studied as extracellular vesicle long RNA (exLR)
and exosomes, with the potential to predict treatment response [102] and disease sta-
tus [103]. ExLR was investigated in patients who received NAC (paclitaxel and/or dox-
orubicin), and it was found that 2573 exLRs were differentially expressed in patients who
achieved pCR as compared with those with residual disease. A gene set enrichment anal-
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ysis (GSEA) revealed the upregulation of exLR from the steroid biosynthesis pathway in
patients with residual disease, and the exMSMO1 (methylsterol monooxygenase 1) level
could distinguish patient outcomes [102]. Heat shock protein-70 (HSP70)-exosomes were
investigated in blood and urine, and their levels were found to be increased in the blood of
patients with metastasis. However, no differences were found between the metastatic and
non-metastatic urine samples [103].

5.3. Metabolic Biomarkers

Urine samples have been investigated for their potential in acting as predictive
biomarkers of treatment response. In this context, the metabolites released in the urine
have been assessed. N-telopeptide of type I collagen (NTX), a bone metabolism marker,
was evaluated in patients before, during, and after zoledronic acid treatment. The results
showed that NTX levels varied according to extraskeletal involvement, and persistently
high levels during treatment were associated with a doubled risk of death [104].

11-Dehydro-thromboxane (TX) B2, a marker of in vivo platelet activation, was also
assessed in urine samples. Pre-surgical urinary samples showed a gradual increase in
patients with carcinoma in situ, invasive carcinoma, local recurrence, and distant metastases.
In addition, high levels of 11-dehydro-TXB2 have been associated with a worse pathological
response to NAC. Therefore, increased oxidative stress can induce lipid peroxidation, which
may contribute to platelet activation and worse outcomes [105].

6. Applications of Liquid Biopsy in Clinical Practice

Advances in the development of increasingly precise and specific LB platforms over
the past decade have led to regulatory approvals for blood-based tests that enable precision
treatment for patients with advanced diseases, including BC (Table 5).

6.1. Circulating Tumor Cells

The first Food and Drug Administration (FDA)-approved LB assay, which covers BC
patients [106], is the CellSearch System® platform (Veridex, Raritan, NJ, USA), which is
designed for magnetic enrichment, fluorescent labeling, and CTC detection [107].

Table 5. FDA-approved tests using liquid biopsy for breast cancer.

Test Biomarkers Method Ref.

CellSearch CTCs CellSearch System [108]
Guardant360 ctDNA NGS [109]

FoundationOne Liquid ctDNA NGS [110]
CTCs, circulating tumor cells; ctDNA, circulating tumor DNA; NGS, next-generation sequencing.

In a cohort of 177 patients with metastatic BC, the results showed that ≥5 CTCs in
7.5 mL were associated with a significantly shorter OS and PFS [111]. Subsequently, several
studies using the CellSearch platform showed that positive CTC counts were associated
with poor prognosis in metastatic BC [112–114]. More recently, the same technique was
tested in another study to monitor the response to palbociclib in advanced hormone
receptor-positive BC, which showed that among 46 patients, those with detectable CTCs
after the first cycle of palbociclib had lower PFS, and patients with ≥5 CTCs at disease
progression had a shorter time to treatment failure [84]. Since the CellSearch System®

only detects CTCs that express cytokeratin and EpCAM, other techniques have been
developed to overcome its limitations. The RareCyte platform, which consists of the
AccuCyte® sample preparation system and CyteFinder instrument, detects CTCs, despite
the EpCAM status [115] and shows similar analytical and prognostic value [116]. Two other
marker-independent technologies have been tested (CellSieve™ filters and ScreenCell®)

to identify CTC clusters with promising results [117]. Although different technologies
have been developed, the CellSearch System® is the most established, and is still the only
FDA-approved CTC detection method for BC.
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6.2. Circulating Tumor DNA

Recently, ctDNA analysis using NGS has been introduced in clinical practice. These
tests can detect genomic changes in solid tumors. The FDA has approved two tests
for ctDNA detection: Guardant360 CDx (Guardant Health, Inc., Redwood City, CA,
USA), which can detect changes in more than 60 different cancer-related genes [109],
and FoundationOne® Liquid CDx, which can identify mutations or changes in more than
300 genes, supporting treatment in an individualized way, considering the unique charac-
teristics of each type of cancer [110].

In the metastatic scenario, ctDNA has demonstrated a better correlation with tumor
burden and prediction of treatment response as compared with carbohydrate antigen
15.3 (CA15.3) and CTCs [118]. A recent meta-analysis including 1127 metastatic BC patients
showed poor PFS and OS associated with the presence of ctDNA [119]. Another ctDNA
application is the identification of genetic mutations with clinical relevance for cancer
treatment. The plasMATCH trial evaluated the accuracy of ctDNA testing based on the
agreement between ctDNA and tissue mutation status and concluded that ctDNA testing
has an important role in identifying rare targetable mutations, such as PIK3CA, ESR1, HER2,
AKT1, and PTEN [120]. Recent studies have used ctDNAs to evaluate the mechanisms of
resistance to CDK4/6 inhibitors. Mutations were associated with poor prognosis, such as
mutations in CDK4/6-Rb pathway genes, including CDK4 and CDK6, CCND1, CDKN2A,
and RB1 [121], ESR1 mutations [122], TP53 alterations, and FGFR gains [123]. Studies have
shown divergent results, and the investigated biomarkers have not yet been used in clinical
practice [124].

In the neoadjuvant setting, ctDNA clearance analysis has shown promising results in
predicting pCR [62]; its persistence was associated with recurrence and poor response to
NAC [63]. This suggests that monitoring of this biomarker could provide early information
on treatment efficacy. However, the role of ctDNA analysis in NAC has not been well
established, and there is controversial information about it in the literature. A recent meta-
analysis did not find a significant association between ctDNA detection and pCR [125].
Therefore, further elucidation is needed before this biomarker can be introduced in clinical
practice in patients receiving NAC.

6.3. Other Serum Markers

CA15.3 and carcinoembryonic antigen (CEA) are serum markers often used in clinical
practice to monitor response to cancer therapy in metastatic BC patients. The sensitivity val-
ues of CA15.3 and CEA are approximately 70% and 50%, respectively, for predicting disease
progression, when above the 95th percentile of healthy individuals [126]. These markers
also correlate with tumor burden and are particularly useful when correlating to clinical
evaluation in patients with non-measurable or non-assessable lesions by RECISTv1.1 [127].
There are several limitations in the use of CA15.3 and CEA in metastatic BC follow-up; these
serum markers have low specificity and conflicting results in studies. Finally, the National
Comprehensive Cancer Network (NCCN) recommends that isolated rising tumor markers
should not be used to define disease progression and should be considered in patients with
bone-dominant metastasis in association with patient symptoms (category 2A) [128].

7. Final Considerations

With advances in molecular technologies in recent years, the detection and analysis
of body fluids have been the subject of many studies, demonstrating that LB provides the
opportunity to assist decision making and, therefore, aid personalized treatment of breast
tumors. Not considered as a substitute, but as a combined analysis, Lennon et al. described
the use of LB followed by positron emission tomography/computed tomography (PET-CT)
in patients who tested positive for ctDNA, as an accurate alternative to diagnose different
types of malignancies, the site, and extent of disease. However, further studies are needed
to assess the clinical utility, risk, and cost-effectiveness of the tests [129]. LB has different
advantages over tissue biopsy; tissue biopsy provides information about the tumor at
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a certain time and place, while LB has the potential to assess the spatial and temporal
heterogeneity of the tumor in a non-invasive manner, enabling the monitoring of subclonal
evolution through serial collections [130].

Disease monitoring is important, since each clinical subtype has different preferential
sites of metastatic involvement, and there are no diagnostic tools capable of correctly
predicting the site of recurrence. A retrospective study analyzed a cohort of patients with
metastatic breast cancer to understand the biological characteristics of the disease in real
time according to different sites of metastasis, aiming at a more personalized therapeutic
approach. The results suggested that changes detected in LB could be used to develop
predictive models to monitor organs at a higher risk of metastasis [131].

The use of CTCs has already been approved by the FDA for BC, therefore, for this
reason, its clinical utility on defining treatment strategy has been explored. A random-
ized clinical trial demonstrated the role of CTCs on treatment choice and concluded that
CTCs could be a reliable biomarker method to guide the choice between chemotherapy
and endocrine therapy as a first-line treatment in metastatic breast cancer [132]. In con-
trast, another randomized clinical trial failed to demonstrate the clinical utility of CTC
monitoring [133].

Current research suggests the potential use of CTCs [134] and ctDNA [135] as an
alternative to assess hormonal and HER2 status in advanced breast cancer, as LB is a
non-invasive and easy-to-repeat sampling approach. However, this strategy lacks clinical
validation and is currently not recommended by major guidelines.

The main perspectives for the clinical use of LB include early detection, detection
of metastases, real-time monitoring, and treatment selection for resistance to treatment,
among others (Figure 2).
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Although there are many limitations and challenges, clinical trials have extensively
explored the use of LB in the setting of neoadjuvant treatment of patients with BC, since,
with the use of biomarkers that use “omics” technologies, they can help in the development
of new medications and in identifying and monitoring patients who will respond to and
benefit from treatment [9].

The high cost of the technique, attributable to sensitivity and precision requirements,
limits the application [136]. Another challenge is the analytical and computational aspects,
as they require multiple analyses with large cohorts to obtain results that can be significant,
and thus, reproducible [10]. As described, the application of LB in the oncological context is
already a reality since the FDA has approved assays to detect genetic alterations in cfDNA
and CTCs for breast tumors.

In conclusion, despite the efforts of the scientific community, most LB assays still
lack evidence and clinical validity, and their use is limited for research purposes. Further
controlled and randomized clinical trials that compare the use of LB with the gold standard,
are required to validate and evaluate the benefits of its use in clinical practice.
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